xref: /qemu/hw/block/m25p80.c (revision d201cf7a)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
225 
226     /* Macronix */
227     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
228     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
229     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
230     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
231     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
232     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
233     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
234     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
235     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
236     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
237     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
238     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
239     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
240     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
241 
242     /* Micron */
243     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
244     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
245     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
246     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
247     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
248     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
249     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
250     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
251     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
252     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
253     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
254     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
255     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
256     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
257     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
258     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
259                    ER_4K | ER_32K, 2) },
260     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
261     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
262     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
263     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
264     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
265     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
266 
267     /* Spansion -- single (large) sector size only, at least
268      * for the chips listed here (without boot sectors).
269      */
270     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
271     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
272     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
273     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
274     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
275     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
276     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
277     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
278     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
279     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
280     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
281     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
282     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
283     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
284     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
285     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
286     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
287 
288     /* Spansion --  boot sectors support  */
289     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
290     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
291 
292     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
293     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
294     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
295     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
296     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
297     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
298     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
299     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
300     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
301     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
302 
303     /* ST Microelectronics -- newer production may have feature updates */
304     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
305     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
306     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
307     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
308     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
309     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
310     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
311     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
312     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
313     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
314 
315     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
316     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
317     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
318 
319     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
320     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
321     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
322 
323     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
324     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
325     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
326     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
327 
328     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
329     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
330     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
331     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
332     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
333     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
334     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
335     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
336     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
337     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
338     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
339     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
340     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
341     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
342     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
343 };
344 
345 typedef enum {
346     NOP = 0,
347     WRSR = 0x1,
348     WRDI = 0x4,
349     RDSR = 0x5,
350     WREN = 0x6,
351     BRRD = 0x16,
352     BRWR = 0x17,
353     JEDEC_READ = 0x9f,
354     BULK_ERASE_60 = 0x60,
355     BULK_ERASE = 0xc7,
356     READ_FSR = 0x70,
357     RDCR = 0x15,
358 
359     READ = 0x03,
360     READ4 = 0x13,
361     FAST_READ = 0x0b,
362     FAST_READ4 = 0x0c,
363     DOR = 0x3b,
364     DOR4 = 0x3c,
365     QOR = 0x6b,
366     QOR4 = 0x6c,
367     DIOR = 0xbb,
368     DIOR4 = 0xbc,
369     QIOR = 0xeb,
370     QIOR4 = 0xec,
371 
372     PP = 0x02,
373     PP4 = 0x12,
374     PP4_4 = 0x3e,
375     DPP = 0xa2,
376     QPP = 0x32,
377     QPP_4 = 0x34,
378     RDID_90 = 0x90,
379     RDID_AB = 0xab,
380     AAI_WP = 0xad,
381 
382     ERASE_4K = 0x20,
383     ERASE4_4K = 0x21,
384     ERASE_32K = 0x52,
385     ERASE4_32K = 0x5c,
386     ERASE_SECTOR = 0xd8,
387     ERASE4_SECTOR = 0xdc,
388 
389     EN_4BYTE_ADDR = 0xB7,
390     EX_4BYTE_ADDR = 0xE9,
391 
392     EXTEND_ADDR_READ = 0xC8,
393     EXTEND_ADDR_WRITE = 0xC5,
394 
395     RESET_ENABLE = 0x66,
396     RESET_MEMORY = 0x99,
397 
398     /*
399      * Micron: 0x35 - enable QPI
400      * Spansion: 0x35 - read control register
401      */
402     RDCR_EQIO = 0x35,
403     RSTQIO = 0xf5,
404 
405     RNVCR = 0xB5,
406     WNVCR = 0xB1,
407 
408     RVCR = 0x85,
409     WVCR = 0x81,
410 
411     REVCR = 0x65,
412     WEVCR = 0x61,
413 
414     DIE_ERASE = 0xC4,
415 } FlashCMD;
416 
417 typedef enum {
418     STATE_IDLE,
419     STATE_PAGE_PROGRAM,
420     STATE_READ,
421     STATE_COLLECTING_DATA,
422     STATE_COLLECTING_VAR_LEN_DATA,
423     STATE_READING_DATA,
424 } CMDState;
425 
426 typedef enum {
427     MAN_SPANSION,
428     MAN_MACRONIX,
429     MAN_NUMONYX,
430     MAN_WINBOND,
431     MAN_SST,
432     MAN_ISSI,
433     MAN_GENERIC,
434 } Manufacturer;
435 
436 typedef enum {
437     MODE_STD = 0,
438     MODE_DIO = 1,
439     MODE_QIO = 2
440 } SPIMode;
441 
442 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
443 
444 struct Flash {
445     SSIPeripheral parent_obj;
446 
447     BlockBackend *blk;
448 
449     uint8_t *storage;
450     uint32_t size;
451     int page_size;
452 
453     uint8_t state;
454     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
455     uint32_t len;
456     uint32_t pos;
457     bool data_read_loop;
458     uint8_t needed_bytes;
459     uint8_t cmd_in_progress;
460     uint32_t cur_addr;
461     uint32_t nonvolatile_cfg;
462     /* Configuration register for Macronix */
463     uint32_t volatile_cfg;
464     uint32_t enh_volatile_cfg;
465     /* Spansion cfg registers. */
466     uint8_t spansion_cr1nv;
467     uint8_t spansion_cr2nv;
468     uint8_t spansion_cr3nv;
469     uint8_t spansion_cr4nv;
470     uint8_t spansion_cr1v;
471     uint8_t spansion_cr2v;
472     uint8_t spansion_cr3v;
473     uint8_t spansion_cr4v;
474     bool write_enable;
475     bool four_bytes_address_mode;
476     bool reset_enable;
477     bool quad_enable;
478     bool aai_enable;
479     uint8_t ear;
480 
481     int64_t dirty_page;
482 
483     const FlashPartInfo *pi;
484 
485 };
486 
487 struct M25P80Class {
488     SSIPeripheralClass parent_class;
489     FlashPartInfo *pi;
490 };
491 
492 #define TYPE_M25P80 "m25p80-generic"
493 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
494 
495 static inline Manufacturer get_man(Flash *s)
496 {
497     switch (s->pi->id[0]) {
498     case 0x20:
499         return MAN_NUMONYX;
500     case 0xEF:
501         return MAN_WINBOND;
502     case 0x01:
503         return MAN_SPANSION;
504     case 0xC2:
505         return MAN_MACRONIX;
506     case 0xBF:
507         return MAN_SST;
508     case 0x9D:
509         return MAN_ISSI;
510     default:
511         return MAN_GENERIC;
512     }
513 }
514 
515 static void blk_sync_complete(void *opaque, int ret)
516 {
517     QEMUIOVector *iov = opaque;
518 
519     qemu_iovec_destroy(iov);
520     g_free(iov);
521 
522     /* do nothing. Masters do not directly interact with the backing store,
523      * only the working copy so no mutexing required.
524      */
525 }
526 
527 static void flash_sync_page(Flash *s, int page)
528 {
529     QEMUIOVector *iov;
530 
531     if (!s->blk || !blk_is_writable(s->blk)) {
532         return;
533     }
534 
535     iov = g_new(QEMUIOVector, 1);
536     qemu_iovec_init(iov, 1);
537     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
538                    s->pi->page_size);
539     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
540                     blk_sync_complete, iov);
541 }
542 
543 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
544 {
545     QEMUIOVector *iov;
546 
547     if (!s->blk || !blk_is_writable(s->blk)) {
548         return;
549     }
550 
551     assert(!(len % BDRV_SECTOR_SIZE));
552     iov = g_new(QEMUIOVector, 1);
553     qemu_iovec_init(iov, 1);
554     qemu_iovec_add(iov, s->storage + off, len);
555     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
556 }
557 
558 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
559 {
560     uint32_t len;
561     uint8_t capa_to_assert = 0;
562 
563     switch (cmd) {
564     case ERASE_4K:
565     case ERASE4_4K:
566         len = 4 * KiB;
567         capa_to_assert = ER_4K;
568         break;
569     case ERASE_32K:
570     case ERASE4_32K:
571         len = 32 * KiB;
572         capa_to_assert = ER_32K;
573         break;
574     case ERASE_SECTOR:
575     case ERASE4_SECTOR:
576         len = s->pi->sector_size;
577         break;
578     case BULK_ERASE:
579         len = s->size;
580         break;
581     case DIE_ERASE:
582         if (s->pi->die_cnt) {
583             len = s->size / s->pi->die_cnt;
584             offset = offset & (~(len - 1));
585         } else {
586             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
587                           " by device\n");
588             return;
589         }
590         break;
591     default:
592         abort();
593     }
594 
595     trace_m25p80_flash_erase(s, offset, len);
596 
597     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
598         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
599                       " device\n", len);
600     }
601 
602     if (!s->write_enable) {
603         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
604         return;
605     }
606     memset(s->storage + offset, 0xff, len);
607     flash_sync_area(s, offset, len);
608 }
609 
610 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
611 {
612     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
613         flash_sync_page(s, s->dirty_page);
614         s->dirty_page = newpage;
615     }
616 }
617 
618 static inline
619 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
620 {
621     uint32_t page = addr / s->pi->page_size;
622     uint8_t prev = s->storage[s->cur_addr];
623 
624     if (!s->write_enable) {
625         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
626         return;
627     }
628 
629     if ((prev ^ data) & data) {
630         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
631     }
632 
633     if (s->pi->flags & EEPROM) {
634         s->storage[s->cur_addr] = data;
635     } else {
636         s->storage[s->cur_addr] &= data;
637     }
638 
639     flash_sync_dirty(s, page);
640     s->dirty_page = page;
641 }
642 
643 static inline int get_addr_length(Flash *s)
644 {
645    /* check if eeprom is in use */
646     if (s->pi->flags == EEPROM) {
647         return 2;
648     }
649 
650    switch (s->cmd_in_progress) {
651    case PP4:
652    case PP4_4:
653    case QPP_4:
654    case READ4:
655    case QIOR4:
656    case ERASE4_4K:
657    case ERASE4_32K:
658    case ERASE4_SECTOR:
659    case FAST_READ4:
660    case DOR4:
661    case QOR4:
662    case DIOR4:
663        return 4;
664    default:
665        return s->four_bytes_address_mode ? 4 : 3;
666    }
667 }
668 
669 static void complete_collecting_data(Flash *s)
670 {
671     int i, n;
672 
673     n = get_addr_length(s);
674     s->cur_addr = (n == 3 ? s->ear : 0);
675     for (i = 0; i < n; ++i) {
676         s->cur_addr <<= 8;
677         s->cur_addr |= s->data[i];
678     }
679 
680     s->cur_addr &= s->size - 1;
681 
682     s->state = STATE_IDLE;
683 
684     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
685                                      s->cur_addr);
686 
687     switch (s->cmd_in_progress) {
688     case DPP:
689     case QPP:
690     case QPP_4:
691     case PP:
692     case PP4:
693     case PP4_4:
694         s->state = STATE_PAGE_PROGRAM;
695         break;
696     case AAI_WP:
697         /* AAI programming starts from the even address */
698         s->cur_addr &= ~BIT(0);
699         s->state = STATE_PAGE_PROGRAM;
700         break;
701     case READ:
702     case READ4:
703     case FAST_READ:
704     case FAST_READ4:
705     case DOR:
706     case DOR4:
707     case QOR:
708     case QOR4:
709     case DIOR:
710     case DIOR4:
711     case QIOR:
712     case QIOR4:
713         s->state = STATE_READ;
714         break;
715     case ERASE_4K:
716     case ERASE4_4K:
717     case ERASE_32K:
718     case ERASE4_32K:
719     case ERASE_SECTOR:
720     case ERASE4_SECTOR:
721     case DIE_ERASE:
722         flash_erase(s, s->cur_addr, s->cmd_in_progress);
723         break;
724     case WRSR:
725         switch (get_man(s)) {
726         case MAN_SPANSION:
727             s->quad_enable = !!(s->data[1] & 0x02);
728             break;
729         case MAN_ISSI:
730             s->quad_enable = extract32(s->data[0], 6, 1);
731             break;
732         case MAN_MACRONIX:
733             s->quad_enable = extract32(s->data[0], 6, 1);
734             if (s->len > 1) {
735                 s->volatile_cfg = s->data[1];
736                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
737             }
738             break;
739         default:
740             break;
741         }
742         if (s->write_enable) {
743             s->write_enable = false;
744         }
745         break;
746     case BRWR:
747     case EXTEND_ADDR_WRITE:
748         s->ear = s->data[0];
749         break;
750     case WNVCR:
751         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
752         break;
753     case WVCR:
754         s->volatile_cfg = s->data[0];
755         break;
756     case WEVCR:
757         s->enh_volatile_cfg = s->data[0];
758         break;
759     case RDID_90:
760     case RDID_AB:
761         if (get_man(s) == MAN_SST) {
762             if (s->cur_addr <= 1) {
763                 if (s->cur_addr) {
764                     s->data[0] = s->pi->id[2];
765                     s->data[1] = s->pi->id[0];
766                 } else {
767                     s->data[0] = s->pi->id[0];
768                     s->data[1] = s->pi->id[2];
769                 }
770                 s->pos = 0;
771                 s->len = 2;
772                 s->data_read_loop = true;
773                 s->state = STATE_READING_DATA;
774             } else {
775                 qemu_log_mask(LOG_GUEST_ERROR,
776                               "M25P80: Invalid read id address\n");
777             }
778         } else {
779             qemu_log_mask(LOG_GUEST_ERROR,
780                           "M25P80: Read id (command 0x90/0xAB) is not supported"
781                           " by device\n");
782         }
783         break;
784     default:
785         break;
786     }
787 }
788 
789 static void reset_memory(Flash *s)
790 {
791     s->cmd_in_progress = NOP;
792     s->cur_addr = 0;
793     s->ear = 0;
794     s->four_bytes_address_mode = false;
795     s->len = 0;
796     s->needed_bytes = 0;
797     s->pos = 0;
798     s->state = STATE_IDLE;
799     s->write_enable = false;
800     s->reset_enable = false;
801     s->quad_enable = false;
802     s->aai_enable = false;
803 
804     switch (get_man(s)) {
805     case MAN_NUMONYX:
806         s->volatile_cfg = 0;
807         s->volatile_cfg |= VCFG_DUMMY;
808         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
809         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
810                                 == NVCFG_XIP_MODE_DISABLED) {
811             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
812         }
813         s->volatile_cfg |= deposit32(s->volatile_cfg,
814                             VCFG_DUMMY_CLK_POS,
815                             CFG_DUMMY_CLK_LEN,
816                             extract32(s->nonvolatile_cfg,
817                                         NVCFG_DUMMY_CLK_POS,
818                                         CFG_DUMMY_CLK_LEN)
819                             );
820 
821         s->enh_volatile_cfg = 0;
822         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
823         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
824         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
825         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
826             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
827         }
828         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
829             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
830         }
831         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
832             s->four_bytes_address_mode = true;
833         }
834         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
835             s->ear = s->size / MAX_3BYTES_SIZE - 1;
836         }
837         break;
838     case MAN_MACRONIX:
839         s->volatile_cfg = 0x7;
840         break;
841     case MAN_SPANSION:
842         s->spansion_cr1v = s->spansion_cr1nv;
843         s->spansion_cr2v = s->spansion_cr2nv;
844         s->spansion_cr3v = s->spansion_cr3nv;
845         s->spansion_cr4v = s->spansion_cr4nv;
846         s->quad_enable = extract32(s->spansion_cr1v,
847                                    SPANSION_QUAD_CFG_POS,
848                                    SPANSION_QUAD_CFG_LEN
849                                    );
850         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
851                 SPANSION_ADDR_LEN_POS,
852                 SPANSION_ADDR_LEN_LEN
853                 );
854         break;
855     default:
856         break;
857     }
858 
859     trace_m25p80_reset_done(s);
860 }
861 
862 static uint8_t numonyx_mode(Flash *s)
863 {
864     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
865         return MODE_QIO;
866     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
867         return MODE_DIO;
868     } else {
869         return MODE_STD;
870     }
871 }
872 
873 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
874 {
875     uint8_t num_dummies;
876     uint8_t mode;
877     assert(get_man(s) == MAN_NUMONYX);
878 
879     mode = numonyx_mode(s);
880     num_dummies = extract32(s->volatile_cfg, 4, 4);
881 
882     if (num_dummies == 0x0 || num_dummies == 0xf) {
883         switch (s->cmd_in_progress) {
884         case QIOR:
885         case QIOR4:
886             num_dummies = 10;
887             break;
888         default:
889             num_dummies = (mode == MODE_QIO) ? 10 : 8;
890             break;
891         }
892     }
893 
894     return num_dummies;
895 }
896 
897 static void decode_fast_read_cmd(Flash *s)
898 {
899     s->needed_bytes = get_addr_length(s);
900     switch (get_man(s)) {
901     /* Dummy cycles - modeled with bytes writes instead of bits */
902     case MAN_SST:
903         s->needed_bytes += 1;
904         break;
905     case MAN_WINBOND:
906         s->needed_bytes += 8;
907         break;
908     case MAN_NUMONYX:
909         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
910         break;
911     case MAN_MACRONIX:
912         if (extract32(s->volatile_cfg, 6, 2) == 1) {
913             s->needed_bytes += 6;
914         } else {
915             s->needed_bytes += 8;
916         }
917         break;
918     case MAN_SPANSION:
919         s->needed_bytes += extract32(s->spansion_cr2v,
920                                     SPANSION_DUMMY_CLK_POS,
921                                     SPANSION_DUMMY_CLK_LEN
922                                     );
923         break;
924     case MAN_ISSI:
925         /*
926          * The Fast Read instruction code is followed by address bytes and
927          * dummy cycles, transmitted via the SI line.
928          *
929          * The number of dummy cycles is configurable but this is currently
930          * unmodeled, hence the default value 8 is used.
931          *
932          * QPI (Quad Peripheral Interface) mode has different default value
933          * of dummy cycles, but this is unsupported at the time being.
934          */
935         s->needed_bytes += 1;
936         break;
937     default:
938         break;
939     }
940     s->pos = 0;
941     s->len = 0;
942     s->state = STATE_COLLECTING_DATA;
943 }
944 
945 static void decode_dio_read_cmd(Flash *s)
946 {
947     s->needed_bytes = get_addr_length(s);
948     /* Dummy cycles modeled with bytes writes instead of bits */
949     switch (get_man(s)) {
950     case MAN_WINBOND:
951         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
952         break;
953     case MAN_SPANSION:
954         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
955         s->needed_bytes += extract32(s->spansion_cr2v,
956                                     SPANSION_DUMMY_CLK_POS,
957                                     SPANSION_DUMMY_CLK_LEN
958                                     );
959         break;
960     case MAN_NUMONYX:
961         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
962         break;
963     case MAN_MACRONIX:
964         switch (extract32(s->volatile_cfg, 6, 2)) {
965         case 1:
966             s->needed_bytes += 6;
967             break;
968         case 2:
969             s->needed_bytes += 8;
970             break;
971         default:
972             s->needed_bytes += 4;
973             break;
974         }
975         break;
976     case MAN_ISSI:
977         /*
978          * The Fast Read Dual I/O instruction code is followed by address bytes
979          * and dummy cycles, transmitted via the IO1 and IO0 line.
980          *
981          * The number of dummy cycles is configurable but this is currently
982          * unmodeled, hence the default value 4 is used.
983          */
984         s->needed_bytes += 1;
985         break;
986     default:
987         break;
988     }
989     s->pos = 0;
990     s->len = 0;
991     s->state = STATE_COLLECTING_DATA;
992 }
993 
994 static void decode_qio_read_cmd(Flash *s)
995 {
996     s->needed_bytes = get_addr_length(s);
997     /* Dummy cycles modeled with bytes writes instead of bits */
998     switch (get_man(s)) {
999     case MAN_WINBOND:
1000         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1001         s->needed_bytes += 4;
1002         break;
1003     case MAN_SPANSION:
1004         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1005         s->needed_bytes += extract32(s->spansion_cr2v,
1006                                     SPANSION_DUMMY_CLK_POS,
1007                                     SPANSION_DUMMY_CLK_LEN
1008                                     );
1009         break;
1010     case MAN_NUMONYX:
1011         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1012         break;
1013     case MAN_MACRONIX:
1014         switch (extract32(s->volatile_cfg, 6, 2)) {
1015         case 1:
1016             s->needed_bytes += 4;
1017             break;
1018         case 2:
1019             s->needed_bytes += 8;
1020             break;
1021         default:
1022             s->needed_bytes += 6;
1023             break;
1024         }
1025         break;
1026     case MAN_ISSI:
1027         /*
1028          * The Fast Read Quad I/O instruction code is followed by address bytes
1029          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1030          *
1031          * The number of dummy cycles is configurable but this is currently
1032          * unmodeled, hence the default value 6 is used.
1033          *
1034          * QPI (Quad Peripheral Interface) mode has different default value
1035          * of dummy cycles, but this is unsupported at the time being.
1036          */
1037         s->needed_bytes += 3;
1038         break;
1039     default:
1040         break;
1041     }
1042     s->pos = 0;
1043     s->len = 0;
1044     s->state = STATE_COLLECTING_DATA;
1045 }
1046 
1047 static bool is_valid_aai_cmd(uint32_t cmd)
1048 {
1049     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1050 }
1051 
1052 static void decode_new_cmd(Flash *s, uint32_t value)
1053 {
1054     int i;
1055 
1056     s->cmd_in_progress = value;
1057     trace_m25p80_command_decoded(s, value);
1058 
1059     if (value != RESET_MEMORY) {
1060         s->reset_enable = false;
1061     }
1062 
1063     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1064         qemu_log_mask(LOG_GUEST_ERROR,
1065                       "M25P80: Invalid cmd within AAI programming sequence");
1066     }
1067 
1068     switch (value) {
1069 
1070     case ERASE_4K:
1071     case ERASE4_4K:
1072     case ERASE_32K:
1073     case ERASE4_32K:
1074     case ERASE_SECTOR:
1075     case ERASE4_SECTOR:
1076     case PP:
1077     case PP4:
1078     case DIE_ERASE:
1079     case RDID_90:
1080     case RDID_AB:
1081         s->needed_bytes = get_addr_length(s);
1082         s->pos = 0;
1083         s->len = 0;
1084         s->state = STATE_COLLECTING_DATA;
1085         break;
1086     case READ:
1087     case READ4:
1088         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1089             s->needed_bytes = get_addr_length(s);
1090             s->pos = 0;
1091             s->len = 0;
1092             s->state = STATE_COLLECTING_DATA;
1093         } else {
1094             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1095                           "DIO or QIO mode\n", s->cmd_in_progress);
1096         }
1097         break;
1098     case DPP:
1099         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1100             s->needed_bytes = get_addr_length(s);
1101             s->pos = 0;
1102             s->len = 0;
1103             s->state = STATE_COLLECTING_DATA;
1104         } else {
1105             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1106                           "QIO mode\n", s->cmd_in_progress);
1107         }
1108         break;
1109     case QPP:
1110     case QPP_4:
1111     case PP4_4:
1112         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1113             s->needed_bytes = get_addr_length(s);
1114             s->pos = 0;
1115             s->len = 0;
1116             s->state = STATE_COLLECTING_DATA;
1117         } else {
1118             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1119                           "DIO mode\n", s->cmd_in_progress);
1120         }
1121         break;
1122 
1123     case FAST_READ:
1124     case FAST_READ4:
1125         decode_fast_read_cmd(s);
1126         break;
1127     case DOR:
1128     case DOR4:
1129         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1130             decode_fast_read_cmd(s);
1131         } else {
1132             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1133                           "QIO mode\n", s->cmd_in_progress);
1134         }
1135         break;
1136     case QOR:
1137     case QOR4:
1138         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1139             decode_fast_read_cmd(s);
1140         } else {
1141             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1142                           "DIO mode\n", s->cmd_in_progress);
1143         }
1144         break;
1145 
1146     case DIOR:
1147     case DIOR4:
1148         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1149             decode_dio_read_cmd(s);
1150         } else {
1151             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1152                           "QIO mode\n", s->cmd_in_progress);
1153         }
1154         break;
1155 
1156     case QIOR:
1157     case QIOR4:
1158         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1159             decode_qio_read_cmd(s);
1160         } else {
1161             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1162                           "DIO mode\n", s->cmd_in_progress);
1163         }
1164         break;
1165 
1166     case WRSR:
1167         if (s->write_enable) {
1168             switch (get_man(s)) {
1169             case MAN_SPANSION:
1170                 s->needed_bytes = 2;
1171                 s->state = STATE_COLLECTING_DATA;
1172                 break;
1173             case MAN_MACRONIX:
1174                 s->needed_bytes = 2;
1175                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1176                 break;
1177             default:
1178                 s->needed_bytes = 1;
1179                 s->state = STATE_COLLECTING_DATA;
1180             }
1181             s->pos = 0;
1182         }
1183         break;
1184 
1185     case WRDI:
1186         s->write_enable = false;
1187         if (get_man(s) == MAN_SST) {
1188             s->aai_enable = false;
1189         }
1190         break;
1191     case WREN:
1192         s->write_enable = true;
1193         break;
1194 
1195     case RDSR:
1196         s->data[0] = (!!s->write_enable) << 1;
1197         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1198             s->data[0] |= (!!s->quad_enable) << 6;
1199         }
1200         if (get_man(s) == MAN_SST) {
1201             s->data[0] |= (!!s->aai_enable) << 6;
1202         }
1203 
1204         s->pos = 0;
1205         s->len = 1;
1206         s->data_read_loop = true;
1207         s->state = STATE_READING_DATA;
1208         break;
1209 
1210     case READ_FSR:
1211         s->data[0] = FSR_FLASH_READY;
1212         if (s->four_bytes_address_mode) {
1213             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1214         }
1215         s->pos = 0;
1216         s->len = 1;
1217         s->data_read_loop = true;
1218         s->state = STATE_READING_DATA;
1219         break;
1220 
1221     case JEDEC_READ:
1222         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1223             trace_m25p80_populated_jedec(s);
1224             for (i = 0; i < s->pi->id_len; i++) {
1225                 s->data[i] = s->pi->id[i];
1226             }
1227             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1228                 s->data[i] = 0;
1229             }
1230 
1231             s->len = SPI_NOR_MAX_ID_LEN;
1232             s->pos = 0;
1233             s->state = STATE_READING_DATA;
1234         } else {
1235             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1236                           "in DIO or QIO mode\n");
1237         }
1238         break;
1239 
1240     case RDCR:
1241         s->data[0] = s->volatile_cfg & 0xFF;
1242         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1243         s->pos = 0;
1244         s->len = 1;
1245         s->state = STATE_READING_DATA;
1246         break;
1247 
1248     case BULK_ERASE_60:
1249     case BULK_ERASE:
1250         if (s->write_enable) {
1251             trace_m25p80_chip_erase(s);
1252             flash_erase(s, 0, BULK_ERASE);
1253         } else {
1254             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1255                           "protect!\n");
1256         }
1257         break;
1258     case NOP:
1259         break;
1260     case EN_4BYTE_ADDR:
1261         s->four_bytes_address_mode = true;
1262         break;
1263     case EX_4BYTE_ADDR:
1264         s->four_bytes_address_mode = false;
1265         break;
1266     case BRRD:
1267     case EXTEND_ADDR_READ:
1268         s->data[0] = s->ear;
1269         s->pos = 0;
1270         s->len = 1;
1271         s->state = STATE_READING_DATA;
1272         break;
1273     case BRWR:
1274     case EXTEND_ADDR_WRITE:
1275         if (s->write_enable) {
1276             s->needed_bytes = 1;
1277             s->pos = 0;
1278             s->len = 0;
1279             s->state = STATE_COLLECTING_DATA;
1280         }
1281         break;
1282     case RNVCR:
1283         s->data[0] = s->nonvolatile_cfg & 0xFF;
1284         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1285         s->pos = 0;
1286         s->len = 2;
1287         s->state = STATE_READING_DATA;
1288         break;
1289     case WNVCR:
1290         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1291             s->needed_bytes = 2;
1292             s->pos = 0;
1293             s->len = 0;
1294             s->state = STATE_COLLECTING_DATA;
1295         }
1296         break;
1297     case RVCR:
1298         s->data[0] = s->volatile_cfg & 0xFF;
1299         s->pos = 0;
1300         s->len = 1;
1301         s->state = STATE_READING_DATA;
1302         break;
1303     case WVCR:
1304         if (s->write_enable) {
1305             s->needed_bytes = 1;
1306             s->pos = 0;
1307             s->len = 0;
1308             s->state = STATE_COLLECTING_DATA;
1309         }
1310         break;
1311     case REVCR:
1312         s->data[0] = s->enh_volatile_cfg & 0xFF;
1313         s->pos = 0;
1314         s->len = 1;
1315         s->state = STATE_READING_DATA;
1316         break;
1317     case WEVCR:
1318         if (s->write_enable) {
1319             s->needed_bytes = 1;
1320             s->pos = 0;
1321             s->len = 0;
1322             s->state = STATE_COLLECTING_DATA;
1323         }
1324         break;
1325     case RESET_ENABLE:
1326         s->reset_enable = true;
1327         break;
1328     case RESET_MEMORY:
1329         if (s->reset_enable) {
1330             reset_memory(s);
1331         }
1332         break;
1333     case RDCR_EQIO:
1334         switch (get_man(s)) {
1335         case MAN_SPANSION:
1336             s->data[0] = (!!s->quad_enable) << 1;
1337             s->pos = 0;
1338             s->len = 1;
1339             s->state = STATE_READING_DATA;
1340             break;
1341         case MAN_MACRONIX:
1342             s->quad_enable = true;
1343             break;
1344         default:
1345             break;
1346         }
1347         break;
1348     case RSTQIO:
1349         s->quad_enable = false;
1350         break;
1351     case AAI_WP:
1352         if (get_man(s) == MAN_SST) {
1353             if (s->write_enable) {
1354                 if (s->aai_enable) {
1355                     s->state = STATE_PAGE_PROGRAM;
1356                 } else {
1357                     s->aai_enable = true;
1358                     s->needed_bytes = get_addr_length(s);
1359                     s->state = STATE_COLLECTING_DATA;
1360                 }
1361             } else {
1362                 qemu_log_mask(LOG_GUEST_ERROR,
1363                               "M25P80: AAI_WP with write protect\n");
1364             }
1365         } else {
1366             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1367         }
1368         break;
1369     default:
1370         s->pos = 0;
1371         s->len = 1;
1372         s->state = STATE_READING_DATA;
1373         s->data_read_loop = true;
1374         s->data[0] = 0;
1375         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1376         break;
1377     }
1378 }
1379 
1380 static int m25p80_cs(SSIPeripheral *ss, bool select)
1381 {
1382     Flash *s = M25P80(ss);
1383 
1384     if (select) {
1385         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1386             complete_collecting_data(s);
1387         }
1388         s->len = 0;
1389         s->pos = 0;
1390         s->state = STATE_IDLE;
1391         flash_sync_dirty(s, -1);
1392         s->data_read_loop = false;
1393     }
1394 
1395     trace_m25p80_select(s, select ? "de" : "");
1396 
1397     return 0;
1398 }
1399 
1400 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1401 {
1402     Flash *s = M25P80(ss);
1403     uint32_t r = 0;
1404 
1405     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1406                           s->cur_addr, (uint8_t)tx);
1407 
1408     switch (s->state) {
1409 
1410     case STATE_PAGE_PROGRAM:
1411         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1412         flash_write8(s, s->cur_addr, (uint8_t)tx);
1413         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1414 
1415         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1416             /*
1417              * There is no wrap mode during AAI programming once the highest
1418              * unprotected memory address is reached. The Write-Enable-Latch
1419              * bit is automatically reset, and AAI programming mode aborts.
1420              */
1421             s->write_enable = false;
1422             s->aai_enable = false;
1423         }
1424 
1425         break;
1426 
1427     case STATE_READ:
1428         r = s->storage[s->cur_addr];
1429         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1430         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1431         break;
1432 
1433     case STATE_COLLECTING_DATA:
1434     case STATE_COLLECTING_VAR_LEN_DATA:
1435 
1436         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1437             qemu_log_mask(LOG_GUEST_ERROR,
1438                           "M25P80: Write overrun internal data buffer. "
1439                           "SPI controller (QEMU emulator or guest driver) "
1440                           "is misbehaving\n");
1441             s->len = s->pos = 0;
1442             s->state = STATE_IDLE;
1443             break;
1444         }
1445 
1446         s->data[s->len] = (uint8_t)tx;
1447         s->len++;
1448 
1449         if (s->len == s->needed_bytes) {
1450             complete_collecting_data(s);
1451         }
1452         break;
1453 
1454     case STATE_READING_DATA:
1455 
1456         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1457             qemu_log_mask(LOG_GUEST_ERROR,
1458                           "M25P80: Read overrun internal data buffer. "
1459                           "SPI controller (QEMU emulator or guest driver) "
1460                           "is misbehaving\n");
1461             s->len = s->pos = 0;
1462             s->state = STATE_IDLE;
1463             break;
1464         }
1465 
1466         r = s->data[s->pos];
1467         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1468         s->pos++;
1469         if (s->pos == s->len) {
1470             s->pos = 0;
1471             if (!s->data_read_loop) {
1472                 s->state = STATE_IDLE;
1473             }
1474         }
1475         break;
1476 
1477     default:
1478     case STATE_IDLE:
1479         decode_new_cmd(s, (uint8_t)tx);
1480         break;
1481     }
1482 
1483     return r;
1484 }
1485 
1486 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1487 {
1488     Flash *s = M25P80(ss);
1489     M25P80Class *mc = M25P80_GET_CLASS(s);
1490     int ret;
1491 
1492     s->pi = mc->pi;
1493 
1494     s->size = s->pi->sector_size * s->pi->n_sectors;
1495     s->dirty_page = -1;
1496 
1497     if (s->blk) {
1498         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1499                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1500         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1501         if (ret < 0) {
1502             return;
1503         }
1504 
1505         trace_m25p80_binding(s);
1506         s->storage = blk_blockalign(s->blk, s->size);
1507 
1508         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1509             error_setg(errp, "failed to read the initial flash content");
1510             return;
1511         }
1512     } else {
1513         trace_m25p80_binding_no_bdrv(s);
1514         s->storage = blk_blockalign(NULL, s->size);
1515         memset(s->storage, 0xFF, s->size);
1516     }
1517 }
1518 
1519 static void m25p80_reset(DeviceState *d)
1520 {
1521     Flash *s = M25P80(d);
1522 
1523     reset_memory(s);
1524 }
1525 
1526 static int m25p80_pre_save(void *opaque)
1527 {
1528     flash_sync_dirty((Flash *)opaque, -1);
1529 
1530     return 0;
1531 }
1532 
1533 static Property m25p80_properties[] = {
1534     /* This is default value for Micron flash */
1535     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1536     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1537     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1538     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1539     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1540     DEFINE_PROP_DRIVE("drive", Flash, blk),
1541     DEFINE_PROP_END_OF_LIST(),
1542 };
1543 
1544 static int m25p80_pre_load(void *opaque)
1545 {
1546     Flash *s = (Flash *)opaque;
1547 
1548     s->data_read_loop = false;
1549     return 0;
1550 }
1551 
1552 static bool m25p80_data_read_loop_needed(void *opaque)
1553 {
1554     Flash *s = (Flash *)opaque;
1555 
1556     return s->data_read_loop;
1557 }
1558 
1559 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1560     .name = "m25p80/data_read_loop",
1561     .version_id = 1,
1562     .minimum_version_id = 1,
1563     .needed = m25p80_data_read_loop_needed,
1564     .fields = (VMStateField[]) {
1565         VMSTATE_BOOL(data_read_loop, Flash),
1566         VMSTATE_END_OF_LIST()
1567     }
1568 };
1569 
1570 static bool m25p80_aai_enable_needed(void *opaque)
1571 {
1572     Flash *s = (Flash *)opaque;
1573 
1574     return s->aai_enable;
1575 }
1576 
1577 static const VMStateDescription vmstate_m25p80_aai_enable = {
1578     .name = "m25p80/aai_enable",
1579     .version_id = 1,
1580     .minimum_version_id = 1,
1581     .needed = m25p80_aai_enable_needed,
1582     .fields = (VMStateField[]) {
1583         VMSTATE_BOOL(aai_enable, Flash),
1584         VMSTATE_END_OF_LIST()
1585     }
1586 };
1587 
1588 static const VMStateDescription vmstate_m25p80 = {
1589     .name = "m25p80",
1590     .version_id = 0,
1591     .minimum_version_id = 0,
1592     .pre_save = m25p80_pre_save,
1593     .pre_load = m25p80_pre_load,
1594     .fields = (VMStateField[]) {
1595         VMSTATE_UINT8(state, Flash),
1596         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1597         VMSTATE_UINT32(len, Flash),
1598         VMSTATE_UINT32(pos, Flash),
1599         VMSTATE_UINT8(needed_bytes, Flash),
1600         VMSTATE_UINT8(cmd_in_progress, Flash),
1601         VMSTATE_UINT32(cur_addr, Flash),
1602         VMSTATE_BOOL(write_enable, Flash),
1603         VMSTATE_BOOL(reset_enable, Flash),
1604         VMSTATE_UINT8(ear, Flash),
1605         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1606         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1607         VMSTATE_UINT32(volatile_cfg, Flash),
1608         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1609         VMSTATE_BOOL(quad_enable, Flash),
1610         VMSTATE_UINT8(spansion_cr1nv, Flash),
1611         VMSTATE_UINT8(spansion_cr2nv, Flash),
1612         VMSTATE_UINT8(spansion_cr3nv, Flash),
1613         VMSTATE_UINT8(spansion_cr4nv, Flash),
1614         VMSTATE_END_OF_LIST()
1615     },
1616     .subsections = (const VMStateDescription * []) {
1617         &vmstate_m25p80_data_read_loop,
1618         &vmstate_m25p80_aai_enable,
1619         NULL
1620     }
1621 };
1622 
1623 static void m25p80_class_init(ObjectClass *klass, void *data)
1624 {
1625     DeviceClass *dc = DEVICE_CLASS(klass);
1626     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1627     M25P80Class *mc = M25P80_CLASS(klass);
1628 
1629     k->realize = m25p80_realize;
1630     k->transfer = m25p80_transfer8;
1631     k->set_cs = m25p80_cs;
1632     k->cs_polarity = SSI_CS_LOW;
1633     dc->vmsd = &vmstate_m25p80;
1634     device_class_set_props(dc, m25p80_properties);
1635     dc->reset = m25p80_reset;
1636     mc->pi = data;
1637 }
1638 
1639 static const TypeInfo m25p80_info = {
1640     .name           = TYPE_M25P80,
1641     .parent         = TYPE_SSI_PERIPHERAL,
1642     .instance_size  = sizeof(Flash),
1643     .class_size     = sizeof(M25P80Class),
1644     .abstract       = true,
1645 };
1646 
1647 static void m25p80_register_types(void)
1648 {
1649     int i;
1650 
1651     type_register_static(&m25p80_info);
1652     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1653         TypeInfo ti = {
1654             .name       = known_devices[i].part_name,
1655             .parent     = TYPE_M25P80,
1656             .class_init = m25p80_class_init,
1657             .class_data = (void *)&known_devices[i],
1658         };
1659         type_register(&ti);
1660     }
1661 }
1662 
1663 type_init(m25p80_register_types)
1664