xref: /qemu/hw/block/pflash_cfi01.c (revision 52ea63de)
1 /*
2  *  CFI parallel flash with Intel command set emulation
3  *
4  *  Copyright (c) 2006 Thorsten Zitterell
5  *  Copyright (c) 2005 Jocelyn Mayer
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22  * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23  * Supported commands/modes are:
24  * - flash read
25  * - flash write
26  * - flash ID read
27  * - sector erase
28  * - CFI queries
29  *
30  * It does not support timings
31  * It does not support flash interleaving
32  * It does not implement software data protection as found in many real chips
33  * It does not implement erase suspend/resume commands
34  * It does not implement multiple sectors erase
35  *
36  * It does not implement much more ...
37  */
38 
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "qapi/error.h"
44 #include "qemu/timer.h"
45 #include "qemu/bitops.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/log.h"
49 #include "hw/sysbus.h"
50 #include "sysemu/sysemu.h"
51 
52 #define PFLASH_BUG(fmt, ...) \
53 do { \
54     fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
55     exit(1); \
56 } while(0)
57 
58 /* #define PFLASH_DEBUG */
59 #ifdef PFLASH_DEBUG
60 #define DPRINTF(fmt, ...)                                   \
61 do {                                                        \
62     fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__);       \
63 } while (0)
64 #else
65 #define DPRINTF(fmt, ...) do { } while (0)
66 #endif
67 
68 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
69 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
70 
71 #define PFLASH_BE          0
72 #define PFLASH_SECURE      1
73 
74 struct pflash_t {
75     /*< private >*/
76     SysBusDevice parent_obj;
77     /*< public >*/
78 
79     BlockBackend *blk;
80     uint32_t nb_blocs;
81     uint64_t sector_len;
82     uint8_t bank_width;
83     uint8_t device_width; /* If 0, device width not specified. */
84     uint8_t max_device_width;  /* max device width in bytes */
85     uint32_t features;
86     uint8_t wcycle; /* if 0, the flash is read normally */
87     int ro;
88     uint8_t cmd;
89     uint8_t status;
90     uint16_t ident0;
91     uint16_t ident1;
92     uint16_t ident2;
93     uint16_t ident3;
94     uint8_t cfi_len;
95     uint8_t cfi_table[0x52];
96     uint64_t counter;
97     unsigned int writeblock_size;
98     QEMUTimer *timer;
99     MemoryRegion mem;
100     char *name;
101     void *storage;
102     VMChangeStateEntry *vmstate;
103 };
104 
105 static int pflash_post_load(void *opaque, int version_id);
106 
107 static const VMStateDescription vmstate_pflash = {
108     .name = "pflash_cfi01",
109     .version_id = 1,
110     .minimum_version_id = 1,
111     .post_load = pflash_post_load,
112     .fields = (VMStateField[]) {
113         VMSTATE_UINT8(wcycle, pflash_t),
114         VMSTATE_UINT8(cmd, pflash_t),
115         VMSTATE_UINT8(status, pflash_t),
116         VMSTATE_UINT64(counter, pflash_t),
117         VMSTATE_END_OF_LIST()
118     }
119 };
120 
121 static void pflash_timer (void *opaque)
122 {
123     pflash_t *pfl = opaque;
124 
125     DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
126     /* Reset flash */
127     pfl->status ^= 0x80;
128     memory_region_rom_device_set_romd(&pfl->mem, true);
129     pfl->wcycle = 0;
130     pfl->cmd = 0;
131 }
132 
133 /* Perform a CFI query based on the bank width of the flash.
134  * If this code is called we know we have a device_width set for
135  * this flash.
136  */
137 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
138 {
139     int i;
140     uint32_t resp = 0;
141     hwaddr boff;
142 
143     /* Adjust incoming offset to match expected device-width
144      * addressing. CFI query addresses are always specified in terms of
145      * the maximum supported width of the device.  This means that x8
146      * devices and x8/x16 devices in x8 mode behave differently.  For
147      * devices that are not used at their max width, we will be
148      * provided with addresses that use higher address bits than
149      * expected (based on the max width), so we will shift them lower
150      * so that they will match the addresses used when
151      * device_width==max_device_width.
152      */
153     boff = offset >> (ctz32(pfl->bank_width) +
154                       ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
155 
156     if (boff > pfl->cfi_len) {
157         return 0;
158     }
159     /* Now we will construct the CFI response generated by a single
160      * device, then replicate that for all devices that make up the
161      * bus.  For wide parts used in x8 mode, CFI query responses
162      * are different than native byte-wide parts.
163      */
164     resp = pfl->cfi_table[boff];
165     if (pfl->device_width != pfl->max_device_width) {
166         /* The only case currently supported is x8 mode for a
167          * wider part.
168          */
169         if (pfl->device_width != 1 || pfl->bank_width > 4) {
170             DPRINTF("%s: Unsupported device configuration: "
171                     "device_width=%d, max_device_width=%d\n",
172                     __func__, pfl->device_width,
173                     pfl->max_device_width);
174             return 0;
175         }
176         /* CFI query data is repeated, rather than zero padded for
177          * wide devices used in x8 mode.
178          */
179         for (i = 1; i < pfl->max_device_width; i++) {
180             resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
181         }
182     }
183     /* Replicate responses for each device in bank. */
184     if (pfl->device_width < pfl->bank_width) {
185         for (i = pfl->device_width;
186              i < pfl->bank_width; i += pfl->device_width) {
187             resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
188         }
189     }
190 
191     return resp;
192 }
193 
194 
195 
196 /* Perform a device id query based on the bank width of the flash. */
197 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
198 {
199     int i;
200     uint32_t resp;
201     hwaddr boff;
202 
203     /* Adjust incoming offset to match expected device-width
204      * addressing. Device ID read addresses are always specified in
205      * terms of the maximum supported width of the device.  This means
206      * that x8 devices and x8/x16 devices in x8 mode behave
207      * differently. For devices that are not used at their max width,
208      * we will be provided with addresses that use higher address bits
209      * than expected (based on the max width), so we will shift them
210      * lower so that they will match the addresses used when
211      * device_width==max_device_width.
212      */
213     boff = offset >> (ctz32(pfl->bank_width) +
214                       ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
215 
216     /* Mask off upper bits which may be used in to query block
217      * or sector lock status at other addresses.
218      * Offsets 2/3 are block lock status, is not emulated.
219      */
220     switch (boff & 0xFF) {
221     case 0:
222         resp = pfl->ident0;
223         DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
224         break;
225     case 1:
226         resp = pfl->ident1;
227         DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
228         break;
229     default:
230         DPRINTF("%s: Read Device Information offset=%x\n", __func__,
231                 (unsigned)offset);
232         return 0;
233         break;
234     }
235     /* Replicate responses for each device in bank. */
236     if (pfl->device_width < pfl->bank_width) {
237         for (i = pfl->device_width;
238               i < pfl->bank_width; i += pfl->device_width) {
239             resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
240         }
241     }
242 
243     return resp;
244 }
245 
246 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
247                                  int width, int be)
248 {
249     uint8_t *p;
250     uint32_t ret;
251 
252     p = pfl->storage;
253     switch (width) {
254     case 1:
255         ret = p[offset];
256         DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
257                 __func__, offset, ret);
258         break;
259     case 2:
260         if (be) {
261             ret = p[offset] << 8;
262             ret |= p[offset + 1];
263         } else {
264             ret = p[offset];
265             ret |= p[offset + 1] << 8;
266         }
267         DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
268                 __func__, offset, ret);
269         break;
270     case 4:
271         if (be) {
272             ret = p[offset] << 24;
273             ret |= p[offset + 1] << 16;
274             ret |= p[offset + 2] << 8;
275             ret |= p[offset + 3];
276         } else {
277             ret = p[offset];
278             ret |= p[offset + 1] << 8;
279             ret |= p[offset + 2] << 16;
280             ret |= p[offset + 3] << 24;
281         }
282         DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
283                 __func__, offset, ret);
284         break;
285     default:
286         DPRINTF("BUG in %s\n", __func__);
287         abort();
288     }
289     return ret;
290 }
291 
292 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
293                              int width, int be)
294 {
295     hwaddr boff;
296     uint32_t ret;
297 
298     ret = -1;
299 
300 #if 0
301     DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
302             __func__, offset, pfl->cmd, width);
303 #endif
304     switch (pfl->cmd) {
305     default:
306         /* This should never happen : reset state & treat it as a read */
307         DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
308         pfl->wcycle = 0;
309         pfl->cmd = 0;
310         /* fall through to read code */
311     case 0x00:
312         /* Flash area read */
313         ret = pflash_data_read(pfl, offset, width, be);
314         break;
315     case 0x10: /* Single byte program */
316     case 0x20: /* Block erase */
317     case 0x28: /* Block erase */
318     case 0x40: /* single byte program */
319     case 0x50: /* Clear status register */
320     case 0x60: /* Block /un)lock */
321     case 0x70: /* Status Register */
322     case 0xe8: /* Write block */
323         /* Status register read.  Return status from each device in
324          * bank.
325          */
326         ret = pfl->status;
327         if (pfl->device_width && width > pfl->device_width) {
328             int shift = pfl->device_width * 8;
329             while (shift + pfl->device_width * 8 <= width * 8) {
330                 ret |= pfl->status << shift;
331                 shift += pfl->device_width * 8;
332             }
333         } else if (!pfl->device_width && width > 2) {
334             /* Handle 32 bit flash cases where device width is not
335              * set. (Existing behavior before device width added.)
336              */
337             ret |= pfl->status << 16;
338         }
339         DPRINTF("%s: status %x\n", __func__, ret);
340         break;
341     case 0x90:
342         if (!pfl->device_width) {
343             /* Preserve old behavior if device width not specified */
344             boff = offset & 0xFF;
345             if (pfl->bank_width == 2) {
346                 boff = boff >> 1;
347             } else if (pfl->bank_width == 4) {
348                 boff = boff >> 2;
349             }
350 
351             switch (boff) {
352             case 0:
353                 ret = pfl->ident0 << 8 | pfl->ident1;
354                 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
355                 break;
356             case 1:
357                 ret = pfl->ident2 << 8 | pfl->ident3;
358                 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
359                 break;
360             default:
361                 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
362                         (unsigned)boff);
363                 ret = 0;
364                 break;
365             }
366         } else {
367             /* If we have a read larger than the bank_width, combine multiple
368              * manufacturer/device ID queries into a single response.
369              */
370             int i;
371             for (i = 0; i < width; i += pfl->bank_width) {
372                 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
373                                 pflash_devid_query(pfl,
374                                                  offset + i * pfl->bank_width));
375             }
376         }
377         break;
378     case 0x98: /* Query mode */
379         if (!pfl->device_width) {
380             /* Preserve old behavior if device width not specified */
381             boff = offset & 0xFF;
382             if (pfl->bank_width == 2) {
383                 boff = boff >> 1;
384             } else if (pfl->bank_width == 4) {
385                 boff = boff >> 2;
386             }
387 
388             if (boff > pfl->cfi_len) {
389                 ret = 0;
390             } else {
391                 ret = pfl->cfi_table[boff];
392             }
393         } else {
394             /* If we have a read larger than the bank_width, combine multiple
395              * CFI queries into a single response.
396              */
397             int i;
398             for (i = 0; i < width; i += pfl->bank_width) {
399                 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
400                                 pflash_cfi_query(pfl,
401                                                  offset + i * pfl->bank_width));
402             }
403         }
404 
405         break;
406     }
407     return ret;
408 }
409 
410 /* update flash content on disk */
411 static void pflash_update(pflash_t *pfl, int offset,
412                           int size)
413 {
414     int offset_end;
415     if (pfl->blk) {
416         offset_end = offset + size;
417         /* widen to sector boundaries */
418         offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
419         offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
420         blk_pwrite(pfl->blk, offset, pfl->storage + offset,
421                    offset_end - offset, 0);
422     }
423 }
424 
425 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
426                                      uint32_t value, int width, int be)
427 {
428     uint8_t *p = pfl->storage;
429 
430     DPRINTF("%s: block write offset " TARGET_FMT_plx
431             " value %x counter %016" PRIx64 "\n",
432             __func__, offset, value, pfl->counter);
433     switch (width) {
434     case 1:
435         p[offset] = value;
436         break;
437     case 2:
438         if (be) {
439             p[offset] = value >> 8;
440             p[offset + 1] = value;
441         } else {
442             p[offset] = value;
443             p[offset + 1] = value >> 8;
444         }
445         break;
446     case 4:
447         if (be) {
448             p[offset] = value >> 24;
449             p[offset + 1] = value >> 16;
450             p[offset + 2] = value >> 8;
451             p[offset + 3] = value;
452         } else {
453             p[offset] = value;
454             p[offset + 1] = value >> 8;
455             p[offset + 2] = value >> 16;
456             p[offset + 3] = value >> 24;
457         }
458         break;
459     }
460 
461 }
462 
463 static void pflash_write(pflash_t *pfl, hwaddr offset,
464                          uint32_t value, int width, int be)
465 {
466     uint8_t *p;
467     uint8_t cmd;
468 
469     cmd = value;
470 
471     DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
472             __func__, offset, value, width, pfl->wcycle);
473 
474     if (!pfl->wcycle) {
475         /* Set the device in I/O access mode */
476         memory_region_rom_device_set_romd(&pfl->mem, false);
477     }
478 
479     switch (pfl->wcycle) {
480     case 0:
481         /* read mode */
482         switch (cmd) {
483         case 0x00: /* ??? */
484             goto reset_flash;
485         case 0x10: /* Single Byte Program */
486         case 0x40: /* Single Byte Program */
487             DPRINTF("%s: Single Byte Program\n", __func__);
488             break;
489         case 0x20: /* Block erase */
490             p = pfl->storage;
491             offset &= ~(pfl->sector_len - 1);
492 
493             DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
494                     __func__, offset, (unsigned)pfl->sector_len);
495 
496             if (!pfl->ro) {
497                 memset(p + offset, 0xff, pfl->sector_len);
498                 pflash_update(pfl, offset, pfl->sector_len);
499             } else {
500                 pfl->status |= 0x20; /* Block erase error */
501             }
502             pfl->status |= 0x80; /* Ready! */
503             break;
504         case 0x50: /* Clear status bits */
505             DPRINTF("%s: Clear status bits\n", __func__);
506             pfl->status = 0x0;
507             goto reset_flash;
508         case 0x60: /* Block (un)lock */
509             DPRINTF("%s: Block unlock\n", __func__);
510             break;
511         case 0x70: /* Status Register */
512             DPRINTF("%s: Read status register\n", __func__);
513             pfl->cmd = cmd;
514             return;
515         case 0x90: /* Read Device ID */
516             DPRINTF("%s: Read Device information\n", __func__);
517             pfl->cmd = cmd;
518             return;
519         case 0x98: /* CFI query */
520             DPRINTF("%s: CFI query\n", __func__);
521             break;
522         case 0xe8: /* Write to buffer */
523             DPRINTF("%s: Write to buffer\n", __func__);
524             pfl->status |= 0x80; /* Ready! */
525             break;
526         case 0xf0: /* Probe for AMD flash */
527             DPRINTF("%s: Probe for AMD flash\n", __func__);
528             goto reset_flash;
529         case 0xff: /* Read array mode */
530             DPRINTF("%s: Read array mode\n", __func__);
531             goto reset_flash;
532         default:
533             goto error_flash;
534         }
535         pfl->wcycle++;
536         pfl->cmd = cmd;
537         break;
538     case 1:
539         switch (pfl->cmd) {
540         case 0x10: /* Single Byte Program */
541         case 0x40: /* Single Byte Program */
542             DPRINTF("%s: Single Byte Program\n", __func__);
543             if (!pfl->ro) {
544                 pflash_data_write(pfl, offset, value, width, be);
545                 pflash_update(pfl, offset, width);
546             } else {
547                 pfl->status |= 0x10; /* Programming error */
548             }
549             pfl->status |= 0x80; /* Ready! */
550             pfl->wcycle = 0;
551         break;
552         case 0x20: /* Block erase */
553         case 0x28:
554             if (cmd == 0xd0) { /* confirm */
555                 pfl->wcycle = 0;
556                 pfl->status |= 0x80;
557             } else if (cmd == 0xff) { /* read array mode */
558                 goto reset_flash;
559             } else
560                 goto error_flash;
561 
562             break;
563         case 0xe8:
564             /* Mask writeblock size based on device width, or bank width if
565              * device width not specified.
566              */
567             if (pfl->device_width) {
568                 value = extract32(value, 0, pfl->device_width * 8);
569             } else {
570                 value = extract32(value, 0, pfl->bank_width * 8);
571             }
572             DPRINTF("%s: block write of %x bytes\n", __func__, value);
573             pfl->counter = value;
574             pfl->wcycle++;
575             break;
576         case 0x60:
577             if (cmd == 0xd0) {
578                 pfl->wcycle = 0;
579                 pfl->status |= 0x80;
580             } else if (cmd == 0x01) {
581                 pfl->wcycle = 0;
582                 pfl->status |= 0x80;
583             } else if (cmd == 0xff) {
584                 goto reset_flash;
585             } else {
586                 DPRINTF("%s: Unknown (un)locking command\n", __func__);
587                 goto reset_flash;
588             }
589             break;
590         case 0x98:
591             if (cmd == 0xff) {
592                 goto reset_flash;
593             } else {
594                 DPRINTF("%s: leaving query mode\n", __func__);
595             }
596             break;
597         default:
598             goto error_flash;
599         }
600         break;
601     case 2:
602         switch (pfl->cmd) {
603         case 0xe8: /* Block write */
604             if (!pfl->ro) {
605                 pflash_data_write(pfl, offset, value, width, be);
606             } else {
607                 pfl->status |= 0x10; /* Programming error */
608             }
609 
610             pfl->status |= 0x80;
611 
612             if (!pfl->counter) {
613                 hwaddr mask = pfl->writeblock_size - 1;
614                 mask = ~mask;
615 
616                 DPRINTF("%s: block write finished\n", __func__);
617                 pfl->wcycle++;
618                 if (!pfl->ro) {
619                     /* Flush the entire write buffer onto backing storage.  */
620                     pflash_update(pfl, offset & mask, pfl->writeblock_size);
621                 } else {
622                     pfl->status |= 0x10; /* Programming error */
623                 }
624             }
625 
626             pfl->counter--;
627             break;
628         default:
629             goto error_flash;
630         }
631         break;
632     case 3: /* Confirm mode */
633         switch (pfl->cmd) {
634         case 0xe8: /* Block write */
635             if (cmd == 0xd0) {
636                 pfl->wcycle = 0;
637                 pfl->status |= 0x80;
638             } else {
639                 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
640                 PFLASH_BUG("Write block confirm");
641                 goto reset_flash;
642             }
643             break;
644         default:
645             goto error_flash;
646         }
647         break;
648     default:
649         /* Should never happen */
650         DPRINTF("%s: invalid write state\n",  __func__);
651         goto reset_flash;
652     }
653     return;
654 
655  error_flash:
656     qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
657                   "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
658                   "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
659 
660  reset_flash:
661     memory_region_rom_device_set_romd(&pfl->mem, true);
662 
663     pfl->wcycle = 0;
664     pfl->cmd = 0;
665 }
666 
667 
668 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
669                                               unsigned len, MemTxAttrs attrs)
670 {
671     pflash_t *pfl = opaque;
672     bool be = !!(pfl->features & (1 << PFLASH_BE));
673 
674     if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
675         *value = pflash_data_read(opaque, addr, len, be);
676     } else {
677         *value = pflash_read(opaque, addr, len, be);
678     }
679     return MEMTX_OK;
680 }
681 
682 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
683                                                unsigned len, MemTxAttrs attrs)
684 {
685     pflash_t *pfl = opaque;
686     bool be = !!(pfl->features & (1 << PFLASH_BE));
687 
688     if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
689         return MEMTX_ERROR;
690     } else {
691         pflash_write(opaque, addr, value, len, be);
692         return MEMTX_OK;
693     }
694 }
695 
696 static const MemoryRegionOps pflash_cfi01_ops = {
697     .read_with_attrs = pflash_mem_read_with_attrs,
698     .write_with_attrs = pflash_mem_write_with_attrs,
699     .endianness = DEVICE_NATIVE_ENDIAN,
700 };
701 
702 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
703 {
704     pflash_t *pfl = CFI_PFLASH01(dev);
705     uint64_t total_len;
706     int ret;
707     uint64_t blocks_per_device, device_len;
708     int num_devices;
709     Error *local_err = NULL;
710 
711     total_len = pfl->sector_len * pfl->nb_blocs;
712 
713     /* These are only used to expose the parameters of each device
714      * in the cfi_table[].
715      */
716     num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
717     blocks_per_device = pfl->nb_blocs / num_devices;
718     device_len = pfl->sector_len * blocks_per_device;
719 
720     /* XXX: to be fixed */
721 #if 0
722     if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
723         total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
724         return NULL;
725 #endif
726 
727     memory_region_init_rom_device(
728         &pfl->mem, OBJECT(dev),
729         &pflash_cfi01_ops,
730         pfl,
731         pfl->name, total_len, &local_err);
732     if (local_err) {
733         error_propagate(errp, local_err);
734         return;
735     }
736 
737     vmstate_register_ram(&pfl->mem, DEVICE(pfl));
738     pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
739     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
740 
741     if (pfl->blk) {
742         /* read the initial flash content */
743         ret = blk_pread(pfl->blk, 0, pfl->storage, total_len);
744 
745         if (ret < 0) {
746             vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
747             error_setg(errp, "failed to read the initial flash content");
748             return;
749         }
750     }
751 
752     if (pfl->blk) {
753         pfl->ro = blk_is_read_only(pfl->blk);
754     } else {
755         pfl->ro = 0;
756     }
757 
758     /* Default to devices being used at their maximum device width. This was
759      * assumed before the device_width support was added.
760      */
761     if (!pfl->max_device_width) {
762         pfl->max_device_width = pfl->device_width;
763     }
764 
765     pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
766     pfl->wcycle = 0;
767     pfl->cmd = 0;
768     pfl->status = 0;
769     /* Hardcoded CFI table */
770     pfl->cfi_len = 0x52;
771     /* Standard "QRY" string */
772     pfl->cfi_table[0x10] = 'Q';
773     pfl->cfi_table[0x11] = 'R';
774     pfl->cfi_table[0x12] = 'Y';
775     /* Command set (Intel) */
776     pfl->cfi_table[0x13] = 0x01;
777     pfl->cfi_table[0x14] = 0x00;
778     /* Primary extended table address (none) */
779     pfl->cfi_table[0x15] = 0x31;
780     pfl->cfi_table[0x16] = 0x00;
781     /* Alternate command set (none) */
782     pfl->cfi_table[0x17] = 0x00;
783     pfl->cfi_table[0x18] = 0x00;
784     /* Alternate extended table (none) */
785     pfl->cfi_table[0x19] = 0x00;
786     pfl->cfi_table[0x1A] = 0x00;
787     /* Vcc min */
788     pfl->cfi_table[0x1B] = 0x45;
789     /* Vcc max */
790     pfl->cfi_table[0x1C] = 0x55;
791     /* Vpp min (no Vpp pin) */
792     pfl->cfi_table[0x1D] = 0x00;
793     /* Vpp max (no Vpp pin) */
794     pfl->cfi_table[0x1E] = 0x00;
795     /* Reserved */
796     pfl->cfi_table[0x1F] = 0x07;
797     /* Timeout for min size buffer write */
798     pfl->cfi_table[0x20] = 0x07;
799     /* Typical timeout for block erase */
800     pfl->cfi_table[0x21] = 0x0a;
801     /* Typical timeout for full chip erase (4096 ms) */
802     pfl->cfi_table[0x22] = 0x00;
803     /* Reserved */
804     pfl->cfi_table[0x23] = 0x04;
805     /* Max timeout for buffer write */
806     pfl->cfi_table[0x24] = 0x04;
807     /* Max timeout for block erase */
808     pfl->cfi_table[0x25] = 0x04;
809     /* Max timeout for chip erase */
810     pfl->cfi_table[0x26] = 0x00;
811     /* Device size */
812     pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
813     /* Flash device interface (8 & 16 bits) */
814     pfl->cfi_table[0x28] = 0x02;
815     pfl->cfi_table[0x29] = 0x00;
816     /* Max number of bytes in multi-bytes write */
817     if (pfl->bank_width == 1) {
818         pfl->cfi_table[0x2A] = 0x08;
819     } else {
820         pfl->cfi_table[0x2A] = 0x0B;
821     }
822     pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
823 
824     pfl->cfi_table[0x2B] = 0x00;
825     /* Number of erase block regions (uniform) */
826     pfl->cfi_table[0x2C] = 0x01;
827     /* Erase block region 1 */
828     pfl->cfi_table[0x2D] = blocks_per_device - 1;
829     pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
830     pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
831     pfl->cfi_table[0x30] = pfl->sector_len >> 16;
832 
833     /* Extended */
834     pfl->cfi_table[0x31] = 'P';
835     pfl->cfi_table[0x32] = 'R';
836     pfl->cfi_table[0x33] = 'I';
837 
838     pfl->cfi_table[0x34] = '1';
839     pfl->cfi_table[0x35] = '0';
840 
841     pfl->cfi_table[0x36] = 0x00;
842     pfl->cfi_table[0x37] = 0x00;
843     pfl->cfi_table[0x38] = 0x00;
844     pfl->cfi_table[0x39] = 0x00;
845 
846     pfl->cfi_table[0x3a] = 0x00;
847 
848     pfl->cfi_table[0x3b] = 0x00;
849     pfl->cfi_table[0x3c] = 0x00;
850 
851     pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
852 }
853 
854 static Property pflash_cfi01_properties[] = {
855     DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
856     /* num-blocks is the number of blocks actually visible to the guest,
857      * ie the total size of the device divided by the sector length.
858      * If we're emulating flash devices wired in parallel the actual
859      * number of blocks per indvidual device will differ.
860      */
861     DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
862     DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
863     /* width here is the overall width of this QEMU device in bytes.
864      * The QEMU device may be emulating a number of flash devices
865      * wired up in parallel; the width of each individual flash
866      * device should be specified via device-width. If the individual
867      * devices have a maximum width which is greater than the width
868      * they are being used for, this maximum width should be set via
869      * max-device-width (which otherwise defaults to device-width).
870      * So for instance a 32-bit wide QEMU flash device made from four
871      * 16-bit flash devices used in 8-bit wide mode would be configured
872      * with width = 4, device-width = 1, max-device-width = 2.
873      *
874      * If device-width is not specified we default to backwards
875      * compatible behaviour which is a bad emulation of two
876      * 16 bit devices making up a 32 bit wide QEMU device. This
877      * is deprecated for new uses of this device.
878      */
879     DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
880     DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
881     DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
882     DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
883     DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
884     DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
885     DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
886     DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
887     DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
888     DEFINE_PROP_STRING("name", struct pflash_t, name),
889     DEFINE_PROP_END_OF_LIST(),
890 };
891 
892 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
893 {
894     DeviceClass *dc = DEVICE_CLASS(klass);
895 
896     dc->realize = pflash_cfi01_realize;
897     dc->props = pflash_cfi01_properties;
898     dc->vmsd = &vmstate_pflash;
899     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
900 }
901 
902 
903 static const TypeInfo pflash_cfi01_info = {
904     .name           = TYPE_CFI_PFLASH01,
905     .parent         = TYPE_SYS_BUS_DEVICE,
906     .instance_size  = sizeof(struct pflash_t),
907     .class_init     = pflash_cfi01_class_init,
908 };
909 
910 static void pflash_cfi01_register_types(void)
911 {
912     type_register_static(&pflash_cfi01_info);
913 }
914 
915 type_init(pflash_cfi01_register_types)
916 
917 pflash_t *pflash_cfi01_register(hwaddr base,
918                                 DeviceState *qdev, const char *name,
919                                 hwaddr size,
920                                 BlockBackend *blk,
921                                 uint32_t sector_len, int nb_blocs,
922                                 int bank_width, uint16_t id0, uint16_t id1,
923                                 uint16_t id2, uint16_t id3, int be)
924 {
925     DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
926 
927     if (blk) {
928         qdev_prop_set_drive(dev, "drive", blk, &error_abort);
929     }
930     qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
931     qdev_prop_set_uint64(dev, "sector-length", sector_len);
932     qdev_prop_set_uint8(dev, "width", bank_width);
933     qdev_prop_set_bit(dev, "big-endian", !!be);
934     qdev_prop_set_uint16(dev, "id0", id0);
935     qdev_prop_set_uint16(dev, "id1", id1);
936     qdev_prop_set_uint16(dev, "id2", id2);
937     qdev_prop_set_uint16(dev, "id3", id3);
938     qdev_prop_set_string(dev, "name", name);
939     qdev_init_nofail(dev);
940 
941     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
942     return CFI_PFLASH01(dev);
943 }
944 
945 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
946 {
947     return &fl->mem;
948 }
949 
950 static void postload_update_cb(void *opaque, int running, RunState state)
951 {
952     pflash_t *pfl = opaque;
953 
954     /* This is called after bdrv_invalidate_cache_all.  */
955     qemu_del_vm_change_state_handler(pfl->vmstate);
956     pfl->vmstate = NULL;
957 
958     DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
959     pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
960 }
961 
962 static int pflash_post_load(void *opaque, int version_id)
963 {
964     pflash_t *pfl = opaque;
965 
966     if (!pfl->ro) {
967         pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
968                                                         pfl);
969     }
970     return 0;
971 }
972