xref: /qemu/hw/block/onenand.c (revision e3a6e0da)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-properties.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/error-report.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qom/object.h"
35 
36 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
37 #define PAGE_SHIFT	11
38 
39 /* Fixed */
40 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
41 
42 #define TYPE_ONE_NAND "onenand"
43 typedef struct OneNANDState OneNANDState;
44 DECLARE_INSTANCE_CHECKER(OneNANDState, ONE_NAND,
45                          TYPE_ONE_NAND)
46 
47 struct OneNANDState {
48     SysBusDevice parent_obj;
49 
50     struct {
51         uint16_t man;
52         uint16_t dev;
53         uint16_t ver;
54     } id;
55     int shift;
56     hwaddr base;
57     qemu_irq intr;
58     qemu_irq rdy;
59     BlockBackend *blk;
60     BlockBackend *blk_cur;
61     uint8_t *image;
62     uint8_t *otp;
63     uint8_t *current;
64     MemoryRegion ram;
65     MemoryRegion mapped_ram;
66     uint8_t current_direction;
67     uint8_t *boot[2];
68     uint8_t *data[2][2];
69     MemoryRegion iomem;
70     MemoryRegion container;
71     int cycle;
72     int otpmode;
73 
74     uint16_t addr[8];
75     uint16_t unladdr[8];
76     int bufaddr;
77     int count;
78     uint16_t command;
79     uint16_t config[2];
80     uint16_t status;
81     uint16_t intstatus;
82     uint16_t wpstatus;
83 
84     ECCState ecc;
85 
86     int density_mask;
87     int secs;
88     int secs_cur;
89     int blocks;
90     uint8_t *blockwp;
91 };
92 
93 enum {
94     ONEN_BUF_BLOCK = 0,
95     ONEN_BUF_BLOCK2 = 1,
96     ONEN_BUF_DEST_BLOCK = 2,
97     ONEN_BUF_DEST_PAGE = 3,
98     ONEN_BUF_PAGE = 7,
99 };
100 
101 enum {
102     ONEN_ERR_CMD = 1 << 10,
103     ONEN_ERR_ERASE = 1 << 11,
104     ONEN_ERR_PROG = 1 << 12,
105     ONEN_ERR_LOAD = 1 << 13,
106 };
107 
108 enum {
109     ONEN_INT_RESET = 1 << 4,
110     ONEN_INT_ERASE = 1 << 5,
111     ONEN_INT_PROG = 1 << 6,
112     ONEN_INT_LOAD = 1 << 7,
113     ONEN_INT = 1 << 15,
114 };
115 
116 enum {
117     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
118     ONEN_LOCK_LOCKED = 1 << 1,
119     ONEN_LOCK_UNLOCKED = 1 << 2,
120 };
121 
122 static void onenand_mem_setup(OneNANDState *s)
123 {
124     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
125      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
126      * write boot commands.  Also take note of the BWPS bit.  */
127     memory_region_init(&s->container, OBJECT(s), "onenand",
128                        0x10000 << s->shift);
129     memory_region_add_subregion(&s->container, 0, &s->iomem);
130     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
131                              &s->ram, 0x0200 << s->shift,
132                              0xbe00 << s->shift);
133     memory_region_add_subregion_overlap(&s->container,
134                                         0x0200 << s->shift,
135                                         &s->mapped_ram,
136                                         1);
137 }
138 
139 static void onenand_intr_update(OneNANDState *s)
140 {
141     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
142 }
143 
144 static int onenand_pre_save(void *opaque)
145 {
146     OneNANDState *s = opaque;
147     if (s->current == s->otp) {
148         s->current_direction = 1;
149     } else if (s->current == s->image) {
150         s->current_direction = 2;
151     } else {
152         s->current_direction = 0;
153     }
154 
155     return 0;
156 }
157 
158 static int onenand_post_load(void *opaque, int version_id)
159 {
160     OneNANDState *s = opaque;
161     switch (s->current_direction) {
162     case 0:
163         break;
164     case 1:
165         s->current = s->otp;
166         break;
167     case 2:
168         s->current = s->image;
169         break;
170     default:
171         return -1;
172     }
173     onenand_intr_update(s);
174     return 0;
175 }
176 
177 static const VMStateDescription vmstate_onenand = {
178     .name = "onenand",
179     .version_id = 1,
180     .minimum_version_id = 1,
181     .pre_save = onenand_pre_save,
182     .post_load = onenand_post_load,
183     .fields = (VMStateField[]) {
184         VMSTATE_UINT8(current_direction, OneNANDState),
185         VMSTATE_INT32(cycle, OneNANDState),
186         VMSTATE_INT32(otpmode, OneNANDState),
187         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
188         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
189         VMSTATE_INT32(bufaddr, OneNANDState),
190         VMSTATE_INT32(count, OneNANDState),
191         VMSTATE_UINT16(command, OneNANDState),
192         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
193         VMSTATE_UINT16(status, OneNANDState),
194         VMSTATE_UINT16(intstatus, OneNANDState),
195         VMSTATE_UINT16(wpstatus, OneNANDState),
196         VMSTATE_INT32(secs_cur, OneNANDState),
197         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
198         VMSTATE_UINT8(ecc.cp, OneNANDState),
199         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
200         VMSTATE_UINT16(ecc.count, OneNANDState),
201         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
202             ((64 + 2) << PAGE_SHIFT)),
203         VMSTATE_END_OF_LIST()
204     }
205 };
206 
207 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
208 static void onenand_reset(OneNANDState *s, int cold)
209 {
210     memset(&s->addr, 0, sizeof(s->addr));
211     s->command = 0;
212     s->count = 1;
213     s->bufaddr = 0;
214     s->config[0] = 0x40c0;
215     s->config[1] = 0x0000;
216     onenand_intr_update(s);
217     qemu_irq_raise(s->rdy);
218     s->status = 0x0000;
219     s->intstatus = cold ? 0x8080 : 0x8010;
220     s->unladdr[0] = 0;
221     s->unladdr[1] = 0;
222     s->wpstatus = 0x0002;
223     s->cycle = 0;
224     s->otpmode = 0;
225     s->blk_cur = s->blk;
226     s->current = s->image;
227     s->secs_cur = s->secs;
228 
229     if (cold) {
230         /* Lock the whole flash */
231         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
232 
233         if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
234                                     8 << BDRV_SECTOR_BITS) < 0) {
235             hw_error("%s: Loading the BootRAM failed.\n", __func__);
236         }
237     }
238 }
239 
240 static void onenand_system_reset(DeviceState *dev)
241 {
242     OneNANDState *s = ONE_NAND(dev);
243 
244     onenand_reset(s, 1);
245 }
246 
247 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
248                 void *dest)
249 {
250     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
251     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
252     if (s->blk_cur) {
253         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
254                          secn << BDRV_SECTOR_BITS) < 0;
255     } else if (sec + secn > s->secs_cur) {
256         return 1;
257     }
258 
259     memcpy(dest, s->current + (sec << 9), secn << 9);
260 
261     return 0;
262 }
263 
264 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
265                 void *src)
266 {
267     int result = 0;
268 
269     if (secn > 0) {
270         uint32_t size = secn << BDRV_SECTOR_BITS;
271         uint32_t offset = sec << BDRV_SECTOR_BITS;
272         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
273         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
274         const uint8_t *sp = (const uint8_t *)src;
275         uint8_t *dp = 0;
276         if (s->blk_cur) {
277             dp = g_malloc(size);
278             if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
279                 result = 1;
280             }
281         } else {
282             if (sec + secn > s->secs_cur) {
283                 result = 1;
284             } else {
285                 dp = (uint8_t *)s->current + offset;
286             }
287         }
288         if (!result) {
289             uint32_t i;
290             for (i = 0; i < size; i++) {
291                 dp[i] &= sp[i];
292             }
293             if (s->blk_cur) {
294                 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
295             }
296         }
297         if (dp && s->blk_cur) {
298             g_free(dp);
299         }
300     }
301 
302     return result;
303 }
304 
305 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
306                 void *dest)
307 {
308     uint8_t buf[512];
309 
310     if (s->blk_cur) {
311         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
312         if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
313             return 1;
314         }
315         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
316     } else if (sec + secn > s->secs_cur) {
317         return 1;
318     } else {
319         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
320     }
321 
322     return 0;
323 }
324 
325 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
326                 void *src)
327 {
328     int result = 0;
329     if (secn > 0) {
330         const uint8_t *sp = (const uint8_t *)src;
331         uint8_t *dp = 0, *dpp = 0;
332         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
333         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
334         if (s->blk_cur) {
335             dp = g_malloc(512);
336             if (!dp
337                 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
338                 result = 1;
339             } else {
340                 dpp = dp + ((sec & 31) << 4);
341             }
342         } else {
343             if (sec + secn > s->secs_cur) {
344                 result = 1;
345             } else {
346                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
347             }
348         }
349         if (!result) {
350             uint32_t i;
351             for (i = 0; i < (secn << 4); i++) {
352                 dpp[i] &= sp[i];
353             }
354             if (s->blk_cur) {
355                 result = blk_pwrite(s->blk_cur, offset, dp,
356                                     BDRV_SECTOR_SIZE, 0) < 0;
357             }
358         }
359         g_free(dp);
360     }
361     return result;
362 }
363 
364 static inline int onenand_erase(OneNANDState *s, int sec, int num)
365 {
366     uint8_t *blankbuf, *tmpbuf;
367 
368     blankbuf = g_malloc(512);
369     tmpbuf = g_malloc(512);
370     memset(blankbuf, 0xff, 512);
371     for (; num > 0; num--, sec++) {
372         if (s->blk_cur) {
373             int erasesec = s->secs_cur + (sec >> 5);
374             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
375                            BDRV_SECTOR_SIZE, 0) < 0) {
376                 goto fail;
377             }
378             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
379                           BDRV_SECTOR_SIZE) < 0) {
380                 goto fail;
381             }
382             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
383             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
384                            BDRV_SECTOR_SIZE, 0) < 0) {
385                 goto fail;
386             }
387         } else {
388             if (sec + 1 > s->secs_cur) {
389                 goto fail;
390             }
391             memcpy(s->current + (sec << 9), blankbuf, 512);
392             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
393                    blankbuf, 1 << 4);
394         }
395     }
396 
397     g_free(tmpbuf);
398     g_free(blankbuf);
399     return 0;
400 
401 fail:
402     g_free(tmpbuf);
403     g_free(blankbuf);
404     return 1;
405 }
406 
407 static void onenand_command(OneNANDState *s)
408 {
409     int b;
410     int sec;
411     void *buf;
412 #define SETADDR(block, page)			\
413     sec = (s->addr[page] & 3) +			\
414             ((((s->addr[page] >> 2) & 0x3f) +	\
415               (((s->addr[block] & 0xfff) |	\
416                 (s->addr[block] >> 15 ?		\
417                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
418 #define SETBUF_M()				\
419     buf = (s->bufaddr & 8) ?			\
420             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
421     buf += (s->bufaddr & 3) << 9;
422 #define SETBUF_S()				\
423     buf = (s->bufaddr & 8) ?			\
424             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
425     buf += (s->bufaddr & 3) << 4;
426 
427     switch (s->command) {
428     case 0x00:	/* Load single/multiple sector data unit into buffer */
429         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
430 
431         SETBUF_M()
432         if (onenand_load_main(s, sec, s->count, buf))
433             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
434 
435 #if 0
436         SETBUF_S()
437         if (onenand_load_spare(s, sec, s->count, buf))
438             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
439 #endif
440 
441         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
442          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
443          * then we need two split the read/write into two chunks.
444          */
445         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
446         break;
447     case 0x13:	/* Load single/multiple spare sector into buffer */
448         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
449 
450         SETBUF_S()
451         if (onenand_load_spare(s, sec, s->count, buf))
452             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
453 
454         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
455          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
456          * then we need two split the read/write into two chunks.
457          */
458         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
459         break;
460     case 0x80:	/* Program single/multiple sector data unit from buffer */
461         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
462 
463         SETBUF_M()
464         if (onenand_prog_main(s, sec, s->count, buf))
465             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
466 
467 #if 0
468         SETBUF_S()
469         if (onenand_prog_spare(s, sec, s->count, buf))
470             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
471 #endif
472 
473         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
474          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
475          * then we need two split the read/write into two chunks.
476          */
477         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
478         break;
479     case 0x1a:	/* Program single/multiple spare area sector from buffer */
480         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
481 
482         SETBUF_S()
483         if (onenand_prog_spare(s, sec, s->count, buf))
484             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
485 
486         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
487          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
488          * then we need two split the read/write into two chunks.
489          */
490         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
491         break;
492     case 0x1b:	/* Copy-back program */
493         SETBUF_S()
494 
495         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
496         if (onenand_load_main(s, sec, s->count, buf))
497             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
498 
499         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
500         if (onenand_prog_main(s, sec, s->count, buf))
501             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
502 
503         /* TODO: spare areas */
504 
505         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
506         break;
507 
508     case 0x23:	/* Unlock NAND array block(s) */
509         s->intstatus |= ONEN_INT;
510 
511         /* XXX the previous (?) area should be locked automatically */
512         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
513             if (b >= s->blocks) {
514                 s->status |= ONEN_ERR_CMD;
515                 break;
516             }
517             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
518                 break;
519 
520             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
521         }
522         break;
523     case 0x27:	/* Unlock All NAND array blocks */
524         s->intstatus |= ONEN_INT;
525 
526         for (b = 0; b < s->blocks; b ++) {
527             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
528                 break;
529 
530             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
531         }
532         break;
533 
534     case 0x2a:	/* Lock NAND array block(s) */
535         s->intstatus |= ONEN_INT;
536 
537         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
538             if (b >= s->blocks) {
539                 s->status |= ONEN_ERR_CMD;
540                 break;
541             }
542             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
543                 break;
544 
545             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
546         }
547         break;
548     case 0x2c:	/* Lock-tight NAND array block(s) */
549         s->intstatus |= ONEN_INT;
550 
551         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
552             if (b >= s->blocks) {
553                 s->status |= ONEN_ERR_CMD;
554                 break;
555             }
556             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
557                 continue;
558 
559             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
560         }
561         break;
562 
563     case 0x71:	/* Erase-Verify-Read */
564         s->intstatus |= ONEN_INT;
565         break;
566     case 0x95:	/* Multi-block erase */
567         qemu_irq_pulse(s->intr);
568         /* Fall through.  */
569     case 0x94:	/* Block erase */
570         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
571                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
572                 << (BLOCK_SHIFT - 9);
573         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
574             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
575 
576         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
577         break;
578     case 0xb0:	/* Erase suspend */
579         break;
580     case 0x30:	/* Erase resume */
581         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
582         break;
583 
584     case 0xf0:	/* Reset NAND Flash core */
585         onenand_reset(s, 0);
586         break;
587     case 0xf3:	/* Reset OneNAND */
588         onenand_reset(s, 0);
589         break;
590 
591     case 0x65:	/* OTP Access */
592         s->intstatus |= ONEN_INT;
593         s->blk_cur = NULL;
594         s->current = s->otp;
595         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
596         s->addr[ONEN_BUF_BLOCK] = 0;
597         s->otpmode = 1;
598         break;
599 
600     default:
601         s->status |= ONEN_ERR_CMD;
602         s->intstatus |= ONEN_INT;
603         qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
604                       s->command);
605     }
606 
607     onenand_intr_update(s);
608 }
609 
610 static uint64_t onenand_read(void *opaque, hwaddr addr,
611                              unsigned size)
612 {
613     OneNANDState *s = (OneNANDState *) opaque;
614     int offset = addr >> s->shift;
615 
616     switch (offset) {
617     case 0x0000 ... 0xbffe:
618         return lduw_le_p(s->boot[0] + addr);
619 
620     case 0xf000:	/* Manufacturer ID */
621         return s->id.man;
622     case 0xf001:	/* Device ID */
623         return s->id.dev;
624     case 0xf002:	/* Version ID */
625         return s->id.ver;
626     /* TODO: get the following values from a real chip!  */
627     case 0xf003:	/* Data Buffer size */
628         return 1 << PAGE_SHIFT;
629     case 0xf004:	/* Boot Buffer size */
630         return 0x200;
631     case 0xf005:	/* Amount of buffers */
632         return 1 | (2 << 8);
633     case 0xf006:	/* Technology */
634         return 0;
635 
636     case 0xf100 ... 0xf107:	/* Start addresses */
637         return s->addr[offset - 0xf100];
638 
639     case 0xf200:	/* Start buffer */
640         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
641 
642     case 0xf220:	/* Command */
643         return s->command;
644     case 0xf221:	/* System Configuration 1 */
645         return s->config[0] & 0xffe0;
646     case 0xf222:	/* System Configuration 2 */
647         return s->config[1];
648 
649     case 0xf240:	/* Controller Status */
650         return s->status;
651     case 0xf241:	/* Interrupt */
652         return s->intstatus;
653     case 0xf24c:	/* Unlock Start Block Address */
654         return s->unladdr[0];
655     case 0xf24d:	/* Unlock End Block Address */
656         return s->unladdr[1];
657     case 0xf24e:	/* Write Protection Status */
658         return s->wpstatus;
659 
660     case 0xff00:	/* ECC Status */
661         return 0x00;
662     case 0xff01:	/* ECC Result of main area data */
663     case 0xff02:	/* ECC Result of spare area data */
664     case 0xff03:	/* ECC Result of main area data */
665     case 0xff04:	/* ECC Result of spare area data */
666         qemu_log_mask(LOG_UNIMP,
667                       "onenand: ECC result registers unimplemented\n");
668         return 0x0000;
669     }
670 
671     qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
672                   offset);
673     return 0;
674 }
675 
676 static void onenand_write(void *opaque, hwaddr addr,
677                           uint64_t value, unsigned size)
678 {
679     OneNANDState *s = (OneNANDState *) opaque;
680     int offset = addr >> s->shift;
681     int sec;
682 
683     switch (offset) {
684     case 0x0000 ... 0x01ff:
685     case 0x8000 ... 0x800f:
686         if (s->cycle) {
687             s->cycle = 0;
688 
689             if (value == 0x0000) {
690                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
691                 onenand_load_main(s, sec,
692                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
693                 s->addr[ONEN_BUF_PAGE] += 4;
694                 s->addr[ONEN_BUF_PAGE] &= 0xff;
695             }
696             break;
697         }
698 
699         switch (value) {
700         case 0x00f0:	/* Reset OneNAND */
701             onenand_reset(s, 0);
702             break;
703 
704         case 0x00e0:	/* Load Data into Buffer */
705             s->cycle = 1;
706             break;
707 
708         case 0x0090:	/* Read Identification Data */
709             memset(s->boot[0], 0, 3 << s->shift);
710             s->boot[0][0 << s->shift] = s->id.man & 0xff;
711             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
712             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
713             break;
714 
715         default:
716             qemu_log_mask(LOG_GUEST_ERROR,
717                           "unknown OneNAND boot command %" PRIx64 "\n",
718                           value);
719         }
720         break;
721 
722     case 0xf100 ... 0xf107:	/* Start addresses */
723         s->addr[offset - 0xf100] = value;
724         break;
725 
726     case 0xf200:	/* Start buffer */
727         s->bufaddr = (value >> 8) & 0xf;
728         if (PAGE_SHIFT == 11)
729             s->count = (value & 3) ?: 4;
730         else if (PAGE_SHIFT == 10)
731             s->count = (value & 1) ?: 2;
732         break;
733 
734     case 0xf220:	/* Command */
735         if (s->intstatus & (1 << 15))
736             break;
737         s->command = value;
738         onenand_command(s);
739         break;
740     case 0xf221:	/* System Configuration 1 */
741         s->config[0] = value;
742         onenand_intr_update(s);
743         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
744         break;
745     case 0xf222:	/* System Configuration 2 */
746         s->config[1] = value;
747         break;
748 
749     case 0xf241:	/* Interrupt */
750         s->intstatus &= value;
751         if ((1 << 15) & ~s->intstatus)
752             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
753                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
754         onenand_intr_update(s);
755         break;
756     case 0xf24c:	/* Unlock Start Block Address */
757         s->unladdr[0] = value & (s->blocks - 1);
758         /* For some reason we have to set the end address to by default
759          * be same as start because the software forgets to write anything
760          * in there.  */
761         s->unladdr[1] = value & (s->blocks - 1);
762         break;
763     case 0xf24d:	/* Unlock End Block Address */
764         s->unladdr[1] = value & (s->blocks - 1);
765         break;
766 
767     default:
768         qemu_log_mask(LOG_GUEST_ERROR,
769                       "write to unknown OneNAND register 0x%x\n",
770                       offset);
771     }
772 }
773 
774 static const MemoryRegionOps onenand_ops = {
775     .read = onenand_read,
776     .write = onenand_write,
777     .endianness = DEVICE_NATIVE_ENDIAN,
778 };
779 
780 static void onenand_realize(DeviceState *dev, Error **errp)
781 {
782     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
783     OneNANDState *s = ONE_NAND(dev);
784     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
785     void *ram;
786     Error *local_err = NULL;
787 
788     s->base = (hwaddr)-1;
789     s->rdy = NULL;
790     s->blocks = size >> BLOCK_SHIFT;
791     s->secs = size >> 9;
792     s->blockwp = g_malloc(s->blocks);
793     s->density_mask = (s->id.dev & 0x08)
794         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
795     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
796                           0x10000 << s->shift);
797     if (!s->blk) {
798         s->image = memset(g_malloc(size + (size >> 5)),
799                           0xff, size + (size >> 5));
800     } else {
801         if (blk_is_read_only(s->blk)) {
802             error_setg(errp, "Can't use a read-only drive");
803             return;
804         }
805         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
806                      BLK_PERM_ALL, &local_err);
807         if (local_err) {
808             error_propagate(errp, local_err);
809             return;
810         }
811         s->blk_cur = s->blk;
812     }
813     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
814                     0xff, (64 + 2) << PAGE_SHIFT);
815     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
816                            0xc000 << s->shift, &error_fatal);
817     vmstate_register_ram_global(&s->ram);
818     ram = memory_region_get_ram_ptr(&s->ram);
819     s->boot[0] = ram + (0x0000 << s->shift);
820     s->boot[1] = ram + (0x8000 << s->shift);
821     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
822     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
823     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
824     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
825     onenand_mem_setup(s);
826     sysbus_init_irq(sbd, &s->intr);
827     sysbus_init_mmio(sbd, &s->container);
828     vmstate_register(VMSTATE_IF(dev),
829                      ((s->shift & 0x7f) << 24)
830                      | ((s->id.man & 0xff) << 16)
831                      | ((s->id.dev & 0xff) << 8)
832                      | (s->id.ver & 0xff),
833                      &vmstate_onenand, s);
834 }
835 
836 static Property onenand_properties[] = {
837     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
838     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
839     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
840     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
841     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
842     DEFINE_PROP_END_OF_LIST(),
843 };
844 
845 static void onenand_class_init(ObjectClass *klass, void *data)
846 {
847     DeviceClass *dc = DEVICE_CLASS(klass);
848 
849     dc->realize = onenand_realize;
850     dc->reset = onenand_system_reset;
851     device_class_set_props(dc, onenand_properties);
852 }
853 
854 static const TypeInfo onenand_info = {
855     .name          = TYPE_ONE_NAND,
856     .parent        = TYPE_SYS_BUS_DEVICE,
857     .instance_size = sizeof(OneNANDState),
858     .class_init    = onenand_class_init,
859 };
860 
861 static void onenand_register_types(void)
862 {
863     type_register_static(&onenand_info);
864 }
865 
866 void *onenand_raw_otp(DeviceState *onenand_device)
867 {
868     OneNANDState *s = ONE_NAND(onenand_device);
869 
870     return s->otp;
871 }
872 
873 type_init(onenand_register_types)
874