xref: /qemu/hw/char/escc.c (revision a8d25326)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "qemu/module.h"
29 #include "hw/char/escc.h"
30 #include "ui/console.h"
31 #include "trace.h"
32 
33 /*
34  * Chipset docs:
35  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
36  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
37  *
38  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
39  * (Slave I/O), also produced as NCR89C105. See
40  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41  *
42  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
43  * mouse and keyboard ports don't implement all functions and they are
44  * only asynchronous. There is no DMA.
45  *
46  * Z85C30 is also used on PowerMacs. There are some small differences
47  * between Sparc version (sunzilog) and PowerMac (pmac):
48  *  Offset between control and data registers
49  *  There is some kind of lockup bug, but we can ignore it
50  *  CTS is inverted
51  *  DMA on pmac using DBDMA chip
52  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
53  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
54  */
55 
56 /*
57  * Modifications:
58  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
59  *                                  serial mouse queue.
60  *                                  Implemented serial mouse protocol.
61  *
62  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
63  */
64 
65 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
66 
67 #define SERIAL_CTRL 0
68 #define SERIAL_DATA 1
69 
70 #define W_CMD     0
71 #define CMD_PTR_MASK   0x07
72 #define CMD_CMD_MASK   0x38
73 #define CMD_HI         0x08
74 #define CMD_CLR_TXINT  0x28
75 #define CMD_CLR_IUS    0x38
76 #define W_INTR    1
77 #define INTR_INTALL    0x01
78 #define INTR_TXINT     0x02
79 #define INTR_RXMODEMSK 0x18
80 #define INTR_RXINT1ST  0x08
81 #define INTR_RXINTALL  0x10
82 #define W_IVEC    2
83 #define W_RXCTRL  3
84 #define RXCTRL_RXEN    0x01
85 #define W_TXCTRL1 4
86 #define TXCTRL1_PAREN  0x01
87 #define TXCTRL1_PAREV  0x02
88 #define TXCTRL1_1STOP  0x04
89 #define TXCTRL1_1HSTOP 0x08
90 #define TXCTRL1_2STOP  0x0c
91 #define TXCTRL1_STPMSK 0x0c
92 #define TXCTRL1_CLK1X  0x00
93 #define TXCTRL1_CLK16X 0x40
94 #define TXCTRL1_CLK32X 0x80
95 #define TXCTRL1_CLK64X 0xc0
96 #define TXCTRL1_CLKMSK 0xc0
97 #define W_TXCTRL2 5
98 #define TXCTRL2_TXEN   0x08
99 #define TXCTRL2_BITMSK 0x60
100 #define TXCTRL2_5BITS  0x00
101 #define TXCTRL2_7BITS  0x20
102 #define TXCTRL2_6BITS  0x40
103 #define TXCTRL2_8BITS  0x60
104 #define W_SYNC1   6
105 #define W_SYNC2   7
106 #define W_TXBUF   8
107 #define W_MINTR   9
108 #define MINTR_STATUSHI 0x10
109 #define MINTR_RST_MASK 0xc0
110 #define MINTR_RST_B    0x40
111 #define MINTR_RST_A    0x80
112 #define MINTR_RST_ALL  0xc0
113 #define W_MISC1  10
114 #define W_CLOCK  11
115 #define CLOCK_TRXC     0x08
116 #define W_BRGLO  12
117 #define W_BRGHI  13
118 #define W_MISC2  14
119 #define MISC2_PLLDIS   0x30
120 #define W_EXTINT 15
121 #define EXTINT_DCD     0x08
122 #define EXTINT_SYNCINT 0x10
123 #define EXTINT_CTSINT  0x20
124 #define EXTINT_TXUNDRN 0x40
125 #define EXTINT_BRKINT  0x80
126 
127 #define R_STATUS  0
128 #define STATUS_RXAV    0x01
129 #define STATUS_ZERO    0x02
130 #define STATUS_TXEMPTY 0x04
131 #define STATUS_DCD     0x08
132 #define STATUS_SYNC    0x10
133 #define STATUS_CTS     0x20
134 #define STATUS_TXUNDRN 0x40
135 #define STATUS_BRK     0x80
136 #define R_SPEC    1
137 #define SPEC_ALLSENT   0x01
138 #define SPEC_BITS8     0x06
139 #define R_IVEC    2
140 #define IVEC_TXINTB    0x00
141 #define IVEC_LONOINT   0x06
142 #define IVEC_LORXINTA  0x0c
143 #define IVEC_LORXINTB  0x04
144 #define IVEC_LOTXINTA  0x08
145 #define IVEC_HINOINT   0x60
146 #define IVEC_HIRXINTA  0x30
147 #define IVEC_HIRXINTB  0x20
148 #define IVEC_HITXINTA  0x10
149 #define R_INTR    3
150 #define INTR_EXTINTB   0x01
151 #define INTR_TXINTB    0x02
152 #define INTR_RXINTB    0x04
153 #define INTR_EXTINTA   0x08
154 #define INTR_TXINTA    0x10
155 #define INTR_RXINTA    0x20
156 #define R_IPEN    4
157 #define R_TXCTRL1 5
158 #define R_TXCTRL2 6
159 #define R_BC      7
160 #define R_RXBUF   8
161 #define R_RXCTRL  9
162 #define R_MISC   10
163 #define R_MISC1  11
164 #define R_BRGLO  12
165 #define R_BRGHI  13
166 #define R_MISC1I 14
167 #define R_EXTINT 15
168 
169 static void handle_kbd_command(ESCCChannelState *s, int val);
170 static int serial_can_receive(void *opaque);
171 static void serial_receive_byte(ESCCChannelState *s, int ch);
172 
173 static void clear_queue(void *opaque)
174 {
175     ESCCChannelState *s = opaque;
176     ESCCSERIOQueue *q = &s->queue;
177     q->rptr = q->wptr = q->count = 0;
178 }
179 
180 static void put_queue(void *opaque, int b)
181 {
182     ESCCChannelState *s = opaque;
183     ESCCSERIOQueue *q = &s->queue;
184 
185     trace_escc_put_queue(CHN_C(s), b);
186     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
187         return;
188     }
189     q->data[q->wptr] = b;
190     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
191         q->wptr = 0;
192     }
193     q->count++;
194     serial_receive_byte(s, 0);
195 }
196 
197 static uint32_t get_queue(void *opaque)
198 {
199     ESCCChannelState *s = opaque;
200     ESCCSERIOQueue *q = &s->queue;
201     int val;
202 
203     if (q->count == 0) {
204         return 0;
205     } else {
206         val = q->data[q->rptr];
207         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
208             q->rptr = 0;
209         }
210         q->count--;
211     }
212     trace_escc_get_queue(CHN_C(s), val);
213     if (q->count > 0)
214         serial_receive_byte(s, 0);
215     return val;
216 }
217 
218 static int escc_update_irq_chn(ESCCChannelState *s)
219 {
220     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
221          // tx ints enabled, pending
222          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
223            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
224           s->rxint == 1) || // rx ints enabled, pending
225          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
226           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
227         return 1;
228     }
229     return 0;
230 }
231 
232 static void escc_update_irq(ESCCChannelState *s)
233 {
234     int irq;
235 
236     irq = escc_update_irq_chn(s);
237     irq |= escc_update_irq_chn(s->otherchn);
238 
239     trace_escc_update_irq(irq);
240     qemu_set_irq(s->irq, irq);
241 }
242 
243 static void escc_reset_chn(ESCCChannelState *s)
244 {
245     int i;
246 
247     s->reg = 0;
248     for (i = 0; i < ESCC_SERIAL_REGS; i++) {
249         s->rregs[i] = 0;
250         s->wregs[i] = 0;
251     }
252     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
253     s->wregs[W_MINTR] = MINTR_RST_ALL;
254     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
255     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
256     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
257         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
258     if (s->disabled)
259         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
260             STATUS_CTS | STATUS_TXUNDRN;
261     else
262         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
263     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
264 
265     s->rx = s->tx = 0;
266     s->rxint = s->txint = 0;
267     s->rxint_under_svc = s->txint_under_svc = 0;
268     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
269     clear_queue(s);
270 }
271 
272 static void escc_reset(DeviceState *d)
273 {
274     ESCCState *s = ESCC(d);
275 
276     escc_reset_chn(&s->chn[0]);
277     escc_reset_chn(&s->chn[1]);
278 }
279 
280 static inline void set_rxint(ESCCChannelState *s)
281 {
282     s->rxint = 1;
283     /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
284        than chn_a rx/tx/special_condition service*/
285     s->rxint_under_svc = 1;
286     if (s->chn == escc_chn_a) {
287         s->rregs[R_INTR] |= INTR_RXINTA;
288         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
289             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
290         else
291             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
292     } else {
293         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
294         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
295             s->rregs[R_IVEC] = IVEC_HIRXINTB;
296         else
297             s->rregs[R_IVEC] = IVEC_LORXINTB;
298     }
299     escc_update_irq(s);
300 }
301 
302 static inline void set_txint(ESCCChannelState *s)
303 {
304     s->txint = 1;
305     if (!s->rxint_under_svc) {
306         s->txint_under_svc = 1;
307         if (s->chn == escc_chn_a) {
308             if (s->wregs[W_INTR] & INTR_TXINT) {
309                 s->rregs[R_INTR] |= INTR_TXINTA;
310             }
311             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
312                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
313             else
314                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
315         } else {
316             s->rregs[R_IVEC] = IVEC_TXINTB;
317             if (s->wregs[W_INTR] & INTR_TXINT) {
318                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
319             }
320         }
321     escc_update_irq(s);
322     }
323 }
324 
325 static inline void clr_rxint(ESCCChannelState *s)
326 {
327     s->rxint = 0;
328     s->rxint_under_svc = 0;
329     if (s->chn == escc_chn_a) {
330         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
331             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
332         else
333             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
334         s->rregs[R_INTR] &= ~INTR_RXINTA;
335     } else {
336         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
337             s->rregs[R_IVEC] = IVEC_HINOINT;
338         else
339             s->rregs[R_IVEC] = IVEC_LONOINT;
340         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
341     }
342     if (s->txint)
343         set_txint(s);
344     escc_update_irq(s);
345 }
346 
347 static inline void clr_txint(ESCCChannelState *s)
348 {
349     s->txint = 0;
350     s->txint_under_svc = 0;
351     if (s->chn == escc_chn_a) {
352         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
353             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
354         else
355             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
356         s->rregs[R_INTR] &= ~INTR_TXINTA;
357     } else {
358         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
359         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
360             s->rregs[R_IVEC] = IVEC_HINOINT;
361         else
362             s->rregs[R_IVEC] = IVEC_LONOINT;
363         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
364     }
365     if (s->rxint)
366         set_rxint(s);
367     escc_update_irq(s);
368 }
369 
370 static void escc_update_parameters(ESCCChannelState *s)
371 {
372     int speed, parity, data_bits, stop_bits;
373     QEMUSerialSetParams ssp;
374 
375     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
376         return;
377 
378     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
379         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
380             parity = 'E';
381         else
382             parity = 'O';
383     } else {
384         parity = 'N';
385     }
386     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
387         stop_bits = 2;
388     else
389         stop_bits = 1;
390     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
391     case TXCTRL2_5BITS:
392         data_bits = 5;
393         break;
394     case TXCTRL2_7BITS:
395         data_bits = 7;
396         break;
397     case TXCTRL2_6BITS:
398         data_bits = 6;
399         break;
400     default:
401     case TXCTRL2_8BITS:
402         data_bits = 8;
403         break;
404     }
405     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
406     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
407     case TXCTRL1_CLK1X:
408         break;
409     case TXCTRL1_CLK16X:
410         speed /= 16;
411         break;
412     case TXCTRL1_CLK32X:
413         speed /= 32;
414         break;
415     default:
416     case TXCTRL1_CLK64X:
417         speed /= 64;
418         break;
419     }
420     ssp.speed = speed;
421     ssp.parity = parity;
422     ssp.data_bits = data_bits;
423     ssp.stop_bits = stop_bits;
424     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
425     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
426 }
427 
428 static void escc_mem_write(void *opaque, hwaddr addr,
429                            uint64_t val, unsigned size)
430 {
431     ESCCState *serial = opaque;
432     ESCCChannelState *s;
433     uint32_t saddr;
434     int newreg, channel;
435 
436     val &= 0xff;
437     saddr = (addr >> serial->it_shift) & 1;
438     channel = (addr >> (serial->it_shift + 1)) & 1;
439     s = &serial->chn[channel];
440     switch (saddr) {
441     case SERIAL_CTRL:
442         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
443         newreg = 0;
444         switch (s->reg) {
445         case W_CMD:
446             newreg = val & CMD_PTR_MASK;
447             val &= CMD_CMD_MASK;
448             switch (val) {
449             case CMD_HI:
450                 newreg |= CMD_HI;
451                 break;
452             case CMD_CLR_TXINT:
453                 clr_txint(s);
454                 break;
455             case CMD_CLR_IUS:
456                 if (s->rxint_under_svc) {
457                     s->rxint_under_svc = 0;
458                     if (s->txint) {
459                         set_txint(s);
460                     }
461                 } else if (s->txint_under_svc) {
462                     s->txint_under_svc = 0;
463                 }
464                 escc_update_irq(s);
465                 break;
466             default:
467                 break;
468             }
469             break;
470         case W_INTR ... W_RXCTRL:
471         case W_SYNC1 ... W_TXBUF:
472         case W_MISC1 ... W_CLOCK:
473         case W_MISC2 ... W_EXTINT:
474             s->wregs[s->reg] = val;
475             break;
476         case W_TXCTRL1:
477         case W_TXCTRL2:
478             s->wregs[s->reg] = val;
479             escc_update_parameters(s);
480             break;
481         case W_BRGLO:
482         case W_BRGHI:
483             s->wregs[s->reg] = val;
484             s->rregs[s->reg] = val;
485             escc_update_parameters(s);
486             break;
487         case W_MINTR:
488             switch (val & MINTR_RST_MASK) {
489             case 0:
490             default:
491                 break;
492             case MINTR_RST_B:
493                 escc_reset_chn(&serial->chn[0]);
494                 return;
495             case MINTR_RST_A:
496                 escc_reset_chn(&serial->chn[1]);
497                 return;
498             case MINTR_RST_ALL:
499                 escc_reset(DEVICE(serial));
500                 return;
501             }
502             break;
503         default:
504             break;
505         }
506         if (s->reg == 0)
507             s->reg = newreg;
508         else
509             s->reg = 0;
510         break;
511     case SERIAL_DATA:
512         trace_escc_mem_writeb_data(CHN_C(s), val);
513         /*
514          * Lower the irq when data is written to the Tx buffer and no other
515          * interrupts are currently pending. The irq will be raised again once
516          * the Tx buffer becomes empty below.
517          */
518         s->txint = 0;
519         escc_update_irq(s);
520         s->tx = val;
521         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
522             if (qemu_chr_fe_backend_connected(&s->chr)) {
523                 /* XXX this blocks entire thread. Rewrite to use
524                  * qemu_chr_fe_write and background I/O callbacks */
525                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
526             } else if (s->type == escc_kbd && !s->disabled) {
527                 handle_kbd_command(s, val);
528             }
529         }
530         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
531         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
532         set_txint(s);
533         break;
534     default:
535         break;
536     }
537 }
538 
539 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
540                               unsigned size)
541 {
542     ESCCState *serial = opaque;
543     ESCCChannelState *s;
544     uint32_t saddr;
545     uint32_t ret;
546     int channel;
547 
548     saddr = (addr >> serial->it_shift) & 1;
549     channel = (addr >> (serial->it_shift + 1)) & 1;
550     s = &serial->chn[channel];
551     switch (saddr) {
552     case SERIAL_CTRL:
553         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
554         ret = s->rregs[s->reg];
555         s->reg = 0;
556         return ret;
557     case SERIAL_DATA:
558         s->rregs[R_STATUS] &= ~STATUS_RXAV;
559         clr_rxint(s);
560         if (s->type == escc_kbd || s->type == escc_mouse) {
561             ret = get_queue(s);
562         } else {
563             ret = s->rx;
564         }
565         trace_escc_mem_readb_data(CHN_C(s), ret);
566         qemu_chr_fe_accept_input(&s->chr);
567         return ret;
568     default:
569         break;
570     }
571     return 0;
572 }
573 
574 static const MemoryRegionOps escc_mem_ops = {
575     .read = escc_mem_read,
576     .write = escc_mem_write,
577     .endianness = DEVICE_NATIVE_ENDIAN,
578     .valid = {
579         .min_access_size = 1,
580         .max_access_size = 1,
581     },
582 };
583 
584 static int serial_can_receive(void *opaque)
585 {
586     ESCCChannelState *s = opaque;
587     int ret;
588 
589     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
590         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
591         // char already available
592         ret = 0;
593     else
594         ret = 1;
595     return ret;
596 }
597 
598 static void serial_receive_byte(ESCCChannelState *s, int ch)
599 {
600     trace_escc_serial_receive_byte(CHN_C(s), ch);
601     s->rregs[R_STATUS] |= STATUS_RXAV;
602     s->rx = ch;
603     set_rxint(s);
604 }
605 
606 static void serial_receive_break(ESCCChannelState *s)
607 {
608     s->rregs[R_STATUS] |= STATUS_BRK;
609     escc_update_irq(s);
610 }
611 
612 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
613 {
614     ESCCChannelState *s = opaque;
615     serial_receive_byte(s, buf[0]);
616 }
617 
618 static void serial_event(void *opaque, int event)
619 {
620     ESCCChannelState *s = opaque;
621     if (event == CHR_EVENT_BREAK)
622         serial_receive_break(s);
623 }
624 
625 static const VMStateDescription vmstate_escc_chn = {
626     .name ="escc_chn",
627     .version_id = 2,
628     .minimum_version_id = 1,
629     .fields = (VMStateField[]) {
630         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
631         VMSTATE_UINT32(reg, ESCCChannelState),
632         VMSTATE_UINT32(rxint, ESCCChannelState),
633         VMSTATE_UINT32(txint, ESCCChannelState),
634         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
635         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
636         VMSTATE_UINT8(rx, ESCCChannelState),
637         VMSTATE_UINT8(tx, ESCCChannelState),
638         VMSTATE_BUFFER(wregs, ESCCChannelState),
639         VMSTATE_BUFFER(rregs, ESCCChannelState),
640         VMSTATE_END_OF_LIST()
641     }
642 };
643 
644 static const VMStateDescription vmstate_escc = {
645     .name ="escc",
646     .version_id = 2,
647     .minimum_version_id = 1,
648     .fields = (VMStateField[]) {
649         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
650                              ESCCChannelState),
651         VMSTATE_END_OF_LIST()
652     }
653 };
654 
655 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
656                                 InputEvent *evt)
657 {
658     ESCCChannelState *s = (ESCCChannelState *)dev;
659     int qcode, keycode;
660     InputKeyEvent *key;
661 
662     assert(evt->type == INPUT_EVENT_KIND_KEY);
663     key = evt->u.key.data;
664     qcode = qemu_input_key_value_to_qcode(key->key);
665     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
666                                key->down);
667 
668     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
669         if (key->down) {
670             s->caps_lock_mode ^= 1;
671             if (s->caps_lock_mode == 2) {
672                 return; /* Drop second press */
673             }
674         } else {
675             s->caps_lock_mode ^= 2;
676             if (s->caps_lock_mode == 3) {
677                 return; /* Drop first release */
678             }
679         }
680     }
681 
682     if (qcode == Q_KEY_CODE_NUM_LOCK) {
683         if (key->down) {
684             s->num_lock_mode ^= 1;
685             if (s->num_lock_mode == 2) {
686                 return; /* Drop second press */
687             }
688         } else {
689             s->num_lock_mode ^= 2;
690             if (s->num_lock_mode == 3) {
691                 return; /* Drop first release */
692             }
693         }
694     }
695 
696     if (qcode > qemu_input_map_qcode_to_sun_len) {
697         return;
698     }
699 
700     keycode = qemu_input_map_qcode_to_sun[qcode];
701     if (!key->down) {
702         keycode |= 0x80;
703     }
704     trace_escc_sunkbd_event_out(keycode);
705     put_queue(s, keycode);
706 }
707 
708 static QemuInputHandler sunkbd_handler = {
709     .name  = "sun keyboard",
710     .mask  = INPUT_EVENT_MASK_KEY,
711     .event = sunkbd_handle_event,
712 };
713 
714 static void handle_kbd_command(ESCCChannelState *s, int val)
715 {
716     trace_escc_kbd_command(val);
717     if (s->led_mode) { // Ignore led byte
718         s->led_mode = 0;
719         return;
720     }
721     switch (val) {
722     case 1: // Reset, return type code
723         clear_queue(s);
724         put_queue(s, 0xff);
725         put_queue(s, 4); // Type 4
726         put_queue(s, 0x7f);
727         break;
728     case 0xe: // Set leds
729         s->led_mode = 1;
730         break;
731     case 7: // Query layout
732     case 0xf:
733         clear_queue(s);
734         put_queue(s, 0xfe);
735         put_queue(s, 0x21); /*  en-us layout */
736         break;
737     default:
738         break;
739     }
740 }
741 
742 static void sunmouse_event(void *opaque,
743                                int dx, int dy, int dz, int buttons_state)
744 {
745     ESCCChannelState *s = opaque;
746     int ch;
747 
748     trace_escc_sunmouse_event(dx, dy, buttons_state);
749     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
750 
751     if (buttons_state & MOUSE_EVENT_LBUTTON)
752         ch ^= 0x4;
753     if (buttons_state & MOUSE_EVENT_MBUTTON)
754         ch ^= 0x2;
755     if (buttons_state & MOUSE_EVENT_RBUTTON)
756         ch ^= 0x1;
757 
758     put_queue(s, ch);
759 
760     ch = dx;
761 
762     if (ch > 127)
763         ch = 127;
764     else if (ch < -127)
765         ch = -127;
766 
767     put_queue(s, ch & 0xff);
768 
769     ch = -dy;
770 
771     if (ch > 127)
772         ch = 127;
773     else if (ch < -127)
774         ch = -127;
775 
776     put_queue(s, ch & 0xff);
777 
778     // MSC protocol specify two extra motion bytes
779 
780     put_queue(s, 0);
781     put_queue(s, 0);
782 }
783 
784 static void escc_init1(Object *obj)
785 {
786     ESCCState *s = ESCC(obj);
787     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
788     unsigned int i;
789 
790     for (i = 0; i < 2; i++) {
791         sysbus_init_irq(dev, &s->chn[i].irq);
792         s->chn[i].chn = 1 - i;
793     }
794     s->chn[0].otherchn = &s->chn[1];
795     s->chn[1].otherchn = &s->chn[0];
796 
797     sysbus_init_mmio(dev, &s->mmio);
798 }
799 
800 static void escc_realize(DeviceState *dev, Error **errp)
801 {
802     ESCCState *s = ESCC(dev);
803     unsigned int i;
804 
805     s->chn[0].disabled = s->disabled;
806     s->chn[1].disabled = s->disabled;
807 
808     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
809                           ESCC_SIZE << s->it_shift);
810 
811     for (i = 0; i < 2; i++) {
812         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
813             s->chn[i].clock = s->frequency / 2;
814             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
815                                      serial_receive1, serial_event, NULL,
816                                      &s->chn[i], NULL, true);
817         }
818     }
819 
820     if (s->chn[0].type == escc_mouse) {
821         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
822                                      "QEMU Sun Mouse");
823     }
824     if (s->chn[1].type == escc_kbd) {
825         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
826                                                    &sunkbd_handler);
827     }
828 }
829 
830 static Property escc_properties[] = {
831     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
832     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
833     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
834     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
835     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
836     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
837     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
838     DEFINE_PROP_END_OF_LIST(),
839 };
840 
841 static void escc_class_init(ObjectClass *klass, void *data)
842 {
843     DeviceClass *dc = DEVICE_CLASS(klass);
844 
845     dc->reset = escc_reset;
846     dc->realize = escc_realize;
847     dc->vmsd = &vmstate_escc;
848     dc->props = escc_properties;
849     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
850 }
851 
852 static const TypeInfo escc_info = {
853     .name          = TYPE_ESCC,
854     .parent        = TYPE_SYS_BUS_DEVICE,
855     .instance_size = sizeof(ESCCState),
856     .instance_init = escc_init1,
857     .class_init    = escc_class_init,
858 };
859 
860 static void escc_register_types(void)
861 {
862     type_register_static(&escc_info);
863 }
864 
865 type_init(escc_register_types)
866