xref: /qemu/hw/char/escc.c (revision 7a4e543d)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "sysemu/char.h"
30 #include "ui/console.h"
31 #include "ui/input.h"
32 #include "trace.h"
33 
34 /*
35  * Chipset docs:
36  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
37  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
38  *
39  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
40  * (Slave I/O), also produced as NCR89C105. See
41  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42  *
43  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
44  * mouse and keyboard ports don't implement all functions and they are
45  * only asynchronous. There is no DMA.
46  *
47  * Z85C30 is also used on PowerMacs. There are some small differences
48  * between Sparc version (sunzilog) and PowerMac (pmac):
49  *  Offset between control and data registers
50  *  There is some kind of lockup bug, but we can ignore it
51  *  CTS is inverted
52  *  DMA on pmac using DBDMA chip
53  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
54  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
55  */
56 
57 /*
58  * Modifications:
59  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
60  *                                  serial mouse queue.
61  *                                  Implemented serial mouse protocol.
62  *
63  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
64  */
65 
66 typedef enum {
67     chn_a, chn_b,
68 } ChnID;
69 
70 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
71 
72 typedef enum {
73     ser, kbd, mouse,
74 } ChnType;
75 
76 #define SERIO_QUEUE_SIZE 256
77 
78 typedef struct {
79     uint8_t data[SERIO_QUEUE_SIZE];
80     int rptr, wptr, count;
81 } SERIOQueue;
82 
83 #define SERIAL_REGS 16
84 typedef struct ChannelState {
85     qemu_irq irq;
86     uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
87     struct ChannelState *otherchn;
88     uint32_t reg;
89     uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
90     SERIOQueue queue;
91     CharDriverState *chr;
92     int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
93     int disabled;
94     int clock;
95     uint32_t vmstate_dummy;
96     ChnID chn; // this channel, A (base+4) or B (base+0)
97     ChnType type;
98     uint8_t rx, tx;
99     QemuInputHandlerState *hs;
100 } ChannelState;
101 
102 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
103 
104 typedef struct ESCCState {
105     SysBusDevice parent_obj;
106 
107     struct ChannelState chn[2];
108     uint32_t it_shift;
109     MemoryRegion mmio;
110     uint32_t disabled;
111     uint32_t frequency;
112 } ESCCState;
113 
114 #define SERIAL_CTRL 0
115 #define SERIAL_DATA 1
116 
117 #define W_CMD     0
118 #define CMD_PTR_MASK   0x07
119 #define CMD_CMD_MASK   0x38
120 #define CMD_HI         0x08
121 #define CMD_CLR_TXINT  0x28
122 #define CMD_CLR_IUS    0x38
123 #define W_INTR    1
124 #define INTR_INTALL    0x01
125 #define INTR_TXINT     0x02
126 #define INTR_RXMODEMSK 0x18
127 #define INTR_RXINT1ST  0x08
128 #define INTR_RXINTALL  0x10
129 #define W_IVEC    2
130 #define W_RXCTRL  3
131 #define RXCTRL_RXEN    0x01
132 #define W_TXCTRL1 4
133 #define TXCTRL1_PAREN  0x01
134 #define TXCTRL1_PAREV  0x02
135 #define TXCTRL1_1STOP  0x04
136 #define TXCTRL1_1HSTOP 0x08
137 #define TXCTRL1_2STOP  0x0c
138 #define TXCTRL1_STPMSK 0x0c
139 #define TXCTRL1_CLK1X  0x00
140 #define TXCTRL1_CLK16X 0x40
141 #define TXCTRL1_CLK32X 0x80
142 #define TXCTRL1_CLK64X 0xc0
143 #define TXCTRL1_CLKMSK 0xc0
144 #define W_TXCTRL2 5
145 #define TXCTRL2_TXEN   0x08
146 #define TXCTRL2_BITMSK 0x60
147 #define TXCTRL2_5BITS  0x00
148 #define TXCTRL2_7BITS  0x20
149 #define TXCTRL2_6BITS  0x40
150 #define TXCTRL2_8BITS  0x60
151 #define W_SYNC1   6
152 #define W_SYNC2   7
153 #define W_TXBUF   8
154 #define W_MINTR   9
155 #define MINTR_STATUSHI 0x10
156 #define MINTR_RST_MASK 0xc0
157 #define MINTR_RST_B    0x40
158 #define MINTR_RST_A    0x80
159 #define MINTR_RST_ALL  0xc0
160 #define W_MISC1  10
161 #define W_CLOCK  11
162 #define CLOCK_TRXC     0x08
163 #define W_BRGLO  12
164 #define W_BRGHI  13
165 #define W_MISC2  14
166 #define MISC2_PLLDIS   0x30
167 #define W_EXTINT 15
168 #define EXTINT_DCD     0x08
169 #define EXTINT_SYNCINT 0x10
170 #define EXTINT_CTSINT  0x20
171 #define EXTINT_TXUNDRN 0x40
172 #define EXTINT_BRKINT  0x80
173 
174 #define R_STATUS  0
175 #define STATUS_RXAV    0x01
176 #define STATUS_ZERO    0x02
177 #define STATUS_TXEMPTY 0x04
178 #define STATUS_DCD     0x08
179 #define STATUS_SYNC    0x10
180 #define STATUS_CTS     0x20
181 #define STATUS_TXUNDRN 0x40
182 #define STATUS_BRK     0x80
183 #define R_SPEC    1
184 #define SPEC_ALLSENT   0x01
185 #define SPEC_BITS8     0x06
186 #define R_IVEC    2
187 #define IVEC_TXINTB    0x00
188 #define IVEC_LONOINT   0x06
189 #define IVEC_LORXINTA  0x0c
190 #define IVEC_LORXINTB  0x04
191 #define IVEC_LOTXINTA  0x08
192 #define IVEC_HINOINT   0x60
193 #define IVEC_HIRXINTA  0x30
194 #define IVEC_HIRXINTB  0x20
195 #define IVEC_HITXINTA  0x10
196 #define R_INTR    3
197 #define INTR_EXTINTB   0x01
198 #define INTR_TXINTB    0x02
199 #define INTR_RXINTB    0x04
200 #define INTR_EXTINTA   0x08
201 #define INTR_TXINTA    0x10
202 #define INTR_RXINTA    0x20
203 #define R_IPEN    4
204 #define R_TXCTRL1 5
205 #define R_TXCTRL2 6
206 #define R_BC      7
207 #define R_RXBUF   8
208 #define R_RXCTRL  9
209 #define R_MISC   10
210 #define R_MISC1  11
211 #define R_BRGLO  12
212 #define R_BRGHI  13
213 #define R_MISC1I 14
214 #define R_EXTINT 15
215 
216 static void handle_kbd_command(ChannelState *s, int val);
217 static int serial_can_receive(void *opaque);
218 static void serial_receive_byte(ChannelState *s, int ch);
219 
220 static void clear_queue(void *opaque)
221 {
222     ChannelState *s = opaque;
223     SERIOQueue *q = &s->queue;
224     q->rptr = q->wptr = q->count = 0;
225 }
226 
227 static void put_queue(void *opaque, int b)
228 {
229     ChannelState *s = opaque;
230     SERIOQueue *q = &s->queue;
231 
232     trace_escc_put_queue(CHN_C(s), b);
233     if (q->count >= SERIO_QUEUE_SIZE)
234         return;
235     q->data[q->wptr] = b;
236     if (++q->wptr == SERIO_QUEUE_SIZE)
237         q->wptr = 0;
238     q->count++;
239     serial_receive_byte(s, 0);
240 }
241 
242 static uint32_t get_queue(void *opaque)
243 {
244     ChannelState *s = opaque;
245     SERIOQueue *q = &s->queue;
246     int val;
247 
248     if (q->count == 0) {
249         return 0;
250     } else {
251         val = q->data[q->rptr];
252         if (++q->rptr == SERIO_QUEUE_SIZE)
253             q->rptr = 0;
254         q->count--;
255     }
256     trace_escc_get_queue(CHN_C(s), val);
257     if (q->count > 0)
258         serial_receive_byte(s, 0);
259     return val;
260 }
261 
262 static int escc_update_irq_chn(ChannelState *s)
263 {
264     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
265          // tx ints enabled, pending
266          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
267            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
268           s->rxint == 1) || // rx ints enabled, pending
269          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
270           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
271         return 1;
272     }
273     return 0;
274 }
275 
276 static void escc_update_irq(ChannelState *s)
277 {
278     int irq;
279 
280     irq = escc_update_irq_chn(s);
281     irq |= escc_update_irq_chn(s->otherchn);
282 
283     trace_escc_update_irq(irq);
284     qemu_set_irq(s->irq, irq);
285 }
286 
287 static void escc_reset_chn(ChannelState *s)
288 {
289     int i;
290 
291     s->reg = 0;
292     for (i = 0; i < SERIAL_REGS; i++) {
293         s->rregs[i] = 0;
294         s->wregs[i] = 0;
295     }
296     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
297     s->wregs[W_MINTR] = MINTR_RST_ALL;
298     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
299     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
300     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
301         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
302     if (s->disabled)
303         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
304             STATUS_CTS | STATUS_TXUNDRN;
305     else
306         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
307     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
308 
309     s->rx = s->tx = 0;
310     s->rxint = s->txint = 0;
311     s->rxint_under_svc = s->txint_under_svc = 0;
312     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
313     clear_queue(s);
314 }
315 
316 static void escc_reset(DeviceState *d)
317 {
318     ESCCState *s = ESCC(d);
319 
320     escc_reset_chn(&s->chn[0]);
321     escc_reset_chn(&s->chn[1]);
322 }
323 
324 static inline void set_rxint(ChannelState *s)
325 {
326     s->rxint = 1;
327     /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
328        than chn_a rx/tx/special_condition service*/
329     s->rxint_under_svc = 1;
330     if (s->chn == chn_a) {
331         s->rregs[R_INTR] |= INTR_RXINTA;
332         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
333             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
334         else
335             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
336     } else {
337         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
338         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
339             s->rregs[R_IVEC] = IVEC_HIRXINTB;
340         else
341             s->rregs[R_IVEC] = IVEC_LORXINTB;
342     }
343     escc_update_irq(s);
344 }
345 
346 static inline void set_txint(ChannelState *s)
347 {
348     s->txint = 1;
349     if (!s->rxint_under_svc) {
350         s->txint_under_svc = 1;
351         if (s->chn == chn_a) {
352             if (s->wregs[W_INTR] & INTR_TXINT) {
353                 s->rregs[R_INTR] |= INTR_TXINTA;
354             }
355             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
356                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
357             else
358                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
359         } else {
360             s->rregs[R_IVEC] = IVEC_TXINTB;
361             if (s->wregs[W_INTR] & INTR_TXINT) {
362                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
363             }
364         }
365     escc_update_irq(s);
366     }
367 }
368 
369 static inline void clr_rxint(ChannelState *s)
370 {
371     s->rxint = 0;
372     s->rxint_under_svc = 0;
373     if (s->chn == chn_a) {
374         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
375             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
376         else
377             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
378         s->rregs[R_INTR] &= ~INTR_RXINTA;
379     } else {
380         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
381             s->rregs[R_IVEC] = IVEC_HINOINT;
382         else
383             s->rregs[R_IVEC] = IVEC_LONOINT;
384         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
385     }
386     if (s->txint)
387         set_txint(s);
388     escc_update_irq(s);
389 }
390 
391 static inline void clr_txint(ChannelState *s)
392 {
393     s->txint = 0;
394     s->txint_under_svc = 0;
395     if (s->chn == chn_a) {
396         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
397             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
398         else
399             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
400         s->rregs[R_INTR] &= ~INTR_TXINTA;
401     } else {
402         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
403         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
404             s->rregs[R_IVEC] = IVEC_HINOINT;
405         else
406             s->rregs[R_IVEC] = IVEC_LONOINT;
407         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
408     }
409     if (s->rxint)
410         set_rxint(s);
411     escc_update_irq(s);
412 }
413 
414 static void escc_update_parameters(ChannelState *s)
415 {
416     int speed, parity, data_bits, stop_bits;
417     QEMUSerialSetParams ssp;
418 
419     if (!s->chr || s->type != ser)
420         return;
421 
422     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
423         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
424             parity = 'E';
425         else
426             parity = 'O';
427     } else {
428         parity = 'N';
429     }
430     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
431         stop_bits = 2;
432     else
433         stop_bits = 1;
434     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
435     case TXCTRL2_5BITS:
436         data_bits = 5;
437         break;
438     case TXCTRL2_7BITS:
439         data_bits = 7;
440         break;
441     case TXCTRL2_6BITS:
442         data_bits = 6;
443         break;
444     default:
445     case TXCTRL2_8BITS:
446         data_bits = 8;
447         break;
448     }
449     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
450     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
451     case TXCTRL1_CLK1X:
452         break;
453     case TXCTRL1_CLK16X:
454         speed /= 16;
455         break;
456     case TXCTRL1_CLK32X:
457         speed /= 32;
458         break;
459     default:
460     case TXCTRL1_CLK64X:
461         speed /= 64;
462         break;
463     }
464     ssp.speed = speed;
465     ssp.parity = parity;
466     ssp.data_bits = data_bits;
467     ssp.stop_bits = stop_bits;
468     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
469     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
470 }
471 
472 static void escc_mem_write(void *opaque, hwaddr addr,
473                            uint64_t val, unsigned size)
474 {
475     ESCCState *serial = opaque;
476     ChannelState *s;
477     uint32_t saddr;
478     int newreg, channel;
479 
480     val &= 0xff;
481     saddr = (addr >> serial->it_shift) & 1;
482     channel = (addr >> (serial->it_shift + 1)) & 1;
483     s = &serial->chn[channel];
484     switch (saddr) {
485     case SERIAL_CTRL:
486         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
487         newreg = 0;
488         switch (s->reg) {
489         case W_CMD:
490             newreg = val & CMD_PTR_MASK;
491             val &= CMD_CMD_MASK;
492             switch (val) {
493             case CMD_HI:
494                 newreg |= CMD_HI;
495                 break;
496             case CMD_CLR_TXINT:
497                 clr_txint(s);
498                 break;
499             case CMD_CLR_IUS:
500                 if (s->rxint_under_svc) {
501                     s->rxint_under_svc = 0;
502                     if (s->txint) {
503                         set_txint(s);
504                     }
505                 } else if (s->txint_under_svc) {
506                     s->txint_under_svc = 0;
507                 }
508                 escc_update_irq(s);
509                 break;
510             default:
511                 break;
512             }
513             break;
514         case W_INTR ... W_RXCTRL:
515         case W_SYNC1 ... W_TXBUF:
516         case W_MISC1 ... W_CLOCK:
517         case W_MISC2 ... W_EXTINT:
518             s->wregs[s->reg] = val;
519             break;
520         case W_TXCTRL1:
521         case W_TXCTRL2:
522             s->wregs[s->reg] = val;
523             escc_update_parameters(s);
524             break;
525         case W_BRGLO:
526         case W_BRGHI:
527             s->wregs[s->reg] = val;
528             s->rregs[s->reg] = val;
529             escc_update_parameters(s);
530             break;
531         case W_MINTR:
532             switch (val & MINTR_RST_MASK) {
533             case 0:
534             default:
535                 break;
536             case MINTR_RST_B:
537                 escc_reset_chn(&serial->chn[0]);
538                 return;
539             case MINTR_RST_A:
540                 escc_reset_chn(&serial->chn[1]);
541                 return;
542             case MINTR_RST_ALL:
543                 escc_reset(DEVICE(serial));
544                 return;
545             }
546             break;
547         default:
548             break;
549         }
550         if (s->reg == 0)
551             s->reg = newreg;
552         else
553             s->reg = 0;
554         break;
555     case SERIAL_DATA:
556         trace_escc_mem_writeb_data(CHN_C(s), val);
557         s->tx = val;
558         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
559             if (s->chr)
560                 qemu_chr_fe_write(s->chr, &s->tx, 1);
561             else if (s->type == kbd && !s->disabled) {
562                 handle_kbd_command(s, val);
563             }
564         }
565         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
566         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
567         set_txint(s);
568         break;
569     default:
570         break;
571     }
572 }
573 
574 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
575                               unsigned size)
576 {
577     ESCCState *serial = opaque;
578     ChannelState *s;
579     uint32_t saddr;
580     uint32_t ret;
581     int channel;
582 
583     saddr = (addr >> serial->it_shift) & 1;
584     channel = (addr >> (serial->it_shift + 1)) & 1;
585     s = &serial->chn[channel];
586     switch (saddr) {
587     case SERIAL_CTRL:
588         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
589         ret = s->rregs[s->reg];
590         s->reg = 0;
591         return ret;
592     case SERIAL_DATA:
593         s->rregs[R_STATUS] &= ~STATUS_RXAV;
594         clr_rxint(s);
595         if (s->type == kbd || s->type == mouse)
596             ret = get_queue(s);
597         else
598             ret = s->rx;
599         trace_escc_mem_readb_data(CHN_C(s), ret);
600         if (s->chr)
601             qemu_chr_accept_input(s->chr);
602         return ret;
603     default:
604         break;
605     }
606     return 0;
607 }
608 
609 static const MemoryRegionOps escc_mem_ops = {
610     .read = escc_mem_read,
611     .write = escc_mem_write,
612     .endianness = DEVICE_NATIVE_ENDIAN,
613     .valid = {
614         .min_access_size = 1,
615         .max_access_size = 1,
616     },
617 };
618 
619 static int serial_can_receive(void *opaque)
620 {
621     ChannelState *s = opaque;
622     int ret;
623 
624     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
625         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
626         // char already available
627         ret = 0;
628     else
629         ret = 1;
630     return ret;
631 }
632 
633 static void serial_receive_byte(ChannelState *s, int ch)
634 {
635     trace_escc_serial_receive_byte(CHN_C(s), ch);
636     s->rregs[R_STATUS] |= STATUS_RXAV;
637     s->rx = ch;
638     set_rxint(s);
639 }
640 
641 static void serial_receive_break(ChannelState *s)
642 {
643     s->rregs[R_STATUS] |= STATUS_BRK;
644     escc_update_irq(s);
645 }
646 
647 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
648 {
649     ChannelState *s = opaque;
650     serial_receive_byte(s, buf[0]);
651 }
652 
653 static void serial_event(void *opaque, int event)
654 {
655     ChannelState *s = opaque;
656     if (event == CHR_EVENT_BREAK)
657         serial_receive_break(s);
658 }
659 
660 static const VMStateDescription vmstate_escc_chn = {
661     .name ="escc_chn",
662     .version_id = 2,
663     .minimum_version_id = 1,
664     .fields = (VMStateField[]) {
665         VMSTATE_UINT32(vmstate_dummy, ChannelState),
666         VMSTATE_UINT32(reg, ChannelState),
667         VMSTATE_UINT32(rxint, ChannelState),
668         VMSTATE_UINT32(txint, ChannelState),
669         VMSTATE_UINT32(rxint_under_svc, ChannelState),
670         VMSTATE_UINT32(txint_under_svc, ChannelState),
671         VMSTATE_UINT8(rx, ChannelState),
672         VMSTATE_UINT8(tx, ChannelState),
673         VMSTATE_BUFFER(wregs, ChannelState),
674         VMSTATE_BUFFER(rregs, ChannelState),
675         VMSTATE_END_OF_LIST()
676     }
677 };
678 
679 static const VMStateDescription vmstate_escc = {
680     .name ="escc",
681     .version_id = 2,
682     .minimum_version_id = 1,
683     .fields = (VMStateField[]) {
684         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
685                              ChannelState),
686         VMSTATE_END_OF_LIST()
687     }
688 };
689 
690 MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
691               CharDriverState *chrA, CharDriverState *chrB,
692               int clock, int it_shift)
693 {
694     DeviceState *dev;
695     SysBusDevice *s;
696     ESCCState *d;
697 
698     dev = qdev_create(NULL, TYPE_ESCC);
699     qdev_prop_set_uint32(dev, "disabled", 0);
700     qdev_prop_set_uint32(dev, "frequency", clock);
701     qdev_prop_set_uint32(dev, "it_shift", it_shift);
702     qdev_prop_set_chr(dev, "chrB", chrB);
703     qdev_prop_set_chr(dev, "chrA", chrA);
704     qdev_prop_set_uint32(dev, "chnBtype", ser);
705     qdev_prop_set_uint32(dev, "chnAtype", ser);
706     qdev_init_nofail(dev);
707     s = SYS_BUS_DEVICE(dev);
708     sysbus_connect_irq(s, 0, irqB);
709     sysbus_connect_irq(s, 1, irqA);
710     if (base) {
711         sysbus_mmio_map(s, 0, base);
712     }
713 
714     d = ESCC(s);
715     return &d->mmio;
716 }
717 
718 static const uint8_t qcode_to_keycode[Q_KEY_CODE__MAX] = {
719     [Q_KEY_CODE_SHIFT]         = 99,
720     [Q_KEY_CODE_SHIFT_R]       = 110,
721     [Q_KEY_CODE_ALT]           = 19,
722     [Q_KEY_CODE_ALT_R]         = 13,
723     [Q_KEY_CODE_ALTGR]         = 13,
724     [Q_KEY_CODE_CTRL]          = 76,
725     [Q_KEY_CODE_CTRL_R]        = 76,
726     [Q_KEY_CODE_ESC]           = 29,
727     [Q_KEY_CODE_1]             = 30,
728     [Q_KEY_CODE_2]             = 31,
729     [Q_KEY_CODE_3]             = 32,
730     [Q_KEY_CODE_4]             = 33,
731     [Q_KEY_CODE_5]             = 34,
732     [Q_KEY_CODE_6]             = 35,
733     [Q_KEY_CODE_7]             = 36,
734     [Q_KEY_CODE_8]             = 37,
735     [Q_KEY_CODE_9]             = 38,
736     [Q_KEY_CODE_0]             = 39,
737     [Q_KEY_CODE_MINUS]         = 40,
738     [Q_KEY_CODE_EQUAL]         = 41,
739     [Q_KEY_CODE_BACKSPACE]     = 43,
740     [Q_KEY_CODE_TAB]           = 53,
741     [Q_KEY_CODE_Q]             = 54,
742     [Q_KEY_CODE_W]             = 55,
743     [Q_KEY_CODE_E]             = 56,
744     [Q_KEY_CODE_R]             = 57,
745     [Q_KEY_CODE_T]             = 58,
746     [Q_KEY_CODE_Y]             = 59,
747     [Q_KEY_CODE_U]             = 60,
748     [Q_KEY_CODE_I]             = 61,
749     [Q_KEY_CODE_O]             = 62,
750     [Q_KEY_CODE_P]             = 63,
751     [Q_KEY_CODE_BRACKET_LEFT]  = 64,
752     [Q_KEY_CODE_BRACKET_RIGHT] = 65,
753     [Q_KEY_CODE_RET]           = 89,
754     [Q_KEY_CODE_A]             = 77,
755     [Q_KEY_CODE_S]             = 78,
756     [Q_KEY_CODE_D]             = 79,
757     [Q_KEY_CODE_F]             = 80,
758     [Q_KEY_CODE_G]             = 81,
759     [Q_KEY_CODE_H]             = 82,
760     [Q_KEY_CODE_J]             = 83,
761     [Q_KEY_CODE_K]             = 84,
762     [Q_KEY_CODE_L]             = 85,
763     [Q_KEY_CODE_SEMICOLON]     = 86,
764     [Q_KEY_CODE_APOSTROPHE]    = 87,
765     [Q_KEY_CODE_GRAVE_ACCENT]  = 42,
766     [Q_KEY_CODE_BACKSLASH]     = 88,
767     [Q_KEY_CODE_Z]             = 100,
768     [Q_KEY_CODE_X]             = 101,
769     [Q_KEY_CODE_C]             = 102,
770     [Q_KEY_CODE_V]             = 103,
771     [Q_KEY_CODE_B]             = 104,
772     [Q_KEY_CODE_N]             = 105,
773     [Q_KEY_CODE_M]             = 106,
774     [Q_KEY_CODE_COMMA]         = 107,
775     [Q_KEY_CODE_DOT]           = 108,
776     [Q_KEY_CODE_SLASH]         = 109,
777     [Q_KEY_CODE_ASTERISK]      = 47,
778     [Q_KEY_CODE_SPC]           = 121,
779     [Q_KEY_CODE_CAPS_LOCK]     = 119,
780     [Q_KEY_CODE_F1]            = 5,
781     [Q_KEY_CODE_F2]            = 6,
782     [Q_KEY_CODE_F3]            = 8,
783     [Q_KEY_CODE_F4]            = 10,
784     [Q_KEY_CODE_F5]            = 12,
785     [Q_KEY_CODE_F6]            = 14,
786     [Q_KEY_CODE_F7]            = 16,
787     [Q_KEY_CODE_F8]            = 17,
788     [Q_KEY_CODE_F9]            = 18,
789     [Q_KEY_CODE_F10]           = 7,
790     [Q_KEY_CODE_NUM_LOCK]      = 98,
791     [Q_KEY_CODE_SCROLL_LOCK]   = 23,
792     [Q_KEY_CODE_KP_DIVIDE]     = 46,
793     [Q_KEY_CODE_KP_MULTIPLY]   = 47,
794     [Q_KEY_CODE_KP_SUBTRACT]   = 71,
795     [Q_KEY_CODE_KP_ADD]        = 125,
796     [Q_KEY_CODE_KP_ENTER]      = 90,
797     [Q_KEY_CODE_KP_DECIMAL]    = 50,
798     [Q_KEY_CODE_KP_0]          = 94,
799     [Q_KEY_CODE_KP_1]          = 112,
800     [Q_KEY_CODE_KP_2]          = 113,
801     [Q_KEY_CODE_KP_3]          = 114,
802     [Q_KEY_CODE_KP_4]          = 91,
803     [Q_KEY_CODE_KP_5]          = 92,
804     [Q_KEY_CODE_KP_6]          = 93,
805     [Q_KEY_CODE_KP_7]          = 68,
806     [Q_KEY_CODE_KP_8]          = 69,
807     [Q_KEY_CODE_KP_9]          = 70,
808     [Q_KEY_CODE_LESS]          = 124,
809     [Q_KEY_CODE_F11]           = 9,
810     [Q_KEY_CODE_F12]           = 11,
811     [Q_KEY_CODE_HOME]          = 52,
812     [Q_KEY_CODE_PGUP]          = 96,
813     [Q_KEY_CODE_PGDN]          = 123,
814     [Q_KEY_CODE_END]           = 74,
815     [Q_KEY_CODE_LEFT]          = 24,
816     [Q_KEY_CODE_UP]            = 20,
817     [Q_KEY_CODE_DOWN]          = 27,
818     [Q_KEY_CODE_RIGHT]         = 28,
819     [Q_KEY_CODE_INSERT]        = 44,
820     [Q_KEY_CODE_DELETE]        = 66,
821     [Q_KEY_CODE_STOP]          = 1,
822     [Q_KEY_CODE_AGAIN]         = 3,
823     [Q_KEY_CODE_PROPS]         = 25,
824     [Q_KEY_CODE_UNDO]          = 26,
825     [Q_KEY_CODE_FRONT]         = 49,
826     [Q_KEY_CODE_COPY]          = 51,
827     [Q_KEY_CODE_OPEN]          = 72,
828     [Q_KEY_CODE_PASTE]         = 73,
829     [Q_KEY_CODE_FIND]          = 95,
830     [Q_KEY_CODE_CUT]           = 97,
831     [Q_KEY_CODE_LF]            = 111,
832     [Q_KEY_CODE_HELP]          = 118,
833     [Q_KEY_CODE_META_L]        = 120,
834     [Q_KEY_CODE_META_R]        = 122,
835     [Q_KEY_CODE_COMPOSE]       = 67,
836     [Q_KEY_CODE_PRINT]         = 22,
837     [Q_KEY_CODE_SYSRQ]         = 21,
838 };
839 
840 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
841                                 InputEvent *evt)
842 {
843     ChannelState *s = (ChannelState *)dev;
844     int qcode, keycode;
845 
846     assert(evt->type == INPUT_EVENT_KIND_KEY);
847     qcode = qemu_input_key_value_to_qcode(evt->u.key->key);
848     trace_escc_sunkbd_event_in(qcode, QKeyCode_lookup[qcode],
849                                evt->u.key->down);
850 
851     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
852         if (evt->u.key->down) {
853             s->caps_lock_mode ^= 1;
854             if (s->caps_lock_mode == 2) {
855                 return; /* Drop second press */
856             }
857         } else {
858             s->caps_lock_mode ^= 2;
859             if (s->caps_lock_mode == 3) {
860                 return; /* Drop first release */
861             }
862         }
863     }
864 
865     if (qcode == Q_KEY_CODE_NUM_LOCK) {
866         if (evt->u.key->down) {
867             s->num_lock_mode ^= 1;
868             if (s->num_lock_mode == 2) {
869                 return; /* Drop second press */
870             }
871         } else {
872             s->num_lock_mode ^= 2;
873             if (s->num_lock_mode == 3) {
874                 return; /* Drop first release */
875             }
876         }
877     }
878 
879     keycode = qcode_to_keycode[qcode];
880     if (!evt->u.key->down) {
881         keycode |= 0x80;
882     }
883     trace_escc_sunkbd_event_out(keycode);
884     put_queue(s, keycode);
885 }
886 
887 static QemuInputHandler sunkbd_handler = {
888     .name  = "sun keyboard",
889     .mask  = INPUT_EVENT_MASK_KEY,
890     .event = sunkbd_handle_event,
891 };
892 
893 static void handle_kbd_command(ChannelState *s, int val)
894 {
895     trace_escc_kbd_command(val);
896     if (s->led_mode) { // Ignore led byte
897         s->led_mode = 0;
898         return;
899     }
900     switch (val) {
901     case 1: // Reset, return type code
902         clear_queue(s);
903         put_queue(s, 0xff);
904         put_queue(s, 4); // Type 4
905         put_queue(s, 0x7f);
906         break;
907     case 0xe: // Set leds
908         s->led_mode = 1;
909         break;
910     case 7: // Query layout
911     case 0xf:
912         clear_queue(s);
913         put_queue(s, 0xfe);
914         put_queue(s, 0x21); /*  en-us layout */
915         break;
916     default:
917         break;
918     }
919 }
920 
921 static void sunmouse_event(void *opaque,
922                                int dx, int dy, int dz, int buttons_state)
923 {
924     ChannelState *s = opaque;
925     int ch;
926 
927     trace_escc_sunmouse_event(dx, dy, buttons_state);
928     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
929 
930     if (buttons_state & MOUSE_EVENT_LBUTTON)
931         ch ^= 0x4;
932     if (buttons_state & MOUSE_EVENT_MBUTTON)
933         ch ^= 0x2;
934     if (buttons_state & MOUSE_EVENT_RBUTTON)
935         ch ^= 0x1;
936 
937     put_queue(s, ch);
938 
939     ch = dx;
940 
941     if (ch > 127)
942         ch = 127;
943     else if (ch < -127)
944         ch = -127;
945 
946     put_queue(s, ch & 0xff);
947 
948     ch = -dy;
949 
950     if (ch > 127)
951         ch = 127;
952     else if (ch < -127)
953         ch = -127;
954 
955     put_queue(s, ch & 0xff);
956 
957     // MSC protocol specify two extra motion bytes
958 
959     put_queue(s, 0);
960     put_queue(s, 0);
961 }
962 
963 void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
964                                int disabled, int clock, int it_shift)
965 {
966     DeviceState *dev;
967     SysBusDevice *s;
968 
969     dev = qdev_create(NULL, TYPE_ESCC);
970     qdev_prop_set_uint32(dev, "disabled", disabled);
971     qdev_prop_set_uint32(dev, "frequency", clock);
972     qdev_prop_set_uint32(dev, "it_shift", it_shift);
973     qdev_prop_set_chr(dev, "chrB", NULL);
974     qdev_prop_set_chr(dev, "chrA", NULL);
975     qdev_prop_set_uint32(dev, "chnBtype", mouse);
976     qdev_prop_set_uint32(dev, "chnAtype", kbd);
977     qdev_init_nofail(dev);
978     s = SYS_BUS_DEVICE(dev);
979     sysbus_connect_irq(s, 0, irq);
980     sysbus_connect_irq(s, 1, irq);
981     sysbus_mmio_map(s, 0, base);
982 }
983 
984 static int escc_init1(SysBusDevice *dev)
985 {
986     ESCCState *s = ESCC(dev);
987     unsigned int i;
988 
989     s->chn[0].disabled = s->disabled;
990     s->chn[1].disabled = s->disabled;
991     for (i = 0; i < 2; i++) {
992         sysbus_init_irq(dev, &s->chn[i].irq);
993         s->chn[i].chn = 1 - i;
994         s->chn[i].clock = s->frequency / 2;
995         if (s->chn[i].chr) {
996             qemu_chr_add_handlers(s->chn[i].chr, serial_can_receive,
997                                   serial_receive1, serial_event, &s->chn[i]);
998         }
999     }
1000     s->chn[0].otherchn = &s->chn[1];
1001     s->chn[1].otherchn = &s->chn[0];
1002 
1003     memory_region_init_io(&s->mmio, OBJECT(s), &escc_mem_ops, s, "escc",
1004                           ESCC_SIZE << s->it_shift);
1005     sysbus_init_mmio(dev, &s->mmio);
1006 
1007     if (s->chn[0].type == mouse) {
1008         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1009                                      "QEMU Sun Mouse");
1010     }
1011     if (s->chn[1].type == kbd) {
1012         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1013                                                    &sunkbd_handler);
1014     }
1015 
1016     return 0;
1017 }
1018 
1019 static Property escc_properties[] = {
1020     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
1021     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
1022     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
1023     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
1024     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
1025     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1026     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1027     DEFINE_PROP_END_OF_LIST(),
1028 };
1029 
1030 static void escc_class_init(ObjectClass *klass, void *data)
1031 {
1032     DeviceClass *dc = DEVICE_CLASS(klass);
1033     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1034 
1035     k->init = escc_init1;
1036     dc->reset = escc_reset;
1037     dc->vmsd = &vmstate_escc;
1038     dc->props = escc_properties;
1039     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
1040 }
1041 
1042 static const TypeInfo escc_info = {
1043     .name          = TYPE_ESCC,
1044     .parent        = TYPE_SYS_BUS_DEVICE,
1045     .instance_size = sizeof(ESCCState),
1046     .class_init    = escc_class_init,
1047 };
1048 
1049 static void escc_register_types(void)
1050 {
1051     type_register_static(&escc_info);
1052 }
1053 
1054 type_init(escc_register_types)
1055