xref: /qemu/hw/char/nrf51_uart.c (revision dc5e9ac7)
1 /*
2  * nRF51 SoC UART emulation
3  *
4  * See nRF51 Series Reference Manual, "29 Universal Asynchronous
5  * Receiver/Transmitter" for hardware specifications:
6  * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
7  *
8  * Copyright (c) 2018 Julia Suvorova <jusual@mail.ru>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 or
12  * (at your option) any later version.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
18 #include "hw/char/nrf51_uart.h"
19 #include "hw/irq.h"
20 #include "migration/vmstate.h"
21 #include "trace.h"
22 
23 static void nrf51_uart_update_irq(NRF51UARTState *s)
24 {
25     bool irq = false;
26 
27     irq |= (s->reg[R_UART_RXDRDY] &&
28             (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK));
29     irq |= (s->reg[R_UART_TXDRDY] &&
30             (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK));
31     irq |= (s->reg[R_UART_ERROR]  &&
32             (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK));
33     irq |= (s->reg[R_UART_RXTO]   &&
34             (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK));
35 
36     qemu_set_irq(s->irq, irq);
37 }
38 
39 static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size)
40 {
41     NRF51UARTState *s = NRF51_UART(opaque);
42     uint64_t r;
43 
44     if (!s->enabled) {
45         return 0;
46     }
47 
48     switch (addr) {
49     case A_UART_RXD:
50         r = s->rx_fifo[s->rx_fifo_pos];
51         if (s->rx_started && s->rx_fifo_len) {
52             s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH;
53             s->rx_fifo_len--;
54             if (s->rx_fifo_len) {
55                 s->reg[R_UART_RXDRDY] = 1;
56                 nrf51_uart_update_irq(s);
57             }
58             qemu_chr_fe_accept_input(&s->chr);
59         }
60         break;
61     case A_UART_INTENSET:
62     case A_UART_INTENCLR:
63     case A_UART_INTEN:
64         r = s->reg[R_UART_INTEN];
65         break;
66     default:
67         r = s->reg[addr / 4];
68         break;
69     }
70 
71     trace_nrf51_uart_read(addr, r, size);
72 
73     return r;
74 }
75 
76 static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque)
77 {
78     NRF51UARTState *s = NRF51_UART(opaque);
79     int r;
80     uint8_t c = s->reg[R_UART_TXD];
81 
82     s->watch_tag = 0;
83 
84     r = qemu_chr_fe_write(&s->chr, &c, 1);
85     if (r <= 0) {
86         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
87                                              uart_transmit, s);
88         if (!s->watch_tag) {
89             /* The hardware has no transmit error reporting,
90              * so silently drop the byte
91              */
92             goto buffer_drained;
93         }
94         return FALSE;
95     }
96 
97 buffer_drained:
98     s->reg[R_UART_TXDRDY] = 1;
99     s->pending_tx_byte = false;
100     return FALSE;
101 }
102 
103 static void uart_cancel_transmit(NRF51UARTState *s)
104 {
105     if (s->watch_tag) {
106         g_source_remove(s->watch_tag);
107         s->watch_tag = 0;
108     }
109 }
110 
111 static void uart_write(void *opaque, hwaddr addr,
112                        uint64_t value, unsigned int size)
113 {
114     NRF51UARTState *s = NRF51_UART(opaque);
115 
116     trace_nrf51_uart_write(addr, value, size);
117 
118     if (!s->enabled && (addr != A_UART_ENABLE)) {
119         return;
120     }
121 
122     switch (addr) {
123     case A_UART_TXD:
124         if (!s->pending_tx_byte && s->tx_started) {
125             s->reg[R_UART_TXD] = value;
126             s->pending_tx_byte = true;
127             uart_transmit(NULL, G_IO_OUT, s);
128         }
129         break;
130     case A_UART_INTEN:
131         s->reg[R_UART_INTEN] = value;
132         break;
133     case A_UART_INTENSET:
134         s->reg[R_UART_INTEN] |= value;
135         break;
136     case A_UART_INTENCLR:
137         s->reg[R_UART_INTEN] &= ~value;
138         break;
139     case A_UART_TXDRDY ... A_UART_RXTO:
140         s->reg[addr / 4] = value;
141         break;
142     case A_UART_ERRORSRC:
143         s->reg[addr / 4] &= ~value;
144         break;
145     case A_UART_RXD:
146         break;
147     case A_UART_RXDRDY:
148         if (value == 0) {
149             s->reg[R_UART_RXDRDY] = 0;
150         }
151         break;
152     case A_UART_STARTTX:
153         if (value == 1) {
154             s->tx_started = true;
155         }
156         break;
157     case A_UART_STARTRX:
158         if (value == 1) {
159             s->rx_started = true;
160         }
161         break;
162     case A_UART_ENABLE:
163         if (value) {
164             if (value == 4) {
165                 s->enabled = true;
166             }
167             break;
168         }
169         s->enabled = false;
170         value = 1;
171         /* fall through */
172     case A_UART_SUSPEND:
173     case A_UART_STOPTX:
174         if (value == 1) {
175             s->tx_started = false;
176         }
177         /* fall through */
178     case A_UART_STOPRX:
179         if (addr != A_UART_STOPTX && value == 1) {
180             s->rx_started = false;
181             s->reg[R_UART_RXTO] = 1;
182         }
183         break;
184     default:
185         s->reg[addr / 4] = value;
186         break;
187     }
188     nrf51_uart_update_irq(s);
189 }
190 
191 static const MemoryRegionOps uart_ops = {
192     .read =  uart_read,
193     .write = uart_write,
194     .endianness = DEVICE_LITTLE_ENDIAN,
195 };
196 
197 static void nrf51_uart_reset(DeviceState *dev)
198 {
199     NRF51UARTState *s = NRF51_UART(dev);
200 
201     s->pending_tx_byte = 0;
202 
203     uart_cancel_transmit(s);
204 
205     memset(s->reg, 0, sizeof(s->reg));
206 
207     s->reg[R_UART_PSELRTS] = 0xFFFFFFFF;
208     s->reg[R_UART_PSELTXD] = 0xFFFFFFFF;
209     s->reg[R_UART_PSELCTS] = 0xFFFFFFFF;
210     s->reg[R_UART_PSELRXD] = 0xFFFFFFFF;
211     s->reg[R_UART_BAUDRATE] = 0x4000000;
212 
213     s->rx_fifo_len = 0;
214     s->rx_fifo_pos = 0;
215     s->rx_started = false;
216     s->tx_started = false;
217     s->enabled = false;
218 }
219 
220 static void uart_receive(void *opaque, const uint8_t *buf, int size)
221 {
222 
223     NRF51UARTState *s = NRF51_UART(opaque);
224     int i;
225 
226     if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) {
227         return;
228     }
229 
230     for (i = 0; i < size; i++) {
231         uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH;
232         s->rx_fifo[pos] = buf[i];
233         s->rx_fifo_len++;
234     }
235 
236     s->reg[R_UART_RXDRDY] = 1;
237     nrf51_uart_update_irq(s);
238 }
239 
240 static int uart_can_receive(void *opaque)
241 {
242     NRF51UARTState *s = NRF51_UART(opaque);
243 
244     return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0;
245 }
246 
247 static void uart_event(void *opaque, int event)
248 {
249     NRF51UARTState *s = NRF51_UART(opaque);
250 
251     if (event == CHR_EVENT_BREAK) {
252         s->reg[R_UART_ERRORSRC] |= 3;
253         s->reg[R_UART_ERROR] = 1;
254         nrf51_uart_update_irq(s);
255     }
256 }
257 
258 static void nrf51_uart_realize(DeviceState *dev, Error **errp)
259 {
260     NRF51UARTState *s = NRF51_UART(dev);
261 
262     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
263                              uart_event, NULL, s, NULL, true);
264 }
265 
266 static void nrf51_uart_init(Object *obj)
267 {
268     NRF51UARTState *s = NRF51_UART(obj);
269     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
270 
271     memory_region_init_io(&s->iomem, obj, &uart_ops, s,
272                           "nrf51_soc.uart", UART_SIZE);
273     sysbus_init_mmio(sbd, &s->iomem);
274     sysbus_init_irq(sbd, &s->irq);
275 }
276 
277 static int nrf51_uart_post_load(void *opaque, int version_id)
278 {
279     NRF51UARTState *s = NRF51_UART(opaque);
280 
281     if (s->pending_tx_byte) {
282         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
283                                              uart_transmit, s);
284     }
285 
286     return 0;
287 }
288 
289 static const VMStateDescription nrf51_uart_vmstate = {
290     .name = "nrf51_soc.uart",
291     .post_load = nrf51_uart_post_load,
292     .fields = (VMStateField[]) {
293         VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C),
294         VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH),
295         VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState),
296         VMSTATE_UINT32(rx_fifo_len, NRF51UARTState),
297         VMSTATE_BOOL(rx_started, NRF51UARTState),
298         VMSTATE_BOOL(tx_started, NRF51UARTState),
299         VMSTATE_BOOL(pending_tx_byte, NRF51UARTState),
300         VMSTATE_BOOL(enabled, NRF51UARTState),
301         VMSTATE_END_OF_LIST()
302     }
303 };
304 
305 static Property nrf51_uart_properties[] = {
306     DEFINE_PROP_CHR("chardev", NRF51UARTState, chr),
307     DEFINE_PROP_END_OF_LIST(),
308 };
309 
310 static void nrf51_uart_class_init(ObjectClass *klass, void *data)
311 {
312     DeviceClass *dc = DEVICE_CLASS(klass);
313 
314     dc->reset = nrf51_uart_reset;
315     dc->realize = nrf51_uart_realize;
316     dc->props = nrf51_uart_properties;
317     dc->vmsd = &nrf51_uart_vmstate;
318 }
319 
320 static const TypeInfo nrf51_uart_info = {
321     .name = TYPE_NRF51_UART,
322     .parent = TYPE_SYS_BUS_DEVICE,
323     .instance_size = sizeof(NRF51UARTState),
324     .instance_init = nrf51_uart_init,
325     .class_init = nrf51_uart_class_init
326 };
327 
328 static void nrf51_uart_register_types(void)
329 {
330     type_register_static(&nrf51_uart_info);
331 }
332 
333 type_init(nrf51_uart_register_types)
334