xref: /qemu/hw/block/m25p80.c (revision a976a99a)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* 16 MiB max in 3 byte address mode */
40 #define MAX_3BYTES_SIZE 0x1000000
41 #define SPI_NOR_MAX_ID_LEN 6
42 
43 /* Fields for FlashPartInfo->flags */
44 enum spi_flash_option_flags {
45     ER_4K                  = BIT(0),
46     ER_32K                 = BIT(1),
47     EEPROM                 = BIT(2),
48     HAS_SR_TB              = BIT(3),
49     HAS_SR_BP3_BIT6        = BIT(4),
50 };
51 
52 typedef struct FlashPartInfo {
53     const char *part_name;
54     /*
55      * This array stores the ID bytes.
56      * The first three bytes are the JEDIC ID.
57      * JEDEC ID zero means "no ID" (mostly older chips).
58      */
59     uint8_t id[SPI_NOR_MAX_ID_LEN];
60     uint8_t id_len;
61     /* there is confusion between manufacturers as to what a sector is. In this
62      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
63      * command (opcode 0xd8).
64      */
65     uint32_t sector_size;
66     uint32_t n_sectors;
67     uint32_t page_size;
68     uint16_t flags;
69     /*
70      * Big sized spi nor are often stacked devices, thus sometime
71      * replace chip erase with die erase.
72      * This field inform how many die is in the chip.
73      */
74     uint8_t die_cnt;
75 } FlashPartInfo;
76 
77 /* adapted from linux */
78 /* Used when the "_ext_id" is two bytes at most */
79 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
80     .part_name = _part_name,\
81     .id = {\
82         ((_jedec_id) >> 16) & 0xff,\
83         ((_jedec_id) >> 8) & 0xff,\
84         (_jedec_id) & 0xff,\
85         ((_ext_id) >> 8) & 0xff,\
86         (_ext_id) & 0xff,\
87           },\
88     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
89     .sector_size = (_sector_size),\
90     .n_sectors = (_n_sectors),\
91     .page_size = 256,\
92     .flags = (_flags),\
93     .die_cnt = 0
94 
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96     .part_name = _part_name,\
97     .id = {\
98         ((_jedec_id) >> 16) & 0xff,\
99         ((_jedec_id) >> 8) & 0xff,\
100         (_jedec_id) & 0xff,\
101         ((_ext_id) >> 16) & 0xff,\
102         ((_ext_id) >> 8) & 0xff,\
103         (_ext_id) & 0xff,\
104           },\
105     .id_len = 6,\
106     .sector_size = (_sector_size),\
107     .n_sectors = (_n_sectors),\
108     .page_size = 256,\
109     .flags = (_flags),\
110     .die_cnt = 0
111 
112 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
113                     _flags, _die_cnt)\
114     .part_name = _part_name,\
115     .id = {\
116         ((_jedec_id) >> 16) & 0xff,\
117         ((_jedec_id) >> 8) & 0xff,\
118         (_jedec_id) & 0xff,\
119         ((_ext_id) >> 8) & 0xff,\
120         (_ext_id) & 0xff,\
121           },\
122     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
123     .sector_size = (_sector_size),\
124     .n_sectors = (_n_sectors),\
125     .page_size = 256,\
126     .flags = (_flags),\
127     .die_cnt = _die_cnt
128 
129 #define JEDEC_NUMONYX 0x20
130 #define JEDEC_WINBOND 0xEF
131 #define JEDEC_SPANSION 0x01
132 
133 /* Numonyx (Micron) Configuration register macros */
134 #define VCFG_DUMMY 0x1
135 #define VCFG_WRAP_SEQUENTIAL 0x2
136 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
137 #define NVCFG_XIP_MODE_MASK (7 << 9)
138 #define VCFG_XIP_MODE_DISABLED (1 << 3)
139 #define CFG_DUMMY_CLK_LEN 4
140 #define NVCFG_DUMMY_CLK_POS 12
141 #define VCFG_DUMMY_CLK_POS 4
142 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
143 #define EVCFG_VPP_ACCELERATOR (1 << 3)
144 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
145 #define NVCFG_DUAL_IO_MASK (1 << 2)
146 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
147 #define NVCFG_QUAD_IO_MASK (1 << 3)
148 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
149 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
150 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
151 
152 /* Numonyx (Micron) Flag Status Register macros */
153 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
154 #define FSR_FLASH_READY (1 << 7)
155 
156 /* Spansion configuration registers macros. */
157 #define SPANSION_QUAD_CFG_POS 0
158 #define SPANSION_QUAD_CFG_LEN 1
159 #define SPANSION_DUMMY_CLK_POS 0
160 #define SPANSION_DUMMY_CLK_LEN 4
161 #define SPANSION_ADDR_LEN_POS 7
162 #define SPANSION_ADDR_LEN_LEN 1
163 
164 /*
165  * Spansion read mode command length in bytes,
166  * the mode is currently not supported.
167 */
168 
169 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
170 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
171 
172 static const FlashPartInfo known_devices[] = {
173     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
174     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
175     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
176 
177     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
178     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
179     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
180 
181     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
182     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
183     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
184     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
185 
186     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
187 
188     /* Atmel EEPROMS - it is assumed, that don't care bit in command
189      * is set to 0. Block protection is not supported.
190      */
191     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
192     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
193 
194     /* EON -- en25xxx */
195     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
196     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
197     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
198     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
199     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
200 
201     /* GigaDevice */
202     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
203     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
204 
205     /* Intel/Numonyx -- xxxs33b */
206     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
207     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
208     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
209     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
210 
211     /* ISSI */
212     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
213     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
214     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
215     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
216     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
217     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
218     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
219     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
220     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
221     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
222     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
223 
224     /* Macronix */
225     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
226     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
227     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
228     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
229     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
230     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
231     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
232     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
233     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
234     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
235     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
236     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
237     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
238     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
239 
240     /* Micron */
241     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
242     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
243     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
244     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
245     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
246     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
247     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
248     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
249     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
250     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
251     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
252     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
253            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB) },
254     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
255     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
256     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
257     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
258                    ER_4K | ER_32K, 2) },
259     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
260     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
261     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
262     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
263     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
264     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
265 
266     /* Spansion -- single (large) sector size only, at least
267      * for the chips listed here (without boot sectors).
268      */
269     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
270     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
271     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
272     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
273     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
274     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
275     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
276     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
277     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
278     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
279     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
280     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
281     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
282     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
283     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
284     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
285     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
286 
287     /* Spansion --  boot sectors support  */
288     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
289     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
290 
291     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
292     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
293     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
294     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
295     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
296     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
297     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
298     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
299     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
300     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
301 
302     /* ST Microelectronics -- newer production may have feature updates */
303     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
304     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
305     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
306     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
307     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
308     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
309     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
310     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
311     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
312     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
313 
314     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
315     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
316     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
317 
318     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
319     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
320     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
321 
322     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
323     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
324     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
325     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
326 
327     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
328     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
329     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
330     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
331     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
332     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
333     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
334     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
335     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
336     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
337     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
338     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
339     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
340     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
341     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
342     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K) },
343 };
344 
345 typedef enum {
346     NOP = 0,
347     WRSR = 0x1,
348     WRDI = 0x4,
349     RDSR = 0x5,
350     WREN = 0x6,
351     BRRD = 0x16,
352     BRWR = 0x17,
353     JEDEC_READ = 0x9f,
354     BULK_ERASE_60 = 0x60,
355     BULK_ERASE = 0xc7,
356     READ_FSR = 0x70,
357     RDCR = 0x15,
358 
359     READ = 0x03,
360     READ4 = 0x13,
361     FAST_READ = 0x0b,
362     FAST_READ4 = 0x0c,
363     DOR = 0x3b,
364     DOR4 = 0x3c,
365     QOR = 0x6b,
366     QOR4 = 0x6c,
367     DIOR = 0xbb,
368     DIOR4 = 0xbc,
369     QIOR = 0xeb,
370     QIOR4 = 0xec,
371 
372     PP = 0x02,
373     PP4 = 0x12,
374     PP4_4 = 0x3e,
375     DPP = 0xa2,
376     QPP = 0x32,
377     QPP_4 = 0x34,
378     RDID_90 = 0x90,
379     RDID_AB = 0xab,
380     AAI_WP = 0xad,
381 
382     ERASE_4K = 0x20,
383     ERASE4_4K = 0x21,
384     ERASE_32K = 0x52,
385     ERASE4_32K = 0x5c,
386     ERASE_SECTOR = 0xd8,
387     ERASE4_SECTOR = 0xdc,
388 
389     EN_4BYTE_ADDR = 0xB7,
390     EX_4BYTE_ADDR = 0xE9,
391 
392     EXTEND_ADDR_READ = 0xC8,
393     EXTEND_ADDR_WRITE = 0xC5,
394 
395     RESET_ENABLE = 0x66,
396     RESET_MEMORY = 0x99,
397 
398     /*
399      * Micron: 0x35 - enable QPI
400      * Spansion: 0x35 - read control register
401      */
402     RDCR_EQIO = 0x35,
403     RSTQIO = 0xf5,
404 
405     RNVCR = 0xB5,
406     WNVCR = 0xB1,
407 
408     RVCR = 0x85,
409     WVCR = 0x81,
410 
411     REVCR = 0x65,
412     WEVCR = 0x61,
413 
414     DIE_ERASE = 0xC4,
415 } FlashCMD;
416 
417 typedef enum {
418     STATE_IDLE,
419     STATE_PAGE_PROGRAM,
420     STATE_READ,
421     STATE_COLLECTING_DATA,
422     STATE_COLLECTING_VAR_LEN_DATA,
423     STATE_READING_DATA,
424 } CMDState;
425 
426 typedef enum {
427     MAN_SPANSION,
428     MAN_MACRONIX,
429     MAN_NUMONYX,
430     MAN_WINBOND,
431     MAN_SST,
432     MAN_ISSI,
433     MAN_GENERIC,
434 } Manufacturer;
435 
436 typedef enum {
437     MODE_STD = 0,
438     MODE_DIO = 1,
439     MODE_QIO = 2
440 } SPIMode;
441 
442 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
443 
444 struct Flash {
445     SSIPeripheral parent_obj;
446 
447     BlockBackend *blk;
448 
449     uint8_t *storage;
450     uint32_t size;
451     int page_size;
452 
453     uint8_t state;
454     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
455     uint32_t len;
456     uint32_t pos;
457     bool data_read_loop;
458     uint8_t needed_bytes;
459     uint8_t cmd_in_progress;
460     uint32_t cur_addr;
461     uint32_t nonvolatile_cfg;
462     /* Configuration register for Macronix */
463     uint32_t volatile_cfg;
464     uint32_t enh_volatile_cfg;
465     /* Spansion cfg registers. */
466     uint8_t spansion_cr1nv;
467     uint8_t spansion_cr2nv;
468     uint8_t spansion_cr3nv;
469     uint8_t spansion_cr4nv;
470     uint8_t spansion_cr1v;
471     uint8_t spansion_cr2v;
472     uint8_t spansion_cr3v;
473     uint8_t spansion_cr4v;
474     bool wp_level;
475     bool write_enable;
476     bool four_bytes_address_mode;
477     bool reset_enable;
478     bool quad_enable;
479     bool aai_enable;
480     bool block_protect0;
481     bool block_protect1;
482     bool block_protect2;
483     bool block_protect3;
484     bool top_bottom_bit;
485     bool status_register_write_disabled;
486     uint8_t ear;
487 
488     int64_t dirty_page;
489 
490     const FlashPartInfo *pi;
491 
492 };
493 
494 struct M25P80Class {
495     SSIPeripheralClass parent_class;
496     FlashPartInfo *pi;
497 };
498 
499 #define TYPE_M25P80 "m25p80-generic"
500 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
501 
502 static inline Manufacturer get_man(Flash *s)
503 {
504     switch (s->pi->id[0]) {
505     case 0x20:
506         return MAN_NUMONYX;
507     case 0xEF:
508         return MAN_WINBOND;
509     case 0x01:
510         return MAN_SPANSION;
511     case 0xC2:
512         return MAN_MACRONIX;
513     case 0xBF:
514         return MAN_SST;
515     case 0x9D:
516         return MAN_ISSI;
517     default:
518         return MAN_GENERIC;
519     }
520 }
521 
522 static void blk_sync_complete(void *opaque, int ret)
523 {
524     QEMUIOVector *iov = opaque;
525 
526     qemu_iovec_destroy(iov);
527     g_free(iov);
528 
529     /* do nothing. Masters do not directly interact with the backing store,
530      * only the working copy so no mutexing required.
531      */
532 }
533 
534 static void flash_sync_page(Flash *s, int page)
535 {
536     QEMUIOVector *iov;
537 
538     if (!s->blk || !blk_is_writable(s->blk)) {
539         return;
540     }
541 
542     iov = g_new(QEMUIOVector, 1);
543     qemu_iovec_init(iov, 1);
544     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
545                    s->pi->page_size);
546     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
547                     blk_sync_complete, iov);
548 }
549 
550 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
551 {
552     QEMUIOVector *iov;
553 
554     if (!s->blk || !blk_is_writable(s->blk)) {
555         return;
556     }
557 
558     assert(!(len % BDRV_SECTOR_SIZE));
559     iov = g_new(QEMUIOVector, 1);
560     qemu_iovec_init(iov, 1);
561     qemu_iovec_add(iov, s->storage + off, len);
562     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
563 }
564 
565 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
566 {
567     uint32_t len;
568     uint8_t capa_to_assert = 0;
569 
570     switch (cmd) {
571     case ERASE_4K:
572     case ERASE4_4K:
573         len = 4 * KiB;
574         capa_to_assert = ER_4K;
575         break;
576     case ERASE_32K:
577     case ERASE4_32K:
578         len = 32 * KiB;
579         capa_to_assert = ER_32K;
580         break;
581     case ERASE_SECTOR:
582     case ERASE4_SECTOR:
583         len = s->pi->sector_size;
584         break;
585     case BULK_ERASE:
586         len = s->size;
587         break;
588     case DIE_ERASE:
589         if (s->pi->die_cnt) {
590             len = s->size / s->pi->die_cnt;
591             offset = offset & (~(len - 1));
592         } else {
593             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
594                           " by device\n");
595             return;
596         }
597         break;
598     default:
599         abort();
600     }
601 
602     trace_m25p80_flash_erase(s, offset, len);
603 
604     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
605         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
606                       " device\n", len);
607     }
608 
609     if (!s->write_enable) {
610         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
611         return;
612     }
613     memset(s->storage + offset, 0xff, len);
614     flash_sync_area(s, offset, len);
615 }
616 
617 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
618 {
619     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
620         flash_sync_page(s, s->dirty_page);
621         s->dirty_page = newpage;
622     }
623 }
624 
625 static inline
626 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
627 {
628     uint32_t page = addr / s->pi->page_size;
629     uint8_t prev = s->storage[s->cur_addr];
630     uint32_t block_protect_value = (s->block_protect3 << 3) |
631                                    (s->block_protect2 << 2) |
632                                    (s->block_protect1 << 1) |
633                                    (s->block_protect0 << 0);
634 
635     if (!s->write_enable) {
636         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
637         return;
638     }
639 
640     if (block_protect_value > 0) {
641         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
642         uint32_t sector = addr / s->pi->sector_size;
643 
644         /* top_bottom_bit == 0 means TOP */
645         if (!s->top_bottom_bit) {
646             if (s->pi->n_sectors <= sector + num_protected_sectors) {
647                 qemu_log_mask(LOG_GUEST_ERROR,
648                               "M25P80: write with write protect!\n");
649                 return;
650             }
651         } else {
652             if (sector < num_protected_sectors) {
653                 qemu_log_mask(LOG_GUEST_ERROR,
654                               "M25P80: write with write protect!\n");
655                 return;
656             }
657         }
658     }
659 
660     if ((prev ^ data) & data) {
661         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
662     }
663 
664     if (s->pi->flags & EEPROM) {
665         s->storage[s->cur_addr] = data;
666     } else {
667         s->storage[s->cur_addr] &= data;
668     }
669 
670     flash_sync_dirty(s, page);
671     s->dirty_page = page;
672 }
673 
674 static inline int get_addr_length(Flash *s)
675 {
676    /* check if eeprom is in use */
677     if (s->pi->flags == EEPROM) {
678         return 2;
679     }
680 
681    switch (s->cmd_in_progress) {
682    case PP4:
683    case PP4_4:
684    case QPP_4:
685    case READ4:
686    case QIOR4:
687    case ERASE4_4K:
688    case ERASE4_32K:
689    case ERASE4_SECTOR:
690    case FAST_READ4:
691    case DOR4:
692    case QOR4:
693    case DIOR4:
694        return 4;
695    default:
696        return s->four_bytes_address_mode ? 4 : 3;
697    }
698 }
699 
700 static void complete_collecting_data(Flash *s)
701 {
702     int i, n;
703 
704     n = get_addr_length(s);
705     s->cur_addr = (n == 3 ? s->ear : 0);
706     for (i = 0; i < n; ++i) {
707         s->cur_addr <<= 8;
708         s->cur_addr |= s->data[i];
709     }
710 
711     s->cur_addr &= s->size - 1;
712 
713     s->state = STATE_IDLE;
714 
715     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
716                                      s->cur_addr);
717 
718     switch (s->cmd_in_progress) {
719     case DPP:
720     case QPP:
721     case QPP_4:
722     case PP:
723     case PP4:
724     case PP4_4:
725         s->state = STATE_PAGE_PROGRAM;
726         break;
727     case AAI_WP:
728         /* AAI programming starts from the even address */
729         s->cur_addr &= ~BIT(0);
730         s->state = STATE_PAGE_PROGRAM;
731         break;
732     case READ:
733     case READ4:
734     case FAST_READ:
735     case FAST_READ4:
736     case DOR:
737     case DOR4:
738     case QOR:
739     case QOR4:
740     case DIOR:
741     case DIOR4:
742     case QIOR:
743     case QIOR4:
744         s->state = STATE_READ;
745         break;
746     case ERASE_4K:
747     case ERASE4_4K:
748     case ERASE_32K:
749     case ERASE4_32K:
750     case ERASE_SECTOR:
751     case ERASE4_SECTOR:
752     case DIE_ERASE:
753         flash_erase(s, s->cur_addr, s->cmd_in_progress);
754         break;
755     case WRSR:
756         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
757         s->block_protect0 = extract32(s->data[0], 2, 1);
758         s->block_protect1 = extract32(s->data[0], 3, 1);
759         s->block_protect2 = extract32(s->data[0], 4, 1);
760         if (s->pi->flags & HAS_SR_TB) {
761             s->top_bottom_bit = extract32(s->data[0], 5, 1);
762         }
763         if (s->pi->flags & HAS_SR_BP3_BIT6) {
764             s->block_protect3 = extract32(s->data[0], 6, 1);
765         }
766 
767         switch (get_man(s)) {
768         case MAN_SPANSION:
769             s->quad_enable = !!(s->data[1] & 0x02);
770             break;
771         case MAN_ISSI:
772             s->quad_enable = extract32(s->data[0], 6, 1);
773             break;
774         case MAN_MACRONIX:
775             s->quad_enable = extract32(s->data[0], 6, 1);
776             if (s->len > 1) {
777                 s->volatile_cfg = s->data[1];
778                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
779             }
780             break;
781         default:
782             break;
783         }
784         if (s->write_enable) {
785             s->write_enable = false;
786         }
787         break;
788     case BRWR:
789     case EXTEND_ADDR_WRITE:
790         s->ear = s->data[0];
791         break;
792     case WNVCR:
793         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
794         break;
795     case WVCR:
796         s->volatile_cfg = s->data[0];
797         break;
798     case WEVCR:
799         s->enh_volatile_cfg = s->data[0];
800         break;
801     case RDID_90:
802     case RDID_AB:
803         if (get_man(s) == MAN_SST) {
804             if (s->cur_addr <= 1) {
805                 if (s->cur_addr) {
806                     s->data[0] = s->pi->id[2];
807                     s->data[1] = s->pi->id[0];
808                 } else {
809                     s->data[0] = s->pi->id[0];
810                     s->data[1] = s->pi->id[2];
811                 }
812                 s->pos = 0;
813                 s->len = 2;
814                 s->data_read_loop = true;
815                 s->state = STATE_READING_DATA;
816             } else {
817                 qemu_log_mask(LOG_GUEST_ERROR,
818                               "M25P80: Invalid read id address\n");
819             }
820         } else {
821             qemu_log_mask(LOG_GUEST_ERROR,
822                           "M25P80: Read id (command 0x90/0xAB) is not supported"
823                           " by device\n");
824         }
825         break;
826     default:
827         break;
828     }
829 }
830 
831 static void reset_memory(Flash *s)
832 {
833     s->cmd_in_progress = NOP;
834     s->cur_addr = 0;
835     s->ear = 0;
836     s->four_bytes_address_mode = false;
837     s->len = 0;
838     s->needed_bytes = 0;
839     s->pos = 0;
840     s->state = STATE_IDLE;
841     s->write_enable = false;
842     s->reset_enable = false;
843     s->quad_enable = false;
844     s->aai_enable = false;
845 
846     switch (get_man(s)) {
847     case MAN_NUMONYX:
848         s->volatile_cfg = 0;
849         s->volatile_cfg |= VCFG_DUMMY;
850         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
851         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
852                                 == NVCFG_XIP_MODE_DISABLED) {
853             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
854         }
855         s->volatile_cfg |= deposit32(s->volatile_cfg,
856                             VCFG_DUMMY_CLK_POS,
857                             CFG_DUMMY_CLK_LEN,
858                             extract32(s->nonvolatile_cfg,
859                                         NVCFG_DUMMY_CLK_POS,
860                                         CFG_DUMMY_CLK_LEN)
861                             );
862 
863         s->enh_volatile_cfg = 0;
864         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
865         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
866         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
867         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
868             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
869         }
870         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
871             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
872         }
873         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
874             s->four_bytes_address_mode = true;
875         }
876         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
877             s->ear = s->size / MAX_3BYTES_SIZE - 1;
878         }
879         break;
880     case MAN_MACRONIX:
881         s->volatile_cfg = 0x7;
882         break;
883     case MAN_SPANSION:
884         s->spansion_cr1v = s->spansion_cr1nv;
885         s->spansion_cr2v = s->spansion_cr2nv;
886         s->spansion_cr3v = s->spansion_cr3nv;
887         s->spansion_cr4v = s->spansion_cr4nv;
888         s->quad_enable = extract32(s->spansion_cr1v,
889                                    SPANSION_QUAD_CFG_POS,
890                                    SPANSION_QUAD_CFG_LEN
891                                    );
892         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
893                 SPANSION_ADDR_LEN_POS,
894                 SPANSION_ADDR_LEN_LEN
895                 );
896         break;
897     default:
898         break;
899     }
900 
901     trace_m25p80_reset_done(s);
902 }
903 
904 static uint8_t numonyx_mode(Flash *s)
905 {
906     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
907         return MODE_QIO;
908     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
909         return MODE_DIO;
910     } else {
911         return MODE_STD;
912     }
913 }
914 
915 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
916 {
917     uint8_t num_dummies;
918     uint8_t mode;
919     assert(get_man(s) == MAN_NUMONYX);
920 
921     mode = numonyx_mode(s);
922     num_dummies = extract32(s->volatile_cfg, 4, 4);
923 
924     if (num_dummies == 0x0 || num_dummies == 0xf) {
925         switch (s->cmd_in_progress) {
926         case QIOR:
927         case QIOR4:
928             num_dummies = 10;
929             break;
930         default:
931             num_dummies = (mode == MODE_QIO) ? 10 : 8;
932             break;
933         }
934     }
935 
936     return num_dummies;
937 }
938 
939 static void decode_fast_read_cmd(Flash *s)
940 {
941     s->needed_bytes = get_addr_length(s);
942     switch (get_man(s)) {
943     /* Dummy cycles - modeled with bytes writes instead of bits */
944     case MAN_SST:
945         s->needed_bytes += 1;
946         break;
947     case MAN_WINBOND:
948         s->needed_bytes += 8;
949         break;
950     case MAN_NUMONYX:
951         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
952         break;
953     case MAN_MACRONIX:
954         if (extract32(s->volatile_cfg, 6, 2) == 1) {
955             s->needed_bytes += 6;
956         } else {
957             s->needed_bytes += 8;
958         }
959         break;
960     case MAN_SPANSION:
961         s->needed_bytes += extract32(s->spansion_cr2v,
962                                     SPANSION_DUMMY_CLK_POS,
963                                     SPANSION_DUMMY_CLK_LEN
964                                     );
965         break;
966     case MAN_ISSI:
967         /*
968          * The Fast Read instruction code is followed by address bytes and
969          * dummy cycles, transmitted via the SI line.
970          *
971          * The number of dummy cycles is configurable but this is currently
972          * unmodeled, hence the default value 8 is used.
973          *
974          * QPI (Quad Peripheral Interface) mode has different default value
975          * of dummy cycles, but this is unsupported at the time being.
976          */
977         s->needed_bytes += 1;
978         break;
979     default:
980         break;
981     }
982     s->pos = 0;
983     s->len = 0;
984     s->state = STATE_COLLECTING_DATA;
985 }
986 
987 static void decode_dio_read_cmd(Flash *s)
988 {
989     s->needed_bytes = get_addr_length(s);
990     /* Dummy cycles modeled with bytes writes instead of bits */
991     switch (get_man(s)) {
992     case MAN_WINBOND:
993         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
994         break;
995     case MAN_SPANSION:
996         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
997         s->needed_bytes += extract32(s->spansion_cr2v,
998                                     SPANSION_DUMMY_CLK_POS,
999                                     SPANSION_DUMMY_CLK_LEN
1000                                     );
1001         break;
1002     case MAN_NUMONYX:
1003         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1004         break;
1005     case MAN_MACRONIX:
1006         switch (extract32(s->volatile_cfg, 6, 2)) {
1007         case 1:
1008             s->needed_bytes += 6;
1009             break;
1010         case 2:
1011             s->needed_bytes += 8;
1012             break;
1013         default:
1014             s->needed_bytes += 4;
1015             break;
1016         }
1017         break;
1018     case MAN_ISSI:
1019         /*
1020          * The Fast Read Dual I/O instruction code is followed by address bytes
1021          * and dummy cycles, transmitted via the IO1 and IO0 line.
1022          *
1023          * The number of dummy cycles is configurable but this is currently
1024          * unmodeled, hence the default value 4 is used.
1025          */
1026         s->needed_bytes += 1;
1027         break;
1028     default:
1029         break;
1030     }
1031     s->pos = 0;
1032     s->len = 0;
1033     s->state = STATE_COLLECTING_DATA;
1034 }
1035 
1036 static void decode_qio_read_cmd(Flash *s)
1037 {
1038     s->needed_bytes = get_addr_length(s);
1039     /* Dummy cycles modeled with bytes writes instead of bits */
1040     switch (get_man(s)) {
1041     case MAN_WINBOND:
1042         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1043         s->needed_bytes += 4;
1044         break;
1045     case MAN_SPANSION:
1046         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1047         s->needed_bytes += extract32(s->spansion_cr2v,
1048                                     SPANSION_DUMMY_CLK_POS,
1049                                     SPANSION_DUMMY_CLK_LEN
1050                                     );
1051         break;
1052     case MAN_NUMONYX:
1053         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1054         break;
1055     case MAN_MACRONIX:
1056         switch (extract32(s->volatile_cfg, 6, 2)) {
1057         case 1:
1058             s->needed_bytes += 4;
1059             break;
1060         case 2:
1061             s->needed_bytes += 8;
1062             break;
1063         default:
1064             s->needed_bytes += 6;
1065             break;
1066         }
1067         break;
1068     case MAN_ISSI:
1069         /*
1070          * The Fast Read Quad I/O instruction code is followed by address bytes
1071          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1072          *
1073          * The number of dummy cycles is configurable but this is currently
1074          * unmodeled, hence the default value 6 is used.
1075          *
1076          * QPI (Quad Peripheral Interface) mode has different default value
1077          * of dummy cycles, but this is unsupported at the time being.
1078          */
1079         s->needed_bytes += 3;
1080         break;
1081     default:
1082         break;
1083     }
1084     s->pos = 0;
1085     s->len = 0;
1086     s->state = STATE_COLLECTING_DATA;
1087 }
1088 
1089 static bool is_valid_aai_cmd(uint32_t cmd)
1090 {
1091     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1092 }
1093 
1094 static void decode_new_cmd(Flash *s, uint32_t value)
1095 {
1096     int i;
1097 
1098     s->cmd_in_progress = value;
1099     trace_m25p80_command_decoded(s, value);
1100 
1101     if (value != RESET_MEMORY) {
1102         s->reset_enable = false;
1103     }
1104 
1105     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1106         qemu_log_mask(LOG_GUEST_ERROR,
1107                       "M25P80: Invalid cmd within AAI programming sequence");
1108     }
1109 
1110     switch (value) {
1111 
1112     case ERASE_4K:
1113     case ERASE4_4K:
1114     case ERASE_32K:
1115     case ERASE4_32K:
1116     case ERASE_SECTOR:
1117     case ERASE4_SECTOR:
1118     case PP:
1119     case PP4:
1120     case DIE_ERASE:
1121     case RDID_90:
1122     case RDID_AB:
1123         s->needed_bytes = get_addr_length(s);
1124         s->pos = 0;
1125         s->len = 0;
1126         s->state = STATE_COLLECTING_DATA;
1127         break;
1128     case READ:
1129     case READ4:
1130         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1131             s->needed_bytes = get_addr_length(s);
1132             s->pos = 0;
1133             s->len = 0;
1134             s->state = STATE_COLLECTING_DATA;
1135         } else {
1136             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1137                           "DIO or QIO mode\n", s->cmd_in_progress);
1138         }
1139         break;
1140     case DPP:
1141         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1142             s->needed_bytes = get_addr_length(s);
1143             s->pos = 0;
1144             s->len = 0;
1145             s->state = STATE_COLLECTING_DATA;
1146         } else {
1147             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1148                           "QIO mode\n", s->cmd_in_progress);
1149         }
1150         break;
1151     case QPP:
1152     case QPP_4:
1153     case PP4_4:
1154         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1155             s->needed_bytes = get_addr_length(s);
1156             s->pos = 0;
1157             s->len = 0;
1158             s->state = STATE_COLLECTING_DATA;
1159         } else {
1160             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1161                           "DIO mode\n", s->cmd_in_progress);
1162         }
1163         break;
1164 
1165     case FAST_READ:
1166     case FAST_READ4:
1167         decode_fast_read_cmd(s);
1168         break;
1169     case DOR:
1170     case DOR4:
1171         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1172             decode_fast_read_cmd(s);
1173         } else {
1174             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1175                           "QIO mode\n", s->cmd_in_progress);
1176         }
1177         break;
1178     case QOR:
1179     case QOR4:
1180         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1181             decode_fast_read_cmd(s);
1182         } else {
1183             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1184                           "DIO mode\n", s->cmd_in_progress);
1185         }
1186         break;
1187 
1188     case DIOR:
1189     case DIOR4:
1190         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1191             decode_dio_read_cmd(s);
1192         } else {
1193             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1194                           "QIO mode\n", s->cmd_in_progress);
1195         }
1196         break;
1197 
1198     case QIOR:
1199     case QIOR4:
1200         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1201             decode_qio_read_cmd(s);
1202         } else {
1203             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1204                           "DIO mode\n", s->cmd_in_progress);
1205         }
1206         break;
1207 
1208     case WRSR:
1209         /*
1210          * If WP# is low and status_register_write_disabled is high,
1211          * status register writes are disabled.
1212          * This is also called "hardware protected mode" (HPM). All other
1213          * combinations of the two states are called "software protected mode"
1214          * (SPM), and status register writes are permitted.
1215          */
1216         if ((s->wp_level == 0 && s->status_register_write_disabled)
1217             || !s->write_enable) {
1218             qemu_log_mask(LOG_GUEST_ERROR,
1219                           "M25P80: Status register write is disabled!\n");
1220             break;
1221         }
1222 
1223         switch (get_man(s)) {
1224         case MAN_SPANSION:
1225             s->needed_bytes = 2;
1226             s->state = STATE_COLLECTING_DATA;
1227             break;
1228         case MAN_MACRONIX:
1229             s->needed_bytes = 2;
1230             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1231             break;
1232         default:
1233             s->needed_bytes = 1;
1234             s->state = STATE_COLLECTING_DATA;
1235         }
1236         s->pos = 0;
1237         break;
1238 
1239     case WRDI:
1240         s->write_enable = false;
1241         if (get_man(s) == MAN_SST) {
1242             s->aai_enable = false;
1243         }
1244         break;
1245     case WREN:
1246         s->write_enable = true;
1247         break;
1248 
1249     case RDSR:
1250         s->data[0] = (!!s->write_enable) << 1;
1251         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1252         s->data[0] |= (!!s->block_protect0) << 2;
1253         s->data[0] |= (!!s->block_protect1) << 3;
1254         s->data[0] |= (!!s->block_protect2) << 4;
1255         if (s->pi->flags & HAS_SR_TB) {
1256             s->data[0] |= (!!s->top_bottom_bit) << 5;
1257         }
1258         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1259             s->data[0] |= (!!s->block_protect3) << 6;
1260         }
1261 
1262         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1263             s->data[0] |= (!!s->quad_enable) << 6;
1264         }
1265         if (get_man(s) == MAN_SST) {
1266             s->data[0] |= (!!s->aai_enable) << 6;
1267         }
1268 
1269         s->pos = 0;
1270         s->len = 1;
1271         s->data_read_loop = true;
1272         s->state = STATE_READING_DATA;
1273         break;
1274 
1275     case READ_FSR:
1276         s->data[0] = FSR_FLASH_READY;
1277         if (s->four_bytes_address_mode) {
1278             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1279         }
1280         s->pos = 0;
1281         s->len = 1;
1282         s->data_read_loop = true;
1283         s->state = STATE_READING_DATA;
1284         break;
1285 
1286     case JEDEC_READ:
1287         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1288             trace_m25p80_populated_jedec(s);
1289             for (i = 0; i < s->pi->id_len; i++) {
1290                 s->data[i] = s->pi->id[i];
1291             }
1292             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1293                 s->data[i] = 0;
1294             }
1295 
1296             s->len = SPI_NOR_MAX_ID_LEN;
1297             s->pos = 0;
1298             s->state = STATE_READING_DATA;
1299         } else {
1300             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1301                           "in DIO or QIO mode\n");
1302         }
1303         break;
1304 
1305     case RDCR:
1306         s->data[0] = s->volatile_cfg & 0xFF;
1307         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1308         s->pos = 0;
1309         s->len = 1;
1310         s->state = STATE_READING_DATA;
1311         break;
1312 
1313     case BULK_ERASE_60:
1314     case BULK_ERASE:
1315         if (s->write_enable) {
1316             trace_m25p80_chip_erase(s);
1317             flash_erase(s, 0, BULK_ERASE);
1318         } else {
1319             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1320                           "protect!\n");
1321         }
1322         break;
1323     case NOP:
1324         break;
1325     case EN_4BYTE_ADDR:
1326         s->four_bytes_address_mode = true;
1327         break;
1328     case EX_4BYTE_ADDR:
1329         s->four_bytes_address_mode = false;
1330         break;
1331     case BRRD:
1332     case EXTEND_ADDR_READ:
1333         s->data[0] = s->ear;
1334         s->pos = 0;
1335         s->len = 1;
1336         s->state = STATE_READING_DATA;
1337         break;
1338     case BRWR:
1339     case EXTEND_ADDR_WRITE:
1340         if (s->write_enable) {
1341             s->needed_bytes = 1;
1342             s->pos = 0;
1343             s->len = 0;
1344             s->state = STATE_COLLECTING_DATA;
1345         }
1346         break;
1347     case RNVCR:
1348         s->data[0] = s->nonvolatile_cfg & 0xFF;
1349         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1350         s->pos = 0;
1351         s->len = 2;
1352         s->state = STATE_READING_DATA;
1353         break;
1354     case WNVCR:
1355         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1356             s->needed_bytes = 2;
1357             s->pos = 0;
1358             s->len = 0;
1359             s->state = STATE_COLLECTING_DATA;
1360         }
1361         break;
1362     case RVCR:
1363         s->data[0] = s->volatile_cfg & 0xFF;
1364         s->pos = 0;
1365         s->len = 1;
1366         s->state = STATE_READING_DATA;
1367         break;
1368     case WVCR:
1369         if (s->write_enable) {
1370             s->needed_bytes = 1;
1371             s->pos = 0;
1372             s->len = 0;
1373             s->state = STATE_COLLECTING_DATA;
1374         }
1375         break;
1376     case REVCR:
1377         s->data[0] = s->enh_volatile_cfg & 0xFF;
1378         s->pos = 0;
1379         s->len = 1;
1380         s->state = STATE_READING_DATA;
1381         break;
1382     case WEVCR:
1383         if (s->write_enable) {
1384             s->needed_bytes = 1;
1385             s->pos = 0;
1386             s->len = 0;
1387             s->state = STATE_COLLECTING_DATA;
1388         }
1389         break;
1390     case RESET_ENABLE:
1391         s->reset_enable = true;
1392         break;
1393     case RESET_MEMORY:
1394         if (s->reset_enable) {
1395             reset_memory(s);
1396         }
1397         break;
1398     case RDCR_EQIO:
1399         switch (get_man(s)) {
1400         case MAN_SPANSION:
1401             s->data[0] = (!!s->quad_enable) << 1;
1402             s->pos = 0;
1403             s->len = 1;
1404             s->state = STATE_READING_DATA;
1405             break;
1406         case MAN_MACRONIX:
1407             s->quad_enable = true;
1408             break;
1409         default:
1410             break;
1411         }
1412         break;
1413     case RSTQIO:
1414         s->quad_enable = false;
1415         break;
1416     case AAI_WP:
1417         if (get_man(s) == MAN_SST) {
1418             if (s->write_enable) {
1419                 if (s->aai_enable) {
1420                     s->state = STATE_PAGE_PROGRAM;
1421                 } else {
1422                     s->aai_enable = true;
1423                     s->needed_bytes = get_addr_length(s);
1424                     s->state = STATE_COLLECTING_DATA;
1425                 }
1426             } else {
1427                 qemu_log_mask(LOG_GUEST_ERROR,
1428                               "M25P80: AAI_WP with write protect\n");
1429             }
1430         } else {
1431             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1432         }
1433         break;
1434     default:
1435         s->pos = 0;
1436         s->len = 1;
1437         s->state = STATE_READING_DATA;
1438         s->data_read_loop = true;
1439         s->data[0] = 0;
1440         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1441         break;
1442     }
1443 }
1444 
1445 static int m25p80_cs(SSIPeripheral *ss, bool select)
1446 {
1447     Flash *s = M25P80(ss);
1448 
1449     if (select) {
1450         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1451             complete_collecting_data(s);
1452         }
1453         s->len = 0;
1454         s->pos = 0;
1455         s->state = STATE_IDLE;
1456         flash_sync_dirty(s, -1);
1457         s->data_read_loop = false;
1458     }
1459 
1460     trace_m25p80_select(s, select ? "de" : "");
1461 
1462     return 0;
1463 }
1464 
1465 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1466 {
1467     Flash *s = M25P80(ss);
1468     uint32_t r = 0;
1469 
1470     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1471                           s->cur_addr, (uint8_t)tx);
1472 
1473     switch (s->state) {
1474 
1475     case STATE_PAGE_PROGRAM:
1476         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1477         flash_write8(s, s->cur_addr, (uint8_t)tx);
1478         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1479 
1480         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1481             /*
1482              * There is no wrap mode during AAI programming once the highest
1483              * unprotected memory address is reached. The Write-Enable-Latch
1484              * bit is automatically reset, and AAI programming mode aborts.
1485              */
1486             s->write_enable = false;
1487             s->aai_enable = false;
1488         }
1489 
1490         break;
1491 
1492     case STATE_READ:
1493         r = s->storage[s->cur_addr];
1494         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1495         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1496         break;
1497 
1498     case STATE_COLLECTING_DATA:
1499     case STATE_COLLECTING_VAR_LEN_DATA:
1500 
1501         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1502             qemu_log_mask(LOG_GUEST_ERROR,
1503                           "M25P80: Write overrun internal data buffer. "
1504                           "SPI controller (QEMU emulator or guest driver) "
1505                           "is misbehaving\n");
1506             s->len = s->pos = 0;
1507             s->state = STATE_IDLE;
1508             break;
1509         }
1510 
1511         s->data[s->len] = (uint8_t)tx;
1512         s->len++;
1513 
1514         if (s->len == s->needed_bytes) {
1515             complete_collecting_data(s);
1516         }
1517         break;
1518 
1519     case STATE_READING_DATA:
1520 
1521         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1522             qemu_log_mask(LOG_GUEST_ERROR,
1523                           "M25P80: Read overrun internal data buffer. "
1524                           "SPI controller (QEMU emulator or guest driver) "
1525                           "is misbehaving\n");
1526             s->len = s->pos = 0;
1527             s->state = STATE_IDLE;
1528             break;
1529         }
1530 
1531         r = s->data[s->pos];
1532         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1533         s->pos++;
1534         if (s->pos == s->len) {
1535             s->pos = 0;
1536             if (!s->data_read_loop) {
1537                 s->state = STATE_IDLE;
1538             }
1539         }
1540         break;
1541 
1542     default:
1543     case STATE_IDLE:
1544         decode_new_cmd(s, (uint8_t)tx);
1545         break;
1546     }
1547 
1548     return r;
1549 }
1550 
1551 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1552 {
1553     Flash *s = M25P80(opaque);
1554     /* WP# is just a single pin. */
1555     assert(n == 0);
1556     s->wp_level = !!level;
1557 }
1558 
1559 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1560 {
1561     Flash *s = M25P80(ss);
1562     M25P80Class *mc = M25P80_GET_CLASS(s);
1563     int ret;
1564 
1565     s->pi = mc->pi;
1566 
1567     s->size = s->pi->sector_size * s->pi->n_sectors;
1568     s->dirty_page = -1;
1569 
1570     if (s->blk) {
1571         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1572                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1573         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1574         if (ret < 0) {
1575             return;
1576         }
1577 
1578         trace_m25p80_binding(s);
1579         s->storage = blk_blockalign(s->blk, s->size);
1580 
1581         if (blk_pread(s->blk, 0, s->size, s->storage, 0) < 0) {
1582             error_setg(errp, "failed to read the initial flash content");
1583             return;
1584         }
1585     } else {
1586         trace_m25p80_binding_no_bdrv(s);
1587         s->storage = blk_blockalign(NULL, s->size);
1588         memset(s->storage, 0xFF, s->size);
1589     }
1590 
1591     qdev_init_gpio_in_named(DEVICE(s),
1592                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1593 }
1594 
1595 static void m25p80_reset(DeviceState *d)
1596 {
1597     Flash *s = M25P80(d);
1598 
1599     s->wp_level = true;
1600     s->status_register_write_disabled = false;
1601     s->block_protect0 = false;
1602     s->block_protect1 = false;
1603     s->block_protect2 = false;
1604     s->block_protect3 = false;
1605     s->top_bottom_bit = false;
1606 
1607     reset_memory(s);
1608 }
1609 
1610 static int m25p80_pre_save(void *opaque)
1611 {
1612     flash_sync_dirty((Flash *)opaque, -1);
1613 
1614     return 0;
1615 }
1616 
1617 static Property m25p80_properties[] = {
1618     /* This is default value for Micron flash */
1619     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1620     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1621     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1622     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1623     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1624     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1625     DEFINE_PROP_DRIVE("drive", Flash, blk),
1626     DEFINE_PROP_END_OF_LIST(),
1627 };
1628 
1629 static int m25p80_pre_load(void *opaque)
1630 {
1631     Flash *s = (Flash *)opaque;
1632 
1633     s->data_read_loop = false;
1634     return 0;
1635 }
1636 
1637 static bool m25p80_data_read_loop_needed(void *opaque)
1638 {
1639     Flash *s = (Flash *)opaque;
1640 
1641     return s->data_read_loop;
1642 }
1643 
1644 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1645     .name = "m25p80/data_read_loop",
1646     .version_id = 1,
1647     .minimum_version_id = 1,
1648     .needed = m25p80_data_read_loop_needed,
1649     .fields = (VMStateField[]) {
1650         VMSTATE_BOOL(data_read_loop, Flash),
1651         VMSTATE_END_OF_LIST()
1652     }
1653 };
1654 
1655 static bool m25p80_aai_enable_needed(void *opaque)
1656 {
1657     Flash *s = (Flash *)opaque;
1658 
1659     return s->aai_enable;
1660 }
1661 
1662 static const VMStateDescription vmstate_m25p80_aai_enable = {
1663     .name = "m25p80/aai_enable",
1664     .version_id = 1,
1665     .minimum_version_id = 1,
1666     .needed = m25p80_aai_enable_needed,
1667     .fields = (VMStateField[]) {
1668         VMSTATE_BOOL(aai_enable, Flash),
1669         VMSTATE_END_OF_LIST()
1670     }
1671 };
1672 
1673 static bool m25p80_wp_level_srwd_needed(void *opaque)
1674 {
1675     Flash *s = (Flash *)opaque;
1676 
1677     return !s->wp_level || s->status_register_write_disabled;
1678 }
1679 
1680 static const VMStateDescription vmstate_m25p80_write_protect = {
1681     .name = "m25p80/write_protect",
1682     .version_id = 1,
1683     .minimum_version_id = 1,
1684     .needed = m25p80_wp_level_srwd_needed,
1685     .fields = (VMStateField[]) {
1686         VMSTATE_BOOL(wp_level, Flash),
1687         VMSTATE_BOOL(status_register_write_disabled, Flash),
1688         VMSTATE_END_OF_LIST()
1689     }
1690 };
1691 
1692 static bool m25p80_block_protect_needed(void *opaque)
1693 {
1694     Flash *s = (Flash *)opaque;
1695 
1696     return s->block_protect0 ||
1697            s->block_protect1 ||
1698            s->block_protect2 ||
1699            s->block_protect3 ||
1700            s->top_bottom_bit;
1701 }
1702 
1703 static const VMStateDescription vmstate_m25p80_block_protect = {
1704     .name = "m25p80/block_protect",
1705     .version_id = 1,
1706     .minimum_version_id = 1,
1707     .needed = m25p80_block_protect_needed,
1708     .fields = (VMStateField[]) {
1709         VMSTATE_BOOL(block_protect0, Flash),
1710         VMSTATE_BOOL(block_protect1, Flash),
1711         VMSTATE_BOOL(block_protect2, Flash),
1712         VMSTATE_BOOL(block_protect3, Flash),
1713         VMSTATE_BOOL(top_bottom_bit, Flash),
1714         VMSTATE_END_OF_LIST()
1715     }
1716 };
1717 
1718 static const VMStateDescription vmstate_m25p80 = {
1719     .name = "m25p80",
1720     .version_id = 0,
1721     .minimum_version_id = 0,
1722     .pre_save = m25p80_pre_save,
1723     .pre_load = m25p80_pre_load,
1724     .fields = (VMStateField[]) {
1725         VMSTATE_UINT8(state, Flash),
1726         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1727         VMSTATE_UINT32(len, Flash),
1728         VMSTATE_UINT32(pos, Flash),
1729         VMSTATE_UINT8(needed_bytes, Flash),
1730         VMSTATE_UINT8(cmd_in_progress, Flash),
1731         VMSTATE_UINT32(cur_addr, Flash),
1732         VMSTATE_BOOL(write_enable, Flash),
1733         VMSTATE_BOOL(reset_enable, Flash),
1734         VMSTATE_UINT8(ear, Flash),
1735         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1736         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1737         VMSTATE_UINT32(volatile_cfg, Flash),
1738         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1739         VMSTATE_BOOL(quad_enable, Flash),
1740         VMSTATE_UINT8(spansion_cr1nv, Flash),
1741         VMSTATE_UINT8(spansion_cr2nv, Flash),
1742         VMSTATE_UINT8(spansion_cr3nv, Flash),
1743         VMSTATE_UINT8(spansion_cr4nv, Flash),
1744         VMSTATE_END_OF_LIST()
1745     },
1746     .subsections = (const VMStateDescription * []) {
1747         &vmstate_m25p80_data_read_loop,
1748         &vmstate_m25p80_aai_enable,
1749         &vmstate_m25p80_write_protect,
1750         &vmstate_m25p80_block_protect,
1751         NULL
1752     }
1753 };
1754 
1755 static void m25p80_class_init(ObjectClass *klass, void *data)
1756 {
1757     DeviceClass *dc = DEVICE_CLASS(klass);
1758     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1759     M25P80Class *mc = M25P80_CLASS(klass);
1760 
1761     k->realize = m25p80_realize;
1762     k->transfer = m25p80_transfer8;
1763     k->set_cs = m25p80_cs;
1764     k->cs_polarity = SSI_CS_LOW;
1765     dc->vmsd = &vmstate_m25p80;
1766     device_class_set_props(dc, m25p80_properties);
1767     dc->reset = m25p80_reset;
1768     mc->pi = data;
1769 }
1770 
1771 static const TypeInfo m25p80_info = {
1772     .name           = TYPE_M25P80,
1773     .parent         = TYPE_SSI_PERIPHERAL,
1774     .instance_size  = sizeof(Flash),
1775     .class_size     = sizeof(M25P80Class),
1776     .abstract       = true,
1777 };
1778 
1779 static void m25p80_register_types(void)
1780 {
1781     int i;
1782 
1783     type_register_static(&m25p80_info);
1784     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1785         TypeInfo ti = {
1786             .name       = known_devices[i].part_name,
1787             .parent     = TYPE_M25P80,
1788             .class_init = m25p80_class_init,
1789             .class_data = (void *)&known_devices[i],
1790         };
1791         type_register(&ti);
1792     }
1793 }
1794 
1795 type_init(m25p80_register_types)
1796