xref: /qemu/hw/char/cadence_uart.c (revision ab9056ff)
1 /*
2  * Device model for Cadence UART
3  *
4  * Reference: Xilinx Zynq 7000 reference manual
5  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6  *   - Chapter 19 UART Controller
7  *   - Appendix B for Register details
8  *
9  * Copyright (c) 2010 Xilinx Inc.
10  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11  * Copyright (c) 2012 PetaLogix Pty Ltd.
12  * Written by Haibing Ma
13  *            M.Habib
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "migration/vmstate.h"
27 #include "chardev/char-fe.h"
28 #include "chardev/char-serial.h"
29 #include "qemu/timer.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "hw/char/cadence_uart.h"
33 #include "hw/irq.h"
34 
35 #ifdef CADENCE_UART_ERR_DEBUG
36 #define DB_PRINT(...) do { \
37     fprintf(stderr,  ": %s: ", __func__); \
38     fprintf(stderr, ## __VA_ARGS__); \
39     } while (0)
40 #else
41     #define DB_PRINT(...)
42 #endif
43 
44 #define UART_SR_INTR_RTRIG     0x00000001
45 #define UART_SR_INTR_REMPTY    0x00000002
46 #define UART_SR_INTR_RFUL      0x00000004
47 #define UART_SR_INTR_TEMPTY    0x00000008
48 #define UART_SR_INTR_TFUL      0x00000010
49 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
50 #define UART_SR_TTRIG          0x00002000
51 #define UART_INTR_TTRIG        0x00000400
52 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
53  * SR, then the same bit in CISR is set high too */
54 #define UART_SR_TO_CISR_MASK   0x0000001F
55 
56 #define UART_INTR_ROVR         0x00000020
57 #define UART_INTR_FRAME        0x00000040
58 #define UART_INTR_PARE         0x00000080
59 #define UART_INTR_TIMEOUT      0x00000100
60 #define UART_INTR_DMSI         0x00000200
61 #define UART_INTR_TOVR         0x00001000
62 
63 #define UART_SR_RACTIVE    0x00000400
64 #define UART_SR_TACTIVE    0x00000800
65 #define UART_SR_FDELT      0x00001000
66 
67 #define UART_CR_RXRST       0x00000001
68 #define UART_CR_TXRST       0x00000002
69 #define UART_CR_RX_EN       0x00000004
70 #define UART_CR_RX_DIS      0x00000008
71 #define UART_CR_TX_EN       0x00000010
72 #define UART_CR_TX_DIS      0x00000020
73 #define UART_CR_RST_TO      0x00000040
74 #define UART_CR_STARTBRK    0x00000080
75 #define UART_CR_STOPBRK     0x00000100
76 
77 #define UART_MR_CLKS            0x00000001
78 #define UART_MR_CHRL            0x00000006
79 #define UART_MR_CHRL_SH         1
80 #define UART_MR_PAR             0x00000038
81 #define UART_MR_PAR_SH          3
82 #define UART_MR_NBSTOP          0x000000C0
83 #define UART_MR_NBSTOP_SH       6
84 #define UART_MR_CHMODE          0x00000300
85 #define UART_MR_CHMODE_SH       8
86 #define UART_MR_UCLKEN          0x00000400
87 #define UART_MR_IRMODE          0x00000800
88 
89 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
90 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
91 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
92 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
93 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
94 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
95 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
96 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
97 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
98 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
99 
100 #define UART_INPUT_CLK         50000000
101 
102 #define R_CR       (0x00/4)
103 #define R_MR       (0x04/4)
104 #define R_IER      (0x08/4)
105 #define R_IDR      (0x0C/4)
106 #define R_IMR      (0x10/4)
107 #define R_CISR     (0x14/4)
108 #define R_BRGR     (0x18/4)
109 #define R_RTOR     (0x1C/4)
110 #define R_RTRIG    (0x20/4)
111 #define R_MCR      (0x24/4)
112 #define R_MSR      (0x28/4)
113 #define R_SR       (0x2C/4)
114 #define R_TX_RX    (0x30/4)
115 #define R_BDIV     (0x34/4)
116 #define R_FDEL     (0x38/4)
117 #define R_PMIN     (0x3C/4)
118 #define R_PWID     (0x40/4)
119 #define R_TTRIG    (0x44/4)
120 
121 
122 static void uart_update_status(CadenceUARTState *s)
123 {
124     s->r[R_SR] = 0;
125 
126     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
127                                                            : 0;
128     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
129     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
130 
131     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
132                                                            : 0;
133     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
134     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
135 
136     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
137     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
138     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
139 }
140 
141 static void fifo_trigger_update(void *opaque)
142 {
143     CadenceUARTState *s = opaque;
144 
145     if (s->r[R_RTOR]) {
146         s->r[R_CISR] |= UART_INTR_TIMEOUT;
147         uart_update_status(s);
148     }
149 }
150 
151 static void uart_rx_reset(CadenceUARTState *s)
152 {
153     s->rx_wpos = 0;
154     s->rx_count = 0;
155     qemu_chr_fe_accept_input(&s->chr);
156 }
157 
158 static void uart_tx_reset(CadenceUARTState *s)
159 {
160     s->tx_count = 0;
161 }
162 
163 static void uart_send_breaks(CadenceUARTState *s)
164 {
165     int break_enabled = 1;
166 
167     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
168                       &break_enabled);
169 }
170 
171 static void uart_parameters_setup(CadenceUARTState *s)
172 {
173     QEMUSerialSetParams ssp;
174     unsigned int baud_rate, packet_size;
175 
176     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
177             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
178 
179     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
180     packet_size = 1;
181 
182     switch (s->r[R_MR] & UART_MR_PAR) {
183     case UART_PARITY_EVEN:
184         ssp.parity = 'E';
185         packet_size++;
186         break;
187     case UART_PARITY_ODD:
188         ssp.parity = 'O';
189         packet_size++;
190         break;
191     default:
192         ssp.parity = 'N';
193         break;
194     }
195 
196     switch (s->r[R_MR] & UART_MR_CHRL) {
197     case UART_DATA_BITS_6:
198         ssp.data_bits = 6;
199         break;
200     case UART_DATA_BITS_7:
201         ssp.data_bits = 7;
202         break;
203     default:
204         ssp.data_bits = 8;
205         break;
206     }
207 
208     switch (s->r[R_MR] & UART_MR_NBSTOP) {
209     case UART_STOP_BITS_1:
210         ssp.stop_bits = 1;
211         break;
212     default:
213         ssp.stop_bits = 2;
214         break;
215     }
216 
217     packet_size += ssp.data_bits + ssp.stop_bits;
218     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
219     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
220 }
221 
222 static int uart_can_receive(void *opaque)
223 {
224     CadenceUARTState *s = opaque;
225     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
226     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
227 
228     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
229         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
230     }
231     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
232         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
233     }
234     return ret;
235 }
236 
237 static void uart_ctrl_update(CadenceUARTState *s)
238 {
239     if (s->r[R_CR] & UART_CR_TXRST) {
240         uart_tx_reset(s);
241     }
242 
243     if (s->r[R_CR] & UART_CR_RXRST) {
244         uart_rx_reset(s);
245     }
246 
247     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
248 
249     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
250         uart_send_breaks(s);
251     }
252 }
253 
254 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
255 {
256     CadenceUARTState *s = opaque;
257     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
258     int i;
259 
260     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
261         return;
262     }
263 
264     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
265         s->r[R_CISR] |= UART_INTR_ROVR;
266     } else {
267         for (i = 0; i < size; i++) {
268             s->rx_fifo[s->rx_wpos] = buf[i];
269             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
270             s->rx_count++;
271         }
272         timer_mod(s->fifo_trigger_handle, new_rx_time +
273                                                 (s->char_tx_time * 4));
274     }
275     uart_update_status(s);
276 }
277 
278 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
279                                   void *opaque)
280 {
281     CadenceUARTState *s = opaque;
282     int ret;
283 
284     /* instant drain the fifo when there's no back-end */
285     if (!qemu_chr_fe_backend_connected(&s->chr)) {
286         s->tx_count = 0;
287         return FALSE;
288     }
289 
290     if (!s->tx_count) {
291         return FALSE;
292     }
293 
294     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
295 
296     if (ret >= 0) {
297         s->tx_count -= ret;
298         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
299     }
300 
301     if (s->tx_count) {
302         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
303                                         cadence_uart_xmit, s);
304         if (!r) {
305             s->tx_count = 0;
306             return FALSE;
307         }
308     }
309 
310     uart_update_status(s);
311     return FALSE;
312 }
313 
314 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
315                                int size)
316 {
317     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
318         return;
319     }
320 
321     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
322         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
323         /*
324          * This can only be a guest error via a bad tx fifo register push,
325          * as can_receive() should stop remote loop and echo modes ever getting
326          * us to here.
327          */
328         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
329         s->r[R_CISR] |= UART_INTR_ROVR;
330     }
331 
332     memcpy(s->tx_fifo + s->tx_count, buf, size);
333     s->tx_count += size;
334 
335     cadence_uart_xmit(NULL, G_IO_OUT, s);
336 }
337 
338 static void uart_receive(void *opaque, const uint8_t *buf, int size)
339 {
340     CadenceUARTState *s = opaque;
341     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
342 
343     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
344         uart_write_rx_fifo(opaque, buf, size);
345     }
346     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
347         uart_write_tx_fifo(s, buf, size);
348     }
349 }
350 
351 static void uart_event(void *opaque, int event)
352 {
353     CadenceUARTState *s = opaque;
354     uint8_t buf = '\0';
355 
356     if (event == CHR_EVENT_BREAK) {
357         uart_write_rx_fifo(opaque, &buf, 1);
358     }
359 
360     uart_update_status(s);
361 }
362 
363 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
364 {
365     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
366         return;
367     }
368 
369     if (s->rx_count) {
370         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
371                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
372         *c = s->rx_fifo[rx_rpos];
373         s->rx_count--;
374 
375         qemu_chr_fe_accept_input(&s->chr);
376     } else {
377         *c = 0;
378     }
379 
380     uart_update_status(s);
381 }
382 
383 static void uart_write(void *opaque, hwaddr offset,
384                           uint64_t value, unsigned size)
385 {
386     CadenceUARTState *s = opaque;
387 
388     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
389     offset >>= 2;
390     if (offset >= CADENCE_UART_R_MAX) {
391         return;
392     }
393     switch (offset) {
394     case R_IER: /* ier (wts imr) */
395         s->r[R_IMR] |= value;
396         break;
397     case R_IDR: /* idr (wtc imr) */
398         s->r[R_IMR] &= ~value;
399         break;
400     case R_IMR: /* imr (read only) */
401         break;
402     case R_CISR: /* cisr (wtc) */
403         s->r[R_CISR] &= ~value;
404         break;
405     case R_TX_RX: /* UARTDR */
406         switch (s->r[R_MR] & UART_MR_CHMODE) {
407         case NORMAL_MODE:
408             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
409             break;
410         case LOCAL_LOOPBACK:
411             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
412             break;
413         }
414         break;
415     case R_BRGR: /* Baud rate generator */
416         if (value >= 0x01) {
417             s->r[offset] = value & 0xFFFF;
418         }
419         break;
420     case R_BDIV:    /* Baud rate divider */
421         if (value >= 0x04) {
422             s->r[offset] = value & 0xFF;
423         }
424         break;
425     default:
426         s->r[offset] = value;
427     }
428 
429     switch (offset) {
430     case R_CR:
431         uart_ctrl_update(s);
432         break;
433     case R_MR:
434         uart_parameters_setup(s);
435         break;
436     }
437     uart_update_status(s);
438 }
439 
440 static uint64_t uart_read(void *opaque, hwaddr offset,
441         unsigned size)
442 {
443     CadenceUARTState *s = opaque;
444     uint32_t c = 0;
445 
446     offset >>= 2;
447     if (offset >= CADENCE_UART_R_MAX) {
448         c = 0;
449     } else if (offset == R_TX_RX) {
450         uart_read_rx_fifo(s, &c);
451     } else {
452        c = s->r[offset];
453     }
454 
455     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
456     return c;
457 }
458 
459 static const MemoryRegionOps uart_ops = {
460     .read = uart_read,
461     .write = uart_write,
462     .endianness = DEVICE_NATIVE_ENDIAN,
463 };
464 
465 static void cadence_uart_reset(DeviceState *dev)
466 {
467     CadenceUARTState *s = CADENCE_UART(dev);
468 
469     s->r[R_CR] = 0x00000128;
470     s->r[R_IMR] = 0;
471     s->r[R_CISR] = 0;
472     s->r[R_RTRIG] = 0x00000020;
473     s->r[R_BRGR] = 0x0000028B;
474     s->r[R_BDIV] = 0x0000000F;
475     s->r[R_TTRIG] = 0x00000020;
476 
477     uart_rx_reset(s);
478     uart_tx_reset(s);
479 
480     uart_update_status(s);
481 }
482 
483 static void cadence_uart_realize(DeviceState *dev, Error **errp)
484 {
485     CadenceUARTState *s = CADENCE_UART(dev);
486 
487     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488                                           fifo_trigger_update, s);
489 
490     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
491                              uart_event, NULL, s, NULL, true);
492 }
493 
494 static void cadence_uart_init(Object *obj)
495 {
496     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
497     CadenceUARTState *s = CADENCE_UART(obj);
498 
499     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
500     sysbus_init_mmio(sbd, &s->iomem);
501     sysbus_init_irq(sbd, &s->irq);
502 
503     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
504 }
505 
506 static int cadence_uart_post_load(void *opaque, int version_id)
507 {
508     CadenceUARTState *s = opaque;
509 
510     /* Ensure these two aren't invalid numbers */
511     if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
512         s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
513         /* Value is invalid, abort */
514         return 1;
515     }
516 
517     uart_parameters_setup(s);
518     uart_update_status(s);
519     return 0;
520 }
521 
522 static const VMStateDescription vmstate_cadence_uart = {
523     .name = "cadence_uart",
524     .version_id = 2,
525     .minimum_version_id = 2,
526     .post_load = cadence_uart_post_load,
527     .fields = (VMStateField[]) {
528         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
529         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
530                             CADENCE_UART_RX_FIFO_SIZE),
531         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
532                             CADENCE_UART_TX_FIFO_SIZE),
533         VMSTATE_UINT32(rx_count, CadenceUARTState),
534         VMSTATE_UINT32(tx_count, CadenceUARTState),
535         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
536         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
537         VMSTATE_END_OF_LIST()
538     }
539 };
540 
541 static Property cadence_uart_properties[] = {
542     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
543     DEFINE_PROP_END_OF_LIST(),
544 };
545 
546 static void cadence_uart_class_init(ObjectClass *klass, void *data)
547 {
548     DeviceClass *dc = DEVICE_CLASS(klass);
549 
550     dc->realize = cadence_uart_realize;
551     dc->vmsd = &vmstate_cadence_uart;
552     dc->reset = cadence_uart_reset;
553     dc->props = cadence_uart_properties;
554   }
555 
556 static const TypeInfo cadence_uart_info = {
557     .name          = TYPE_CADENCE_UART,
558     .parent        = TYPE_SYS_BUS_DEVICE,
559     .instance_size = sizeof(CadenceUARTState),
560     .instance_init = cadence_uart_init,
561     .class_init    = cadence_uart_class_init,
562 };
563 
564 static void cadence_uart_register_types(void)
565 {
566     type_register_static(&cadence_uart_info);
567 }
568 
569 type_init(cadence_uart_register_types)
570