xref: /qemu/hw/char/cadence_uart.c (revision abff1abf)
1 /*
2  * Device model for Cadence UART
3  *
4  * Reference: Xilinx Zynq 7000 reference manual
5  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6  *   - Chapter 19 UART Controller
7  *   - Appendix B for Register details
8  *
9  * Copyright (c) 2010 Xilinx Inc.
10  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11  * Copyright (c) 2012 PetaLogix Pty Ltd.
12  * Written by Haibing Ma
13  *            M.Habib
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "migration/vmstate.h"
27 #include "chardev/char-fe.h"
28 #include "chardev/char-serial.h"
29 #include "qemu/timer.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "hw/char/cadence_uart.h"
33 #include "hw/irq.h"
34 #include "hw/qdev-clock.h"
35 #include "trace.h"
36 
37 #ifdef CADENCE_UART_ERR_DEBUG
38 #define DB_PRINT(...) do { \
39     fprintf(stderr,  ": %s: ", __func__); \
40     fprintf(stderr, ## __VA_ARGS__); \
41     } while (0)
42 #else
43     #define DB_PRINT(...)
44 #endif
45 
46 #define UART_SR_INTR_RTRIG     0x00000001
47 #define UART_SR_INTR_REMPTY    0x00000002
48 #define UART_SR_INTR_RFUL      0x00000004
49 #define UART_SR_INTR_TEMPTY    0x00000008
50 #define UART_SR_INTR_TFUL      0x00000010
51 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
52 #define UART_SR_TTRIG          0x00002000
53 #define UART_INTR_TTRIG        0x00000400
54 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
55  * SR, then the same bit in CISR is set high too */
56 #define UART_SR_TO_CISR_MASK   0x0000001F
57 
58 #define UART_INTR_ROVR         0x00000020
59 #define UART_INTR_FRAME        0x00000040
60 #define UART_INTR_PARE         0x00000080
61 #define UART_INTR_TIMEOUT      0x00000100
62 #define UART_INTR_DMSI         0x00000200
63 #define UART_INTR_TOVR         0x00001000
64 
65 #define UART_SR_RACTIVE    0x00000400
66 #define UART_SR_TACTIVE    0x00000800
67 #define UART_SR_FDELT      0x00001000
68 
69 #define UART_CR_RXRST       0x00000001
70 #define UART_CR_TXRST       0x00000002
71 #define UART_CR_RX_EN       0x00000004
72 #define UART_CR_RX_DIS      0x00000008
73 #define UART_CR_TX_EN       0x00000010
74 #define UART_CR_TX_DIS      0x00000020
75 #define UART_CR_RST_TO      0x00000040
76 #define UART_CR_STARTBRK    0x00000080
77 #define UART_CR_STOPBRK     0x00000100
78 
79 #define UART_MR_CLKS            0x00000001
80 #define UART_MR_CHRL            0x00000006
81 #define UART_MR_CHRL_SH         1
82 #define UART_MR_PAR             0x00000038
83 #define UART_MR_PAR_SH          3
84 #define UART_MR_NBSTOP          0x000000C0
85 #define UART_MR_NBSTOP_SH       6
86 #define UART_MR_CHMODE          0x00000300
87 #define UART_MR_CHMODE_SH       8
88 #define UART_MR_UCLKEN          0x00000400
89 #define UART_MR_IRMODE          0x00000800
90 
91 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
92 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
93 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
94 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
95 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
96 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
97 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
98 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
99 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
100 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
101 
102 #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
103 
104 #define R_CR       (0x00/4)
105 #define R_MR       (0x04/4)
106 #define R_IER      (0x08/4)
107 #define R_IDR      (0x0C/4)
108 #define R_IMR      (0x10/4)
109 #define R_CISR     (0x14/4)
110 #define R_BRGR     (0x18/4)
111 #define R_RTOR     (0x1C/4)
112 #define R_RTRIG    (0x20/4)
113 #define R_MCR      (0x24/4)
114 #define R_MSR      (0x28/4)
115 #define R_SR       (0x2C/4)
116 #define R_TX_RX    (0x30/4)
117 #define R_BDIV     (0x34/4)
118 #define R_FDEL     (0x38/4)
119 #define R_PMIN     (0x3C/4)
120 #define R_PWID     (0x40/4)
121 #define R_TTRIG    (0x44/4)
122 
123 
124 static void uart_update_status(CadenceUARTState *s)
125 {
126     s->r[R_SR] = 0;
127 
128     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
129                                                            : 0;
130     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
131     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
132 
133     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
134                                                            : 0;
135     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
136     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
137 
138     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
139     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
140     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
141 }
142 
143 static void fifo_trigger_update(void *opaque)
144 {
145     CadenceUARTState *s = opaque;
146 
147     if (s->r[R_RTOR]) {
148         s->r[R_CISR] |= UART_INTR_TIMEOUT;
149         uart_update_status(s);
150     }
151 }
152 
153 static void uart_rx_reset(CadenceUARTState *s)
154 {
155     s->rx_wpos = 0;
156     s->rx_count = 0;
157     qemu_chr_fe_accept_input(&s->chr);
158 }
159 
160 static void uart_tx_reset(CadenceUARTState *s)
161 {
162     s->tx_count = 0;
163 }
164 
165 static void uart_send_breaks(CadenceUARTState *s)
166 {
167     int break_enabled = 1;
168 
169     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
170                       &break_enabled);
171 }
172 
173 static void uart_parameters_setup(CadenceUARTState *s)
174 {
175     QEMUSerialSetParams ssp;
176     unsigned int baud_rate, packet_size, input_clk;
177     input_clk = clock_get_hz(s->refclk);
178 
179     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
180     baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
181     trace_cadence_uart_baudrate(baud_rate);
182 
183     ssp.speed = baud_rate;
184 
185     packet_size = 1;
186 
187     switch (s->r[R_MR] & UART_MR_PAR) {
188     case UART_PARITY_EVEN:
189         ssp.parity = 'E';
190         packet_size++;
191         break;
192     case UART_PARITY_ODD:
193         ssp.parity = 'O';
194         packet_size++;
195         break;
196     default:
197         ssp.parity = 'N';
198         break;
199     }
200 
201     switch (s->r[R_MR] & UART_MR_CHRL) {
202     case UART_DATA_BITS_6:
203         ssp.data_bits = 6;
204         break;
205     case UART_DATA_BITS_7:
206         ssp.data_bits = 7;
207         break;
208     default:
209         ssp.data_bits = 8;
210         break;
211     }
212 
213     switch (s->r[R_MR] & UART_MR_NBSTOP) {
214     case UART_STOP_BITS_1:
215         ssp.stop_bits = 1;
216         break;
217     default:
218         ssp.stop_bits = 2;
219         break;
220     }
221 
222     packet_size += ssp.data_bits + ssp.stop_bits;
223     if (ssp.speed == 0) {
224         /*
225          * Avoid division-by-zero below.
226          * TODO: find something better
227          */
228         ssp.speed = 1;
229     }
230     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
231     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
232 }
233 
234 static int uart_can_receive(void *opaque)
235 {
236     CadenceUARTState *s = opaque;
237     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
238     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
239 
240     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
241         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
242     }
243     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
244         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
245     }
246     return ret;
247 }
248 
249 static void uart_ctrl_update(CadenceUARTState *s)
250 {
251     if (s->r[R_CR] & UART_CR_TXRST) {
252         uart_tx_reset(s);
253     }
254 
255     if (s->r[R_CR] & UART_CR_RXRST) {
256         uart_rx_reset(s);
257     }
258 
259     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
260 
261     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
262         uart_send_breaks(s);
263     }
264 }
265 
266 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
267 {
268     CadenceUARTState *s = opaque;
269     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
270     int i;
271 
272     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
273         return;
274     }
275 
276     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
277         s->r[R_CISR] |= UART_INTR_ROVR;
278     } else {
279         for (i = 0; i < size; i++) {
280             s->rx_fifo[s->rx_wpos] = buf[i];
281             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
282             s->rx_count++;
283         }
284         timer_mod(s->fifo_trigger_handle, new_rx_time +
285                                                 (s->char_tx_time * 4));
286     }
287     uart_update_status(s);
288 }
289 
290 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
291                                   void *opaque)
292 {
293     CadenceUARTState *s = opaque;
294     int ret;
295 
296     /* instant drain the fifo when there's no back-end */
297     if (!qemu_chr_fe_backend_connected(&s->chr)) {
298         s->tx_count = 0;
299         return FALSE;
300     }
301 
302     if (!s->tx_count) {
303         return FALSE;
304     }
305 
306     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
307 
308     if (ret >= 0) {
309         s->tx_count -= ret;
310         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
311     }
312 
313     if (s->tx_count) {
314         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
315                                         cadence_uart_xmit, s);
316         if (!r) {
317             s->tx_count = 0;
318             return FALSE;
319         }
320     }
321 
322     uart_update_status(s);
323     return FALSE;
324 }
325 
326 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
327                                int size)
328 {
329     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
330         return;
331     }
332 
333     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
334         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
335         /*
336          * This can only be a guest error via a bad tx fifo register push,
337          * as can_receive() should stop remote loop and echo modes ever getting
338          * us to here.
339          */
340         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
341         s->r[R_CISR] |= UART_INTR_ROVR;
342     }
343 
344     memcpy(s->tx_fifo + s->tx_count, buf, size);
345     s->tx_count += size;
346 
347     cadence_uart_xmit(NULL, G_IO_OUT, s);
348 }
349 
350 static void uart_receive(void *opaque, const uint8_t *buf, int size)
351 {
352     CadenceUARTState *s = opaque;
353     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
354 
355     /* ignore characters when unclocked or in reset */
356     if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
357         return;
358     }
359 
360     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
361         uart_write_rx_fifo(opaque, buf, size);
362     }
363     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
364         uart_write_tx_fifo(s, buf, size);
365     }
366 }
367 
368 static void uart_event(void *opaque, QEMUChrEvent event)
369 {
370     CadenceUARTState *s = opaque;
371     uint8_t buf = '\0';
372 
373     /* ignore characters when unclocked or in reset */
374     if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
375         return;
376     }
377 
378     if (event == CHR_EVENT_BREAK) {
379         uart_write_rx_fifo(opaque, &buf, 1);
380     }
381 
382     uart_update_status(s);
383 }
384 
385 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
386 {
387     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
388         return;
389     }
390 
391     if (s->rx_count) {
392         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
393                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
394         *c = s->rx_fifo[rx_rpos];
395         s->rx_count--;
396 
397         qemu_chr_fe_accept_input(&s->chr);
398     } else {
399         *c = 0;
400     }
401 
402     uart_update_status(s);
403 }
404 
405 static void uart_write(void *opaque, hwaddr offset,
406                           uint64_t value, unsigned size)
407 {
408     CadenceUARTState *s = opaque;
409 
410     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
411     offset >>= 2;
412     if (offset >= CADENCE_UART_R_MAX) {
413         return;
414     }
415     switch (offset) {
416     case R_IER: /* ier (wts imr) */
417         s->r[R_IMR] |= value;
418         break;
419     case R_IDR: /* idr (wtc imr) */
420         s->r[R_IMR] &= ~value;
421         break;
422     case R_IMR: /* imr (read only) */
423         break;
424     case R_CISR: /* cisr (wtc) */
425         s->r[R_CISR] &= ~value;
426         break;
427     case R_TX_RX: /* UARTDR */
428         switch (s->r[R_MR] & UART_MR_CHMODE) {
429         case NORMAL_MODE:
430             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
431             break;
432         case LOCAL_LOOPBACK:
433             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
434             break;
435         }
436         break;
437     case R_BRGR: /* Baud rate generator */
438         if (value >= 0x01) {
439             s->r[offset] = value & 0xFFFF;
440         }
441         break;
442     case R_BDIV:    /* Baud rate divider */
443         if (value >= 0x04) {
444             s->r[offset] = value & 0xFF;
445         }
446         break;
447     default:
448         s->r[offset] = value;
449     }
450 
451     switch (offset) {
452     case R_CR:
453         uart_ctrl_update(s);
454         break;
455     case R_MR:
456         uart_parameters_setup(s);
457         break;
458     }
459     uart_update_status(s);
460 }
461 
462 static uint64_t uart_read(void *opaque, hwaddr offset,
463         unsigned size)
464 {
465     CadenceUARTState *s = opaque;
466     uint32_t c = 0;
467 
468     offset >>= 2;
469     if (offset >= CADENCE_UART_R_MAX) {
470         c = 0;
471     } else if (offset == R_TX_RX) {
472         uart_read_rx_fifo(s, &c);
473     } else {
474        c = s->r[offset];
475     }
476 
477     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
478     return c;
479 }
480 
481 static const MemoryRegionOps uart_ops = {
482     .read = uart_read,
483     .write = uart_write,
484     .endianness = DEVICE_NATIVE_ENDIAN,
485 };
486 
487 static void cadence_uart_reset_init(Object *obj, ResetType type)
488 {
489     CadenceUARTState *s = CADENCE_UART(obj);
490 
491     s->r[R_CR] = 0x00000128;
492     s->r[R_IMR] = 0;
493     s->r[R_CISR] = 0;
494     s->r[R_RTRIG] = 0x00000020;
495     s->r[R_BRGR] = 0x0000028B;
496     s->r[R_BDIV] = 0x0000000F;
497     s->r[R_TTRIG] = 0x00000020;
498 }
499 
500 static void cadence_uart_reset_hold(Object *obj)
501 {
502     CadenceUARTState *s = CADENCE_UART(obj);
503 
504     uart_rx_reset(s);
505     uart_tx_reset(s);
506 
507     uart_update_status(s);
508 }
509 
510 static void cadence_uart_realize(DeviceState *dev, Error **errp)
511 {
512     CadenceUARTState *s = CADENCE_UART(dev);
513 
514     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
515                                           fifo_trigger_update, s);
516 
517     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
518                              uart_event, NULL, s, NULL, true);
519 }
520 
521 static void cadence_uart_refclk_update(void *opaque)
522 {
523     CadenceUARTState *s = opaque;
524 
525     /* recompute uart's speed on clock change */
526     uart_parameters_setup(s);
527 }
528 
529 static void cadence_uart_init(Object *obj)
530 {
531     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
532     CadenceUARTState *s = CADENCE_UART(obj);
533 
534     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
535     sysbus_init_mmio(sbd, &s->iomem);
536     sysbus_init_irq(sbd, &s->irq);
537 
538     s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
539             cadence_uart_refclk_update, s);
540     /* initialize the frequency in case the clock remains unconnected */
541     clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
542 
543     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
544 }
545 
546 static int cadence_uart_pre_load(void *opaque)
547 {
548     CadenceUARTState *s = opaque;
549 
550     /* the frequency will be overriden if the refclk field is present */
551     clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
552     return 0;
553 }
554 
555 static int cadence_uart_post_load(void *opaque, int version_id)
556 {
557     CadenceUARTState *s = opaque;
558 
559     /* Ensure these two aren't invalid numbers */
560     if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
561         s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
562         /* Value is invalid, abort */
563         return 1;
564     }
565 
566     uart_parameters_setup(s);
567     uart_update_status(s);
568     return 0;
569 }
570 
571 static const VMStateDescription vmstate_cadence_uart = {
572     .name = "cadence_uart",
573     .version_id = 3,
574     .minimum_version_id = 2,
575     .pre_load = cadence_uart_pre_load,
576     .post_load = cadence_uart_post_load,
577     .fields = (VMStateField[]) {
578         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
579         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
580                             CADENCE_UART_RX_FIFO_SIZE),
581         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
582                             CADENCE_UART_TX_FIFO_SIZE),
583         VMSTATE_UINT32(rx_count, CadenceUARTState),
584         VMSTATE_UINT32(tx_count, CadenceUARTState),
585         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
586         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
587         VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
588         VMSTATE_END_OF_LIST()
589     },
590 };
591 
592 static Property cadence_uart_properties[] = {
593     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
594     DEFINE_PROP_END_OF_LIST(),
595 };
596 
597 static void cadence_uart_class_init(ObjectClass *klass, void *data)
598 {
599     DeviceClass *dc = DEVICE_CLASS(klass);
600     ResettableClass *rc = RESETTABLE_CLASS(klass);
601 
602     dc->realize = cadence_uart_realize;
603     dc->vmsd = &vmstate_cadence_uart;
604     rc->phases.enter = cadence_uart_reset_init;
605     rc->phases.hold  = cadence_uart_reset_hold;
606     device_class_set_props(dc, cadence_uart_properties);
607   }
608 
609 static const TypeInfo cadence_uart_info = {
610     .name          = TYPE_CADENCE_UART,
611     .parent        = TYPE_SYS_BUS_DEVICE,
612     .instance_size = sizeof(CadenceUARTState),
613     .instance_init = cadence_uart_init,
614     .class_init    = cadence_uart_class_init,
615 };
616 
617 static void cadence_uart_register_types(void)
618 {
619     type_register_static(&cadence_uart_info);
620 }
621 
622 type_init(cadence_uart_register_types)
623