xref: /qemu/hw/char/cadence_uart.c (revision d072cdf3)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22 
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25     fprintf(stderr,  ": %s: ", __func__); \
26     fprintf(stderr, ## __VA_ARGS__); \
27     } while (0);
28 #else
29     #define DB_PRINT(...)
30 #endif
31 
32 #define UART_SR_INTR_RTRIG     0x00000001
33 #define UART_SR_INTR_REMPTY    0x00000002
34 #define UART_SR_INTR_RFUL      0x00000004
35 #define UART_SR_INTR_TEMPTY    0x00000008
36 #define UART_SR_INTR_TFUL      0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG          0x00002000
39 #define UART_INTR_TTRIG        0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41  * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK   0x0000001F
43 
44 #define UART_INTR_ROVR         0x00000020
45 #define UART_INTR_FRAME        0x00000040
46 #define UART_INTR_PARE         0x00000080
47 #define UART_INTR_TIMEOUT      0x00000100
48 #define UART_INTR_DMSI         0x00000200
49 #define UART_INTR_TOVR         0x00001000
50 
51 #define UART_SR_RACTIVE    0x00000400
52 #define UART_SR_TACTIVE    0x00000800
53 #define UART_SR_FDELT      0x00001000
54 
55 #define UART_CR_RXRST       0x00000001
56 #define UART_CR_TXRST       0x00000002
57 #define UART_CR_RX_EN       0x00000004
58 #define UART_CR_RX_DIS      0x00000008
59 #define UART_CR_TX_EN       0x00000010
60 #define UART_CR_TX_DIS      0x00000020
61 #define UART_CR_RST_TO      0x00000040
62 #define UART_CR_STARTBRK    0x00000080
63 #define UART_CR_STOPBRK     0x00000100
64 
65 #define UART_MR_CLKS            0x00000001
66 #define UART_MR_CHRL            0x00000006
67 #define UART_MR_CHRL_SH         1
68 #define UART_MR_PAR             0x00000038
69 #define UART_MR_PAR_SH          3
70 #define UART_MR_NBSTOP          0x000000C0
71 #define UART_MR_NBSTOP_SH       6
72 #define UART_MR_CHMODE          0x00000300
73 #define UART_MR_CHMODE_SH       8
74 #define UART_MR_UCLKEN          0x00000400
75 #define UART_MR_IRMODE          0x00000800
76 
77 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
87 
88 #define RX_FIFO_SIZE           16
89 #define TX_FIFO_SIZE           16
90 #define UART_INPUT_CLK         50000000
91 
92 #define R_CR       (0x00/4)
93 #define R_MR       (0x04/4)
94 #define R_IER      (0x08/4)
95 #define R_IDR      (0x0C/4)
96 #define R_IMR      (0x10/4)
97 #define R_CISR     (0x14/4)
98 #define R_BRGR     (0x18/4)
99 #define R_RTOR     (0x1C/4)
100 #define R_RTRIG    (0x20/4)
101 #define R_MCR      (0x24/4)
102 #define R_MSR      (0x28/4)
103 #define R_SR       (0x2C/4)
104 #define R_TX_RX    (0x30/4)
105 #define R_BDIV     (0x34/4)
106 #define R_FDEL     (0x38/4)
107 #define R_PMIN     (0x3C/4)
108 #define R_PWID     (0x40/4)
109 #define R_TTRIG    (0x44/4)
110 
111 #define R_MAX (R_TTRIG + 1)
112 
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
115 
116 typedef struct {
117     /*< private >*/
118     SysBusDevice parent_obj;
119     /*< public >*/
120 
121     MemoryRegion iomem;
122     uint32_t r[R_MAX];
123     uint8_t rx_fifo[RX_FIFO_SIZE];
124     uint8_t tx_fifo[TX_FIFO_SIZE];
125     uint32_t rx_wpos;
126     uint32_t rx_count;
127     uint32_t tx_count;
128     uint64_t char_tx_time;
129     CharDriverState *chr;
130     qemu_irq irq;
131     QEMUTimer *fifo_trigger_handle;
132 } UartState;
133 
134 static void uart_update_status(UartState *s)
135 {
136     s->r[R_SR] = 0;
137 
138     s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
139     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
140     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
141 
142     s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
143     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
144     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
145 
146     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
149 }
150 
151 static void fifo_trigger_update(void *opaque)
152 {
153     UartState *s = (UartState *)opaque;
154 
155     s->r[R_CISR] |= UART_INTR_TIMEOUT;
156 
157     uart_update_status(s);
158 }
159 
160 static void uart_rx_reset(UartState *s)
161 {
162     s->rx_wpos = 0;
163     s->rx_count = 0;
164     if (s->chr) {
165         qemu_chr_accept_input(s->chr);
166     }
167 }
168 
169 static void uart_tx_reset(UartState *s)
170 {
171     s->tx_count = 0;
172 }
173 
174 static void uart_send_breaks(UartState *s)
175 {
176     int break_enabled = 1;
177 
178     if (s->chr) {
179         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
180                                    &break_enabled);
181     }
182 }
183 
184 static void uart_parameters_setup(UartState *s)
185 {
186     QEMUSerialSetParams ssp;
187     unsigned int baud_rate, packet_size;
188 
189     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
190             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
191 
192     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
193     packet_size = 1;
194 
195     switch (s->r[R_MR] & UART_MR_PAR) {
196     case UART_PARITY_EVEN:
197         ssp.parity = 'E';
198         packet_size++;
199         break;
200     case UART_PARITY_ODD:
201         ssp.parity = 'O';
202         packet_size++;
203         break;
204     default:
205         ssp.parity = 'N';
206         break;
207     }
208 
209     switch (s->r[R_MR] & UART_MR_CHRL) {
210     case UART_DATA_BITS_6:
211         ssp.data_bits = 6;
212         break;
213     case UART_DATA_BITS_7:
214         ssp.data_bits = 7;
215         break;
216     default:
217         ssp.data_bits = 8;
218         break;
219     }
220 
221     switch (s->r[R_MR] & UART_MR_NBSTOP) {
222     case UART_STOP_BITS_1:
223         ssp.stop_bits = 1;
224         break;
225     default:
226         ssp.stop_bits = 2;
227         break;
228     }
229 
230     packet_size += ssp.data_bits + ssp.stop_bits;
231     s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
232     if (s->chr) {
233         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
234     }
235 }
236 
237 static int uart_can_receive(void *opaque)
238 {
239     UartState *s = (UartState *)opaque;
240     int ret = MAX(RX_FIFO_SIZE, TX_FIFO_SIZE);
241     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
242 
243     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
244         ret = MIN(ret, RX_FIFO_SIZE - s->rx_count);
245     }
246     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
247         ret = MIN(ret, TX_FIFO_SIZE - s->tx_count);
248     }
249     return ret;
250 }
251 
252 static void uart_ctrl_update(UartState *s)
253 {
254     if (s->r[R_CR] & UART_CR_TXRST) {
255         uart_tx_reset(s);
256     }
257 
258     if (s->r[R_CR] & UART_CR_RXRST) {
259         uart_rx_reset(s);
260     }
261 
262     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
263 
264     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
265         uart_send_breaks(s);
266     }
267 }
268 
269 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
270 {
271     UartState *s = (UartState *)opaque;
272     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
273     int i;
274 
275     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
276         return;
277     }
278 
279     if (s->rx_count == RX_FIFO_SIZE) {
280         s->r[R_CISR] |= UART_INTR_ROVR;
281     } else {
282         for (i = 0; i < size; i++) {
283             s->rx_fifo[s->rx_wpos] = buf[i];
284             s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
285             s->rx_count++;
286         }
287         timer_mod(s->fifo_trigger_handle, new_rx_time +
288                                                 (s->char_tx_time * 4));
289     }
290     uart_update_status(s);
291 }
292 
293 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
294                                   void *opaque)
295 {
296     UartState *s = opaque;
297     int ret;
298 
299     /* instant drain the fifo when there's no back-end */
300     if (!s->chr) {
301         s->tx_count = 0;
302         return FALSE;
303     }
304 
305     if (!s->tx_count) {
306         return FALSE;
307     }
308 
309     ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
310     s->tx_count -= ret;
311     memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
312 
313     if (s->tx_count) {
314         int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
315                                       cadence_uart_xmit, s);
316         assert(r);
317     }
318 
319     uart_update_status(s);
320     return FALSE;
321 }
322 
323 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
324 {
325     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
326         return;
327     }
328 
329     if (size > TX_FIFO_SIZE - s->tx_count) {
330         size = TX_FIFO_SIZE - s->tx_count;
331         /*
332          * This can only be a guest error via a bad tx fifo register push,
333          * as can_receive() should stop remote loop and echo modes ever getting
334          * us to here.
335          */
336         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
337         s->r[R_CISR] |= UART_INTR_ROVR;
338     }
339 
340     memcpy(s->tx_fifo + s->tx_count, buf, size);
341     s->tx_count += size;
342 
343     cadence_uart_xmit(NULL, G_IO_OUT, s);
344 }
345 
346 static void uart_receive(void *opaque, const uint8_t *buf, int size)
347 {
348     UartState *s = (UartState *)opaque;
349     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
350 
351     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
352         uart_write_rx_fifo(opaque, buf, size);
353     }
354     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
355         uart_write_tx_fifo(s, buf, size);
356     }
357 }
358 
359 static void uart_event(void *opaque, int event)
360 {
361     UartState *s = (UartState *)opaque;
362     uint8_t buf = '\0';
363 
364     if (event == CHR_EVENT_BREAK) {
365         uart_write_rx_fifo(opaque, &buf, 1);
366     }
367 
368     uart_update_status(s);
369 }
370 
371 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
372 {
373     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
374         return;
375     }
376 
377     if (s->rx_count) {
378         uint32_t rx_rpos =
379                 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
380         *c = s->rx_fifo[rx_rpos];
381         s->rx_count--;
382 
383         if (s->chr) {
384             qemu_chr_accept_input(s->chr);
385         }
386     } else {
387         *c = 0;
388     }
389 
390     uart_update_status(s);
391 }
392 
393 static void uart_write(void *opaque, hwaddr offset,
394                           uint64_t value, unsigned size)
395 {
396     UartState *s = (UartState *)opaque;
397 
398     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
399     offset >>= 2;
400     switch (offset) {
401     case R_IER: /* ier (wts imr) */
402         s->r[R_IMR] |= value;
403         break;
404     case R_IDR: /* idr (wtc imr) */
405         s->r[R_IMR] &= ~value;
406         break;
407     case R_IMR: /* imr (read only) */
408         break;
409     case R_CISR: /* cisr (wtc) */
410         s->r[R_CISR] &= ~value;
411         break;
412     case R_TX_RX: /* UARTDR */
413         switch (s->r[R_MR] & UART_MR_CHMODE) {
414         case NORMAL_MODE:
415             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
416             break;
417         case LOCAL_LOOPBACK:
418             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
419             break;
420         }
421         break;
422     default:
423         s->r[offset] = value;
424     }
425 
426     switch (offset) {
427     case R_CR:
428         uart_ctrl_update(s);
429         break;
430     case R_MR:
431         uart_parameters_setup(s);
432         break;
433     }
434     uart_update_status(s);
435 }
436 
437 static uint64_t uart_read(void *opaque, hwaddr offset,
438         unsigned size)
439 {
440     UartState *s = (UartState *)opaque;
441     uint32_t c = 0;
442 
443     offset >>= 2;
444     if (offset >= R_MAX) {
445         c = 0;
446     } else if (offset == R_TX_RX) {
447         uart_read_rx_fifo(s, &c);
448     } else {
449        c = s->r[offset];
450     }
451 
452     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
453     return c;
454 }
455 
456 static const MemoryRegionOps uart_ops = {
457     .read = uart_read,
458     .write = uart_write,
459     .endianness = DEVICE_NATIVE_ENDIAN,
460 };
461 
462 static void cadence_uart_reset(DeviceState *dev)
463 {
464     UartState *s = CADENCE_UART(dev);
465 
466     s->r[R_CR] = 0x00000128;
467     s->r[R_IMR] = 0;
468     s->r[R_CISR] = 0;
469     s->r[R_RTRIG] = 0x00000020;
470     s->r[R_BRGR] = 0x0000000F;
471     s->r[R_TTRIG] = 0x00000020;
472 
473     uart_rx_reset(s);
474     uart_tx_reset(s);
475 
476     uart_update_status(s);
477 }
478 
479 static int cadence_uart_init(SysBusDevice *dev)
480 {
481     UartState *s = CADENCE_UART(dev);
482 
483     memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
484     sysbus_init_mmio(dev, &s->iomem);
485     sysbus_init_irq(dev, &s->irq);
486 
487     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488             (QEMUTimerCB *)fifo_trigger_update, s);
489 
490     s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
491 
492     s->chr = qemu_char_get_next_serial();
493 
494     if (s->chr) {
495         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
496                               uart_event, s);
497     }
498 
499     return 0;
500 }
501 
502 static int cadence_uart_post_load(void *opaque, int version_id)
503 {
504     UartState *s = opaque;
505 
506     uart_parameters_setup(s);
507     uart_update_status(s);
508     return 0;
509 }
510 
511 static const VMStateDescription vmstate_cadence_uart = {
512     .name = "cadence_uart",
513     .version_id = 2,
514     .minimum_version_id = 2,
515     .post_load = cadence_uart_post_load,
516     .fields = (VMStateField[]) {
517         VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
518         VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
519         VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
520         VMSTATE_UINT32(rx_count, UartState),
521         VMSTATE_UINT32(tx_count, UartState),
522         VMSTATE_UINT32(rx_wpos, UartState),
523         VMSTATE_TIMER(fifo_trigger_handle, UartState),
524         VMSTATE_END_OF_LIST()
525     }
526 };
527 
528 static void cadence_uart_class_init(ObjectClass *klass, void *data)
529 {
530     DeviceClass *dc = DEVICE_CLASS(klass);
531     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
532 
533     sdc->init = cadence_uart_init;
534     dc->vmsd = &vmstate_cadence_uart;
535     dc->reset = cadence_uart_reset;
536 }
537 
538 static const TypeInfo cadence_uart_info = {
539     .name          = TYPE_CADENCE_UART,
540     .parent        = TYPE_SYS_BUS_DEVICE,
541     .instance_size = sizeof(UartState),
542     .class_init    = cadence_uart_class_init,
543 };
544 
545 static void cadence_uart_register_types(void)
546 {
547     type_register_static(&cadence_uart_info);
548 }
549 
550 type_init(cadence_uart_register_types)
551