xref: /qemu/hw/char/serial.c (revision 4d7b9a63)
1 /*
2  * QEMU 16550A UART emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2008 Citrix Systems, Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "hw/irq.h"
29 #include "migration/vmstate.h"
30 #include "chardev/char-serial.h"
31 #include "qapi/error.h"
32 #include "qemu/timer.h"
33 #include "sysemu/reset.h"
34 #include "sysemu/runstate.h"
35 #include "qemu/error-report.h"
36 #include "trace.h"
37 #include "hw/qdev-properties.h"
38 
39 //#define DEBUG_SERIAL
40 
41 #define UART_LCR_DLAB	0x80	/* Divisor latch access bit */
42 
43 #define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
44 #define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
45 #define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
46 #define UART_IER_RDI	0x01	/* Enable receiver data interrupt */
47 
48 #define UART_IIR_NO_INT	0x01	/* No interrupts pending */
49 #define UART_IIR_ID	0x06	/* Mask for the interrupt ID */
50 
51 #define UART_IIR_MSI	0x00	/* Modem status interrupt */
52 #define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
53 #define UART_IIR_RDI	0x04	/* Receiver data interrupt */
54 #define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */
55 #define UART_IIR_CTI    0x0C    /* Character Timeout Indication */
56 
57 #define UART_IIR_FENF   0x80    /* Fifo enabled, but not functionning */
58 #define UART_IIR_FE     0xC0    /* Fifo enabled */
59 
60 /*
61  * These are the definitions for the Modem Control Register
62  */
63 #define UART_MCR_LOOP	0x10	/* Enable loopback test mode */
64 #define UART_MCR_OUT2	0x08	/* Out2 complement */
65 #define UART_MCR_OUT1	0x04	/* Out1 complement */
66 #define UART_MCR_RTS	0x02	/* RTS complement */
67 #define UART_MCR_DTR	0x01	/* DTR complement */
68 
69 /*
70  * These are the definitions for the Modem Status Register
71  */
72 #define UART_MSR_DCD	0x80	/* Data Carrier Detect */
73 #define UART_MSR_RI	0x40	/* Ring Indicator */
74 #define UART_MSR_DSR	0x20	/* Data Set Ready */
75 #define UART_MSR_CTS	0x10	/* Clear to Send */
76 #define UART_MSR_DDCD	0x08	/* Delta DCD */
77 #define UART_MSR_TERI	0x04	/* Trailing edge ring indicator */
78 #define UART_MSR_DDSR	0x02	/* Delta DSR */
79 #define UART_MSR_DCTS	0x01	/* Delta CTS */
80 #define UART_MSR_ANY_DELTA 0x0F	/* Any of the delta bits! */
81 
82 #define UART_LSR_TEMT	0x40	/* Transmitter empty */
83 #define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
84 #define UART_LSR_BI	0x10	/* Break interrupt indicator */
85 #define UART_LSR_FE	0x08	/* Frame error indicator */
86 #define UART_LSR_PE	0x04	/* Parity error indicator */
87 #define UART_LSR_OE	0x02	/* Overrun error indicator */
88 #define UART_LSR_DR	0x01	/* Receiver data ready */
89 #define UART_LSR_INT_ANY 0x1E	/* Any of the lsr-interrupt-triggering status bits */
90 
91 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
92 
93 #define UART_FCR_ITL_1      0x00 /* 1 byte ITL */
94 #define UART_FCR_ITL_2      0x40 /* 4 bytes ITL */
95 #define UART_FCR_ITL_3      0x80 /* 8 bytes ITL */
96 #define UART_FCR_ITL_4      0xC0 /* 14 bytes ITL */
97 
98 #define UART_FCR_DMS        0x08    /* DMA Mode Select */
99 #define UART_FCR_XFR        0x04    /* XMIT Fifo Reset */
100 #define UART_FCR_RFR        0x02    /* RCVR Fifo Reset */
101 #define UART_FCR_FE         0x01    /* FIFO Enable */
102 
103 #define MAX_XMIT_RETRY      4
104 
105 #ifdef DEBUG_SERIAL
106 #define DPRINTF(fmt, ...) \
107 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
108 #else
109 #define DPRINTF(fmt, ...) \
110 do {} while (0)
111 #endif
112 
113 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
114 static void serial_xmit(SerialState *s);
115 
116 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
117 {
118     /* Receive overruns do not overwrite FIFO contents. */
119     if (!fifo8_is_full(&s->recv_fifo)) {
120         fifo8_push(&s->recv_fifo, chr);
121     } else {
122         s->lsr |= UART_LSR_OE;
123     }
124 }
125 
126 static void serial_update_irq(SerialState *s)
127 {
128     uint8_t tmp_iir = UART_IIR_NO_INT;
129 
130     if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
131         tmp_iir = UART_IIR_RLSI;
132     } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
133         /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
134          * this is not in the specification but is observed on existing
135          * hardware.  */
136         tmp_iir = UART_IIR_CTI;
137     } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
138                (!(s->fcr & UART_FCR_FE) ||
139                 s->recv_fifo.num >= s->recv_fifo_itl)) {
140         tmp_iir = UART_IIR_RDI;
141     } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
142         tmp_iir = UART_IIR_THRI;
143     } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
144         tmp_iir = UART_IIR_MSI;
145     }
146 
147     s->iir = tmp_iir | (s->iir & 0xF0);
148 
149     if (tmp_iir != UART_IIR_NO_INT) {
150         qemu_irq_raise(s->irq);
151     } else {
152         qemu_irq_lower(s->irq);
153     }
154 }
155 
156 static void serial_update_parameters(SerialState *s)
157 {
158     float speed;
159     int parity, data_bits, stop_bits, frame_size;
160     QEMUSerialSetParams ssp;
161 
162     /* Start bit. */
163     frame_size = 1;
164     if (s->lcr & 0x08) {
165         /* Parity bit. */
166         frame_size++;
167         if (s->lcr & 0x10)
168             parity = 'E';
169         else
170             parity = 'O';
171     } else {
172             parity = 'N';
173     }
174     if (s->lcr & 0x04) {
175         stop_bits = 2;
176     } else {
177         stop_bits = 1;
178     }
179 
180     data_bits = (s->lcr & 0x03) + 5;
181     frame_size += data_bits + stop_bits;
182     /* Zero divisor should give about 3500 baud */
183     speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
184     ssp.speed = speed;
185     ssp.parity = parity;
186     ssp.data_bits = data_bits;
187     ssp.stop_bits = stop_bits;
188     s->char_transmit_time =  (NANOSECONDS_PER_SECOND / speed) * frame_size;
189     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
190     trace_serial_update_parameters(speed, parity, data_bits, stop_bits);
191 }
192 
193 static void serial_update_msl(SerialState *s)
194 {
195     uint8_t omsr;
196     int flags;
197 
198     timer_del(s->modem_status_poll);
199 
200     if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
201                           &flags) == -ENOTSUP) {
202         s->poll_msl = -1;
203         return;
204     }
205 
206     omsr = s->msr;
207 
208     s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
209     s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
210     s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
211     s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
212 
213     if (s->msr != omsr) {
214          /* Set delta bits */
215          s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
216          /* UART_MSR_TERI only if change was from 1 -> 0 */
217          if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
218              s->msr &= ~UART_MSR_TERI;
219          serial_update_irq(s);
220     }
221 
222     /* The real 16550A apparently has a 250ns response latency to line status changes.
223        We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
224 
225     if (s->poll_msl) {
226         timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
227                   NANOSECONDS_PER_SECOND / 100);
228     }
229 }
230 
231 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
232                                 void *opaque)
233 {
234     SerialState *s = opaque;
235     s->watch_tag = 0;
236     serial_xmit(s);
237     return FALSE;
238 }
239 
240 static void serial_xmit(SerialState *s)
241 {
242     do {
243         assert(!(s->lsr & UART_LSR_TEMT));
244         if (s->tsr_retry == 0) {
245             assert(!(s->lsr & UART_LSR_THRE));
246 
247             if (s->fcr & UART_FCR_FE) {
248                 assert(!fifo8_is_empty(&s->xmit_fifo));
249                 s->tsr = fifo8_pop(&s->xmit_fifo);
250                 if (!s->xmit_fifo.num) {
251                     s->lsr |= UART_LSR_THRE;
252                 }
253             } else {
254                 s->tsr = s->thr;
255                 s->lsr |= UART_LSR_THRE;
256             }
257             if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
258                 s->thr_ipending = 1;
259                 serial_update_irq(s);
260             }
261         }
262 
263         if (s->mcr & UART_MCR_LOOP) {
264             /* in loopback mode, say that we just received a char */
265             serial_receive1(s, &s->tsr, 1);
266         } else {
267             int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
268 
269             if ((rc == 0 ||
270                  (rc == -1 && errno == EAGAIN)) &&
271                 s->tsr_retry < MAX_XMIT_RETRY) {
272                 assert(s->watch_tag == 0);
273                 s->watch_tag =
274                     qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
275                                           serial_watch_cb, s);
276                 if (s->watch_tag > 0) {
277                     s->tsr_retry++;
278                     return;
279                 }
280             }
281         }
282         s->tsr_retry = 0;
283 
284         /* Transmit another byte if it is already available. It is only
285            possible when FIFO is enabled and not empty. */
286     } while (!(s->lsr & UART_LSR_THRE));
287 
288     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
289     s->lsr |= UART_LSR_TEMT;
290 }
291 
292 /* Setter for FCR.
293    is_load flag means, that value is set while loading VM state
294    and interrupt should not be invoked */
295 static void serial_write_fcr(SerialState *s, uint8_t val)
296 {
297     /* Set fcr - val only has the bits that are supposed to "stick" */
298     s->fcr = val;
299 
300     if (val & UART_FCR_FE) {
301         s->iir |= UART_IIR_FE;
302         /* Set recv_fifo trigger Level */
303         switch (val & 0xC0) {
304         case UART_FCR_ITL_1:
305             s->recv_fifo_itl = 1;
306             break;
307         case UART_FCR_ITL_2:
308             s->recv_fifo_itl = 4;
309             break;
310         case UART_FCR_ITL_3:
311             s->recv_fifo_itl = 8;
312             break;
313         case UART_FCR_ITL_4:
314             s->recv_fifo_itl = 14;
315             break;
316         }
317     } else {
318         s->iir &= ~UART_IIR_FE;
319     }
320 }
321 
322 static void serial_update_tiocm(SerialState *s)
323 {
324     int flags;
325 
326     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
327 
328     flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
329 
330     if (s->mcr & UART_MCR_RTS) {
331         flags |= CHR_TIOCM_RTS;
332     }
333     if (s->mcr & UART_MCR_DTR) {
334         flags |= CHR_TIOCM_DTR;
335     }
336 
337     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
338 }
339 
340 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
341                                 unsigned size)
342 {
343     SerialState *s = opaque;
344 
345     assert(size == 1 && addr < 8);
346     trace_serial_ioport_write(addr, val);
347     switch(addr) {
348     default:
349     case 0:
350         if (s->lcr & UART_LCR_DLAB) {
351             if (size == 1) {
352                 s->divider = (s->divider & 0xff00) | val;
353             } else {
354                 s->divider = val;
355             }
356             serial_update_parameters(s);
357         } else {
358             s->thr = (uint8_t) val;
359             if(s->fcr & UART_FCR_FE) {
360                 /* xmit overruns overwrite data, so make space if needed */
361                 if (fifo8_is_full(&s->xmit_fifo)) {
362                     fifo8_pop(&s->xmit_fifo);
363                 }
364                 fifo8_push(&s->xmit_fifo, s->thr);
365             }
366             s->thr_ipending = 0;
367             s->lsr &= ~UART_LSR_THRE;
368             s->lsr &= ~UART_LSR_TEMT;
369             serial_update_irq(s);
370             if (s->tsr_retry == 0) {
371                 serial_xmit(s);
372             }
373         }
374         break;
375     case 1:
376         if (s->lcr & UART_LCR_DLAB) {
377             s->divider = (s->divider & 0x00ff) | (val << 8);
378             serial_update_parameters(s);
379         } else {
380             uint8_t changed = (s->ier ^ val) & 0x0f;
381             s->ier = val & 0x0f;
382             /* If the backend device is a real serial port, turn polling of the modem
383              * status lines on physical port on or off depending on UART_IER_MSI state.
384              */
385             if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
386                 if (s->ier & UART_IER_MSI) {
387                      s->poll_msl = 1;
388                      serial_update_msl(s);
389                 } else {
390                      timer_del(s->modem_status_poll);
391                      s->poll_msl = 0;
392                 }
393             }
394 
395             /* Turning on the THRE interrupt on IER can trigger the interrupt
396              * if LSR.THRE=1, even if it had been masked before by reading IIR.
397              * This is not in the datasheet, but Windows relies on it.  It is
398              * unclear if THRE has to be resampled every time THRI becomes
399              * 1, or only on the rising edge.  Bochs does the latter, and Windows
400              * always toggles IER to all zeroes and back to all ones, so do the
401              * same.
402              *
403              * If IER.THRI is zero, thr_ipending is not used.  Set it to zero
404              * so that the thr_ipending subsection is not migrated.
405              */
406             if (changed & UART_IER_THRI) {
407                 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
408                     s->thr_ipending = 1;
409                 } else {
410                     s->thr_ipending = 0;
411                 }
412             }
413 
414             if (changed) {
415                 serial_update_irq(s);
416             }
417         }
418         break;
419     case 2:
420         /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
421         if ((val ^ s->fcr) & UART_FCR_FE) {
422             val |= UART_FCR_XFR | UART_FCR_RFR;
423         }
424 
425         /* FIFO clear */
426 
427         if (val & UART_FCR_RFR) {
428             s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
429             timer_del(s->fifo_timeout_timer);
430             s->timeout_ipending = 0;
431             fifo8_reset(&s->recv_fifo);
432         }
433 
434         if (val & UART_FCR_XFR) {
435             s->lsr |= UART_LSR_THRE;
436             s->thr_ipending = 1;
437             fifo8_reset(&s->xmit_fifo);
438         }
439 
440         serial_write_fcr(s, val & 0xC9);
441         serial_update_irq(s);
442         break;
443     case 3:
444         {
445             int break_enable;
446             s->lcr = val;
447             serial_update_parameters(s);
448             break_enable = (val >> 6) & 1;
449             if (break_enable != s->last_break_enable) {
450                 s->last_break_enable = break_enable;
451                 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
452                                   &break_enable);
453             }
454         }
455         break;
456     case 4:
457         {
458             int old_mcr = s->mcr;
459             s->mcr = val & 0x1f;
460             if (val & UART_MCR_LOOP)
461                 break;
462 
463             if (s->poll_msl >= 0 && old_mcr != s->mcr) {
464                 serial_update_tiocm(s);
465                 /* Update the modem status after a one-character-send wait-time, since there may be a response
466                    from the device/computer at the other end of the serial line */
467                 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
468             }
469         }
470         break;
471     case 5:
472         break;
473     case 6:
474         break;
475     case 7:
476         s->scr = val;
477         break;
478     }
479 }
480 
481 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
482 {
483     SerialState *s = opaque;
484     uint32_t ret;
485 
486     assert(size == 1 && addr < 8);
487     switch(addr) {
488     default:
489     case 0:
490         if (s->lcr & UART_LCR_DLAB) {
491             ret = s->divider & 0xff;
492         } else {
493             if(s->fcr & UART_FCR_FE) {
494                 ret = fifo8_is_empty(&s->recv_fifo) ?
495                             0 : fifo8_pop(&s->recv_fifo);
496                 if (s->recv_fifo.num == 0) {
497                     s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
498                 } else {
499                     timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
500                 }
501                 s->timeout_ipending = 0;
502             } else {
503                 ret = s->rbr;
504                 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
505             }
506             serial_update_irq(s);
507             if (!(s->mcr & UART_MCR_LOOP)) {
508                 /* in loopback mode, don't receive any data */
509                 qemu_chr_fe_accept_input(&s->chr);
510             }
511         }
512         break;
513     case 1:
514         if (s->lcr & UART_LCR_DLAB) {
515             ret = (s->divider >> 8) & 0xff;
516         } else {
517             ret = s->ier;
518         }
519         break;
520     case 2:
521         ret = s->iir;
522         if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
523             s->thr_ipending = 0;
524             serial_update_irq(s);
525         }
526         break;
527     case 3:
528         ret = s->lcr;
529         break;
530     case 4:
531         ret = s->mcr;
532         break;
533     case 5:
534         ret = s->lsr;
535         /* Clear break and overrun interrupts */
536         if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
537             s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
538             serial_update_irq(s);
539         }
540         break;
541     case 6:
542         if (s->mcr & UART_MCR_LOOP) {
543             /* in loopback, the modem output pins are connected to the
544                inputs */
545             ret = (s->mcr & 0x0c) << 4;
546             ret |= (s->mcr & 0x02) << 3;
547             ret |= (s->mcr & 0x01) << 5;
548         } else {
549             if (s->poll_msl >= 0)
550                 serial_update_msl(s);
551             ret = s->msr;
552             /* Clear delta bits & msr int after read, if they were set */
553             if (s->msr & UART_MSR_ANY_DELTA) {
554                 s->msr &= 0xF0;
555                 serial_update_irq(s);
556             }
557         }
558         break;
559     case 7:
560         ret = s->scr;
561         break;
562     }
563     trace_serial_ioport_read(addr, ret);
564     return ret;
565 }
566 
567 static int serial_can_receive(SerialState *s)
568 {
569     if(s->fcr & UART_FCR_FE) {
570         if (s->recv_fifo.num < UART_FIFO_LENGTH) {
571             /*
572              * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
573              * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
574              * effect will be to almost always fill the fifo completely before
575              * the guest has a chance to respond, effectively overriding the ITL
576              * that the guest has set.
577              */
578             return (s->recv_fifo.num <= s->recv_fifo_itl) ?
579                         s->recv_fifo_itl - s->recv_fifo.num : 1;
580         } else {
581             return 0;
582         }
583     } else {
584         return !(s->lsr & UART_LSR_DR);
585     }
586 }
587 
588 static void serial_receive_break(SerialState *s)
589 {
590     s->rbr = 0;
591     /* When the LSR_DR is set a null byte is pushed into the fifo */
592     recv_fifo_put(s, '\0');
593     s->lsr |= UART_LSR_BI | UART_LSR_DR;
594     serial_update_irq(s);
595 }
596 
597 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
598 static void fifo_timeout_int (void *opaque) {
599     SerialState *s = opaque;
600     if (s->recv_fifo.num) {
601         s->timeout_ipending = 1;
602         serial_update_irq(s);
603     }
604 }
605 
606 static int serial_can_receive1(void *opaque)
607 {
608     SerialState *s = opaque;
609     return serial_can_receive(s);
610 }
611 
612 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
613 {
614     SerialState *s = opaque;
615 
616     if (s->wakeup) {
617         qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
618     }
619     if(s->fcr & UART_FCR_FE) {
620         int i;
621         for (i = 0; i < size; i++) {
622             recv_fifo_put(s, buf[i]);
623         }
624         s->lsr |= UART_LSR_DR;
625         /* call the timeout receive callback in 4 char transmit time */
626         timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
627     } else {
628         if (s->lsr & UART_LSR_DR)
629             s->lsr |= UART_LSR_OE;
630         s->rbr = buf[0];
631         s->lsr |= UART_LSR_DR;
632     }
633     serial_update_irq(s);
634 }
635 
636 static void serial_event(void *opaque, QEMUChrEvent event)
637 {
638     SerialState *s = opaque;
639     DPRINTF("event %x\n", event);
640     if (event == CHR_EVENT_BREAK)
641         serial_receive_break(s);
642 }
643 
644 static int serial_pre_save(void *opaque)
645 {
646     SerialState *s = opaque;
647     s->fcr_vmstate = s->fcr;
648 
649     return 0;
650 }
651 
652 static int serial_pre_load(void *opaque)
653 {
654     SerialState *s = opaque;
655     s->thr_ipending = -1;
656     s->poll_msl = -1;
657     return 0;
658 }
659 
660 static int serial_post_load(void *opaque, int version_id)
661 {
662     SerialState *s = opaque;
663 
664     if (version_id < 3) {
665         s->fcr_vmstate = 0;
666     }
667     if (s->thr_ipending == -1) {
668         s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
669     }
670 
671     if (s->tsr_retry > 0) {
672         /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty).  */
673         if (s->lsr & UART_LSR_TEMT) {
674             error_report("inconsistent state in serial device "
675                          "(tsr empty, tsr_retry=%d", s->tsr_retry);
676             return -1;
677         }
678 
679         if (s->tsr_retry > MAX_XMIT_RETRY) {
680             s->tsr_retry = MAX_XMIT_RETRY;
681         }
682 
683         assert(s->watch_tag == 0);
684         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
685                                              serial_watch_cb, s);
686     } else {
687         /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty).  */
688         if (!(s->lsr & UART_LSR_TEMT)) {
689             error_report("inconsistent state in serial device "
690                          "(tsr not empty, tsr_retry=0");
691             return -1;
692         }
693     }
694 
695     s->last_break_enable = (s->lcr >> 6) & 1;
696     /* Initialize fcr via setter to perform essential side-effects */
697     serial_write_fcr(s, s->fcr_vmstate);
698     serial_update_parameters(s);
699     return 0;
700 }
701 
702 static bool serial_thr_ipending_needed(void *opaque)
703 {
704     SerialState *s = opaque;
705 
706     if (s->ier & UART_IER_THRI) {
707         bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
708         return s->thr_ipending != expected_value;
709     } else {
710         /* LSR.THRE will be sampled again when the interrupt is
711          * enabled.  thr_ipending is not used in this case, do
712          * not migrate it.
713          */
714         return false;
715     }
716 }
717 
718 static const VMStateDescription vmstate_serial_thr_ipending = {
719     .name = "serial/thr_ipending",
720     .version_id = 1,
721     .minimum_version_id = 1,
722     .needed = serial_thr_ipending_needed,
723     .fields = (VMStateField[]) {
724         VMSTATE_INT32(thr_ipending, SerialState),
725         VMSTATE_END_OF_LIST()
726     }
727 };
728 
729 static bool serial_tsr_needed(void *opaque)
730 {
731     SerialState *s = (SerialState *)opaque;
732     return s->tsr_retry != 0;
733 }
734 
735 static const VMStateDescription vmstate_serial_tsr = {
736     .name = "serial/tsr",
737     .version_id = 1,
738     .minimum_version_id = 1,
739     .needed = serial_tsr_needed,
740     .fields = (VMStateField[]) {
741         VMSTATE_UINT32(tsr_retry, SerialState),
742         VMSTATE_UINT8(thr, SerialState),
743         VMSTATE_UINT8(tsr, SerialState),
744         VMSTATE_END_OF_LIST()
745     }
746 };
747 
748 static bool serial_recv_fifo_needed(void *opaque)
749 {
750     SerialState *s = (SerialState *)opaque;
751     return !fifo8_is_empty(&s->recv_fifo);
752 
753 }
754 
755 static const VMStateDescription vmstate_serial_recv_fifo = {
756     .name = "serial/recv_fifo",
757     .version_id = 1,
758     .minimum_version_id = 1,
759     .needed = serial_recv_fifo_needed,
760     .fields = (VMStateField[]) {
761         VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
762         VMSTATE_END_OF_LIST()
763     }
764 };
765 
766 static bool serial_xmit_fifo_needed(void *opaque)
767 {
768     SerialState *s = (SerialState *)opaque;
769     return !fifo8_is_empty(&s->xmit_fifo);
770 }
771 
772 static const VMStateDescription vmstate_serial_xmit_fifo = {
773     .name = "serial/xmit_fifo",
774     .version_id = 1,
775     .minimum_version_id = 1,
776     .needed = serial_xmit_fifo_needed,
777     .fields = (VMStateField[]) {
778         VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
779         VMSTATE_END_OF_LIST()
780     }
781 };
782 
783 static bool serial_fifo_timeout_timer_needed(void *opaque)
784 {
785     SerialState *s = (SerialState *)opaque;
786     return timer_pending(s->fifo_timeout_timer);
787 }
788 
789 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
790     .name = "serial/fifo_timeout_timer",
791     .version_id = 1,
792     .minimum_version_id = 1,
793     .needed = serial_fifo_timeout_timer_needed,
794     .fields = (VMStateField[]) {
795         VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
796         VMSTATE_END_OF_LIST()
797     }
798 };
799 
800 static bool serial_timeout_ipending_needed(void *opaque)
801 {
802     SerialState *s = (SerialState *)opaque;
803     return s->timeout_ipending != 0;
804 }
805 
806 static const VMStateDescription vmstate_serial_timeout_ipending = {
807     .name = "serial/timeout_ipending",
808     .version_id = 1,
809     .minimum_version_id = 1,
810     .needed = serial_timeout_ipending_needed,
811     .fields = (VMStateField[]) {
812         VMSTATE_INT32(timeout_ipending, SerialState),
813         VMSTATE_END_OF_LIST()
814     }
815 };
816 
817 static bool serial_poll_needed(void *opaque)
818 {
819     SerialState *s = (SerialState *)opaque;
820     return s->poll_msl >= 0;
821 }
822 
823 static const VMStateDescription vmstate_serial_poll = {
824     .name = "serial/poll",
825     .version_id = 1,
826     .needed = serial_poll_needed,
827     .minimum_version_id = 1,
828     .fields = (VMStateField[]) {
829         VMSTATE_INT32(poll_msl, SerialState),
830         VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
831         VMSTATE_END_OF_LIST()
832     }
833 };
834 
835 const VMStateDescription vmstate_serial = {
836     .name = "serial",
837     .version_id = 3,
838     .minimum_version_id = 2,
839     .pre_save = serial_pre_save,
840     .pre_load = serial_pre_load,
841     .post_load = serial_post_load,
842     .fields = (VMStateField[]) {
843         VMSTATE_UINT16_V(divider, SerialState, 2),
844         VMSTATE_UINT8(rbr, SerialState),
845         VMSTATE_UINT8(ier, SerialState),
846         VMSTATE_UINT8(iir, SerialState),
847         VMSTATE_UINT8(lcr, SerialState),
848         VMSTATE_UINT8(mcr, SerialState),
849         VMSTATE_UINT8(lsr, SerialState),
850         VMSTATE_UINT8(msr, SerialState),
851         VMSTATE_UINT8(scr, SerialState),
852         VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
853         VMSTATE_END_OF_LIST()
854     },
855     .subsections = (const VMStateDescription*[]) {
856         &vmstate_serial_thr_ipending,
857         &vmstate_serial_tsr,
858         &vmstate_serial_recv_fifo,
859         &vmstate_serial_xmit_fifo,
860         &vmstate_serial_fifo_timeout_timer,
861         &vmstate_serial_timeout_ipending,
862         &vmstate_serial_poll,
863         NULL
864     }
865 };
866 
867 static void serial_reset(void *opaque)
868 {
869     SerialState *s = opaque;
870 
871     if (s->watch_tag > 0) {
872         g_source_remove(s->watch_tag);
873         s->watch_tag = 0;
874     }
875 
876     s->rbr = 0;
877     s->ier = 0;
878     s->iir = UART_IIR_NO_INT;
879     s->lcr = 0;
880     s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
881     s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
882     /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
883     s->divider = 0x0C;
884     s->mcr = UART_MCR_OUT2;
885     s->scr = 0;
886     s->tsr_retry = 0;
887     s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
888     s->poll_msl = 0;
889 
890     s->timeout_ipending = 0;
891     timer_del(s->fifo_timeout_timer);
892     timer_del(s->modem_status_poll);
893 
894     fifo8_reset(&s->recv_fifo);
895     fifo8_reset(&s->xmit_fifo);
896 
897     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
898 
899     s->thr_ipending = 0;
900     s->last_break_enable = 0;
901     qemu_irq_lower(s->irq);
902 
903     serial_update_msl(s);
904     s->msr &= ~UART_MSR_ANY_DELTA;
905 }
906 
907 static int serial_be_change(void *opaque)
908 {
909     SerialState *s = opaque;
910 
911     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
912                              serial_event, serial_be_change, s, NULL, true);
913 
914     serial_update_parameters(s);
915 
916     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
917                       &s->last_break_enable);
918 
919     s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
920     serial_update_msl(s);
921 
922     if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
923         serial_update_tiocm(s);
924     }
925 
926     if (s->watch_tag > 0) {
927         g_source_remove(s->watch_tag);
928         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
929                                              serial_watch_cb, s);
930     }
931 
932     return 0;
933 }
934 
935 static void serial_realize(DeviceState *dev, Error **errp)
936 {
937     SerialState *s = SERIAL(dev);
938 
939     s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
940 
941     s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
942     qemu_register_reset(serial_reset, s);
943 
944     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
945                              serial_event, serial_be_change, s, NULL, true);
946     fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
947     fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
948     serial_reset(s);
949 }
950 
951 static void serial_unrealize(DeviceState *dev)
952 {
953     SerialState *s = SERIAL(dev);
954 
955     qemu_chr_fe_deinit(&s->chr, false);
956 
957     timer_del(s->modem_status_poll);
958     timer_free(s->modem_status_poll);
959 
960     timer_del(s->fifo_timeout_timer);
961     timer_free(s->fifo_timeout_timer);
962 
963     fifo8_destroy(&s->recv_fifo);
964     fifo8_destroy(&s->xmit_fifo);
965 
966     qemu_unregister_reset(serial_reset, s);
967 }
968 
969 /* Change the main reference oscillator frequency. */
970 void serial_set_frequency(SerialState *s, uint32_t frequency)
971 {
972     s->baudbase = frequency;
973     serial_update_parameters(s);
974 }
975 
976 const MemoryRegionOps serial_io_ops = {
977     .read = serial_ioport_read,
978     .write = serial_ioport_write,
979     .impl = {
980         .min_access_size = 1,
981         .max_access_size = 1,
982     },
983     .endianness = DEVICE_LITTLE_ENDIAN,
984 };
985 
986 static Property serial_properties[] = {
987     DEFINE_PROP_CHR("chardev", SerialState, chr),
988     DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
989     DEFINE_PROP_END_OF_LIST(),
990 };
991 
992 static void serial_class_init(ObjectClass *klass, void* data)
993 {
994     DeviceClass *dc = DEVICE_CLASS(klass);
995 
996     /* internal device for serialio/serialmm, not user-creatable */
997     dc->user_creatable = false;
998     dc->realize = serial_realize;
999     dc->unrealize = serial_unrealize;
1000     device_class_set_props(dc, serial_properties);
1001 }
1002 
1003 static const TypeInfo serial_info = {
1004     .name = TYPE_SERIAL,
1005     .parent = TYPE_DEVICE,
1006     .instance_size = sizeof(SerialState),
1007     .class_init = serial_class_init,
1008 };
1009 
1010 /* Memory mapped interface */
1011 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
1012                                unsigned size)
1013 {
1014     SerialMM *s = SERIAL_MM(opaque);
1015     return serial_ioport_read(&s->serial, addr >> s->regshift, 1);
1016 }
1017 
1018 static void serial_mm_write(void *opaque, hwaddr addr,
1019                             uint64_t value, unsigned size)
1020 {
1021     SerialMM *s = SERIAL_MM(opaque);
1022     value &= 255;
1023     serial_ioport_write(&s->serial, addr >> s->regshift, value, 1);
1024 }
1025 
1026 static const MemoryRegionOps serial_mm_ops[3] = {
1027     [DEVICE_NATIVE_ENDIAN] = {
1028         .read = serial_mm_read,
1029         .write = serial_mm_write,
1030         .endianness = DEVICE_NATIVE_ENDIAN,
1031         .valid.max_access_size = 8,
1032         .impl.max_access_size = 8,
1033     },
1034     [DEVICE_LITTLE_ENDIAN] = {
1035         .read = serial_mm_read,
1036         .write = serial_mm_write,
1037         .endianness = DEVICE_LITTLE_ENDIAN,
1038         .valid.max_access_size = 8,
1039         .impl.max_access_size = 8,
1040     },
1041     [DEVICE_BIG_ENDIAN] = {
1042         .read = serial_mm_read,
1043         .write = serial_mm_write,
1044         .endianness = DEVICE_BIG_ENDIAN,
1045         .valid.max_access_size = 8,
1046         .impl.max_access_size = 8,
1047     },
1048 };
1049 
1050 static void serial_mm_realize(DeviceState *dev, Error **errp)
1051 {
1052     SerialMM *smm = SERIAL_MM(dev);
1053     SerialState *s = &smm->serial;
1054 
1055     if (!qdev_realize(DEVICE(s), NULL, errp)) {
1056         return;
1057     }
1058 
1059     memory_region_init_io(&s->io, OBJECT(dev),
1060                           &serial_mm_ops[smm->endianness], smm, "serial",
1061                           8 << smm->regshift);
1062     sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io);
1063     sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq);
1064 }
1065 
1066 static const VMStateDescription vmstate_serial_mm = {
1067     .name = "serial",
1068     .version_id = 3,
1069     .minimum_version_id = 2,
1070     .fields = (VMStateField[]) {
1071         VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState),
1072         VMSTATE_END_OF_LIST()
1073     }
1074 };
1075 
1076 SerialMM *serial_mm_init(MemoryRegion *address_space,
1077                          hwaddr base, int regshift,
1078                          qemu_irq irq, int baudbase,
1079                          Chardev *chr, enum device_endian end)
1080 {
1081     SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM));
1082     MemoryRegion *mr;
1083 
1084     qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift);
1085     qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase);
1086     qdev_prop_set_chr(DEVICE(smm), "chardev", chr);
1087     qdev_set_legacy_instance_id(DEVICE(smm), base, 2);
1088     qdev_prop_set_uint8(DEVICE(smm), "endianness", end);
1089     sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal);
1090 
1091     sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq);
1092     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0);
1093     memory_region_add_subregion(address_space, base, mr);
1094 
1095     return smm;
1096 }
1097 
1098 static void serial_mm_instance_init(Object *o)
1099 {
1100     SerialMM *smm = SERIAL_MM(o);
1101 
1102     object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL);
1103 
1104     qdev_alias_all_properties(DEVICE(&smm->serial), o);
1105 }
1106 
1107 static Property serial_mm_properties[] = {
1108     /*
1109      * Set the spacing between adjacent memory-mapped UART registers.
1110      * Each register will be at (1 << regshift) bytes after the
1111      * previous one.
1112      */
1113     DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0),
1114     DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN),
1115     DEFINE_PROP_END_OF_LIST(),
1116 };
1117 
1118 static void serial_mm_class_init(ObjectClass *oc, void *data)
1119 {
1120     DeviceClass *dc = DEVICE_CLASS(oc);
1121 
1122     device_class_set_props(dc, serial_mm_properties);
1123     dc->realize = serial_mm_realize;
1124     dc->vmsd = &vmstate_serial_mm;
1125 }
1126 
1127 static const TypeInfo serial_mm_info = {
1128     .name = TYPE_SERIAL_MM,
1129     .parent = TYPE_SYS_BUS_DEVICE,
1130     .class_init = serial_mm_class_init,
1131     .instance_init = serial_mm_instance_init,
1132     .instance_size = sizeof(SerialMM),
1133     .class_init = serial_mm_class_init,
1134 };
1135 
1136 static void serial_register_types(void)
1137 {
1138     type_register_static(&serial_info);
1139     type_register_static(&serial_mm_info);
1140 }
1141 
1142 type_init(serial_register_types)
1143