xref: /qemu/hw/core/loader.c (revision 61cc8724)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "migration/vmstate.h"
51 #include "monitor/monitor.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/sysemu.h"
54 #include "uboot_image.h"
55 #include "hw/loader.h"
56 #include "hw/nvram/fw_cfg.h"
57 #include "exec/memory.h"
58 #include "exec/address-spaces.h"
59 #include "hw/boards.h"
60 #include "qemu/cutils.h"
61 #include "sysemu/runstate.h"
62 
63 #include <zlib.h>
64 
65 static int roms_loaded;
66 
67 /* return the size or -1 if error */
68 int64_t get_image_size(const char *filename)
69 {
70     int fd;
71     int64_t size;
72     fd = open(filename, O_RDONLY | O_BINARY);
73     if (fd < 0)
74         return -1;
75     size = lseek(fd, 0, SEEK_END);
76     close(fd);
77     return size;
78 }
79 
80 /* return the size or -1 if error */
81 ssize_t load_image_size(const char *filename, void *addr, size_t size)
82 {
83     int fd;
84     ssize_t actsize, l = 0;
85 
86     fd = open(filename, O_RDONLY | O_BINARY);
87     if (fd < 0) {
88         return -1;
89     }
90 
91     while ((actsize = read(fd, addr + l, size - l)) > 0) {
92         l += actsize;
93     }
94 
95     close(fd);
96 
97     return actsize < 0 ? -1 : l;
98 }
99 
100 /* read()-like version */
101 ssize_t read_targphys(const char *name,
102                       int fd, hwaddr dst_addr, size_t nbytes)
103 {
104     uint8_t *buf;
105     ssize_t did;
106 
107     buf = g_malloc(nbytes);
108     did = read(fd, buf, nbytes);
109     if (did > 0)
110         rom_add_blob_fixed("read", buf, did, dst_addr);
111     g_free(buf);
112     return did;
113 }
114 
115 int load_image_targphys(const char *filename,
116                         hwaddr addr, uint64_t max_sz)
117 {
118     return load_image_targphys_as(filename, addr, max_sz, NULL);
119 }
120 
121 /* return the size or -1 if error */
122 int load_image_targphys_as(const char *filename,
123                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
124 {
125     int size;
126 
127     size = get_image_size(filename);
128     if (size < 0 || size > max_sz) {
129         return -1;
130     }
131     if (size > 0) {
132         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
133             return -1;
134         }
135     }
136     return size;
137 }
138 
139 int load_image_mr(const char *filename, MemoryRegion *mr)
140 {
141     int size;
142 
143     if (!memory_access_is_direct(mr, false)) {
144         /* Can only load an image into RAM or ROM */
145         return -1;
146     }
147 
148     size = get_image_size(filename);
149 
150     if (size < 0 || size > memory_region_size(mr)) {
151         return -1;
152     }
153     if (size > 0) {
154         if (rom_add_file_mr(filename, mr, -1) < 0) {
155             return -1;
156         }
157     }
158     return size;
159 }
160 
161 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
162                       const char *source)
163 {
164     const char *nulp;
165     char *ptr;
166 
167     if (buf_size <= 0) return;
168     nulp = memchr(source, 0, buf_size);
169     if (nulp) {
170         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
171     } else {
172         rom_add_blob_fixed(name, source, buf_size, dest);
173         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
174         *ptr = 0;
175     }
176 }
177 
178 /* A.OUT loader */
179 
180 struct exec
181 {
182   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
183   uint32_t a_text;   /* length of text, in bytes */
184   uint32_t a_data;   /* length of data, in bytes */
185   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
186   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
187   uint32_t a_entry;  /* start address */
188   uint32_t a_trsize; /* length of relocation info for text, in bytes */
189   uint32_t a_drsize; /* length of relocation info for data, in bytes */
190 };
191 
192 static void bswap_ahdr(struct exec *e)
193 {
194     bswap32s(&e->a_info);
195     bswap32s(&e->a_text);
196     bswap32s(&e->a_data);
197     bswap32s(&e->a_bss);
198     bswap32s(&e->a_syms);
199     bswap32s(&e->a_entry);
200     bswap32s(&e->a_trsize);
201     bswap32s(&e->a_drsize);
202 }
203 
204 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
205 #define OMAGIC 0407
206 #define NMAGIC 0410
207 #define ZMAGIC 0413
208 #define QMAGIC 0314
209 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
210 #define N_TXTOFF(x)							\
211     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
212      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
213 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
214 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
215 
216 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
217 
218 #define N_DATADDR(x, target_page_size) \
219     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
220      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
221 
222 
223 int load_aout(const char *filename, hwaddr addr, int max_sz,
224               int bswap_needed, hwaddr target_page_size)
225 {
226     int fd;
227     ssize_t size, ret;
228     struct exec e;
229     uint32_t magic;
230 
231     fd = open(filename, O_RDONLY | O_BINARY);
232     if (fd < 0)
233         return -1;
234 
235     size = read(fd, &e, sizeof(e));
236     if (size < 0)
237         goto fail;
238 
239     if (bswap_needed) {
240         bswap_ahdr(&e);
241     }
242 
243     magic = N_MAGIC(e);
244     switch (magic) {
245     case ZMAGIC:
246     case QMAGIC:
247     case OMAGIC:
248         if (e.a_text + e.a_data > max_sz)
249             goto fail;
250         lseek(fd, N_TXTOFF(e), SEEK_SET);
251         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
252         if (size < 0)
253             goto fail;
254         break;
255     case NMAGIC:
256         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
257             goto fail;
258         lseek(fd, N_TXTOFF(e), SEEK_SET);
259         size = read_targphys(filename, fd, addr, e.a_text);
260         if (size < 0)
261             goto fail;
262         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
263                             e.a_data);
264         if (ret < 0)
265             goto fail;
266         size += ret;
267         break;
268     default:
269         goto fail;
270     }
271     close(fd);
272     return size;
273  fail:
274     close(fd);
275     return -1;
276 }
277 
278 /* ELF loader */
279 
280 static void *load_at(int fd, off_t offset, size_t size)
281 {
282     void *ptr;
283     if (lseek(fd, offset, SEEK_SET) < 0)
284         return NULL;
285     ptr = g_malloc(size);
286     if (read(fd, ptr, size) != size) {
287         g_free(ptr);
288         return NULL;
289     }
290     return ptr;
291 }
292 
293 #ifdef ELF_CLASS
294 #undef ELF_CLASS
295 #endif
296 
297 #define ELF_CLASS   ELFCLASS32
298 #include "elf.h"
299 
300 #define SZ		32
301 #define elf_word        uint32_t
302 #define elf_sword        int32_t
303 #define bswapSZs	bswap32s
304 #include "hw/elf_ops.h"
305 
306 #undef elfhdr
307 #undef elf_phdr
308 #undef elf_shdr
309 #undef elf_sym
310 #undef elf_rela
311 #undef elf_note
312 #undef elf_word
313 #undef elf_sword
314 #undef bswapSZs
315 #undef SZ
316 #define elfhdr		elf64_hdr
317 #define elf_phdr	elf64_phdr
318 #define elf_note	elf64_note
319 #define elf_shdr	elf64_shdr
320 #define elf_sym		elf64_sym
321 #define elf_rela        elf64_rela
322 #define elf_word        uint64_t
323 #define elf_sword        int64_t
324 #define bswapSZs	bswap64s
325 #define SZ		64
326 #include "hw/elf_ops.h"
327 
328 const char *load_elf_strerror(int error)
329 {
330     switch (error) {
331     case 0:
332         return "No error";
333     case ELF_LOAD_FAILED:
334         return "Failed to load ELF";
335     case ELF_LOAD_NOT_ELF:
336         return "The image is not ELF";
337     case ELF_LOAD_WRONG_ARCH:
338         return "The image is from incompatible architecture";
339     case ELF_LOAD_WRONG_ENDIAN:
340         return "The image has incorrect endianness";
341     default:
342         return "Unknown error";
343     }
344 }
345 
346 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
347 {
348     int fd;
349     uint8_t e_ident_local[EI_NIDENT];
350     uint8_t *e_ident;
351     size_t hdr_size, off;
352     bool is64l;
353 
354     if (!hdr) {
355         hdr = e_ident_local;
356     }
357     e_ident = hdr;
358 
359     fd = open(filename, O_RDONLY | O_BINARY);
360     if (fd < 0) {
361         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
362         return;
363     }
364     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
365         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
366         goto fail;
367     }
368     if (e_ident[0] != ELFMAG0 ||
369         e_ident[1] != ELFMAG1 ||
370         e_ident[2] != ELFMAG2 ||
371         e_ident[3] != ELFMAG3) {
372         error_setg(errp, "Bad ELF magic");
373         goto fail;
374     }
375 
376     is64l = e_ident[EI_CLASS] == ELFCLASS64;
377     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
378     if (is64) {
379         *is64 = is64l;
380     }
381 
382     off = EI_NIDENT;
383     while (hdr != e_ident_local && off < hdr_size) {
384         size_t br = read(fd, hdr + off, hdr_size - off);
385         switch (br) {
386         case 0:
387             error_setg(errp, "File too short: %s", filename);
388             goto fail;
389         case -1:
390             error_setg_errno(errp, errno, "Failed to read file: %s",
391                              filename);
392             goto fail;
393         }
394         off += br;
395     }
396 
397 fail:
398     close(fd);
399 }
400 
401 /* return < 0 if error, otherwise the number of bytes loaded in memory */
402 int load_elf(const char *filename,
403              uint64_t (*elf_note_fn)(void *, void *, bool),
404              uint64_t (*translate_fn)(void *, uint64_t),
405              void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
406              uint64_t *highaddr, int big_endian, int elf_machine,
407              int clear_lsb, int data_swab)
408 {
409     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
410                        pentry, lowaddr, highaddr, big_endian, elf_machine,
411                        clear_lsb, data_swab, NULL);
412 }
413 
414 /* return < 0 if error, otherwise the number of bytes loaded in memory */
415 int load_elf_as(const char *filename,
416                 uint64_t (*elf_note_fn)(void *, void *, bool),
417                 uint64_t (*translate_fn)(void *, uint64_t),
418                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
419                 uint64_t *highaddr, int big_endian, int elf_machine,
420                 int clear_lsb, int data_swab, AddressSpace *as)
421 {
422     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
423                         pentry, lowaddr, highaddr, big_endian, elf_machine,
424                         clear_lsb, data_swab, as, true);
425 }
426 
427 /* return < 0 if error, otherwise the number of bytes loaded in memory */
428 int load_elf_ram(const char *filename,
429                  uint64_t (*elf_note_fn)(void *, void *, bool),
430                  uint64_t (*translate_fn)(void *, uint64_t),
431                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
432                  uint64_t *highaddr, int big_endian, int elf_machine,
433                  int clear_lsb, int data_swab, AddressSpace *as,
434                  bool load_rom)
435 {
436     return load_elf_ram_sym(filename, elf_note_fn,
437                             translate_fn, translate_opaque,
438                             pentry, lowaddr, highaddr, big_endian,
439                             elf_machine, clear_lsb, data_swab, as,
440                             load_rom, NULL);
441 }
442 
443 /* return < 0 if error, otherwise the number of bytes loaded in memory */
444 int load_elf_ram_sym(const char *filename,
445                      uint64_t (*elf_note_fn)(void *, void *, bool),
446                      uint64_t (*translate_fn)(void *, uint64_t),
447                      void *translate_opaque, uint64_t *pentry,
448                      uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
449                      int elf_machine, int clear_lsb, int data_swab,
450                      AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
451 {
452     int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
453     uint8_t e_ident[EI_NIDENT];
454 
455     fd = open(filename, O_RDONLY | O_BINARY);
456     if (fd < 0) {
457         perror(filename);
458         return -1;
459     }
460     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
461         goto fail;
462     if (e_ident[0] != ELFMAG0 ||
463         e_ident[1] != ELFMAG1 ||
464         e_ident[2] != ELFMAG2 ||
465         e_ident[3] != ELFMAG3) {
466         ret = ELF_LOAD_NOT_ELF;
467         goto fail;
468     }
469 #ifdef HOST_WORDS_BIGENDIAN
470     data_order = ELFDATA2MSB;
471 #else
472     data_order = ELFDATA2LSB;
473 #endif
474     must_swab = data_order != e_ident[EI_DATA];
475     if (big_endian) {
476         target_data_order = ELFDATA2MSB;
477     } else {
478         target_data_order = ELFDATA2LSB;
479     }
480 
481     if (target_data_order != e_ident[EI_DATA]) {
482         ret = ELF_LOAD_WRONG_ENDIAN;
483         goto fail;
484     }
485 
486     lseek(fd, 0, SEEK_SET);
487     if (e_ident[EI_CLASS] == ELFCLASS64) {
488         ret = load_elf64(filename, fd, elf_note_fn,
489                          translate_fn, translate_opaque, must_swab,
490                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
491                          data_swab, as, load_rom, sym_cb);
492     } else {
493         ret = load_elf32(filename, fd, elf_note_fn,
494                          translate_fn, translate_opaque, must_swab,
495                          pentry, lowaddr, highaddr, elf_machine, clear_lsb,
496                          data_swab, as, load_rom, sym_cb);
497     }
498 
499  fail:
500     close(fd);
501     return ret;
502 }
503 
504 static void bswap_uboot_header(uboot_image_header_t *hdr)
505 {
506 #ifndef HOST_WORDS_BIGENDIAN
507     bswap32s(&hdr->ih_magic);
508     bswap32s(&hdr->ih_hcrc);
509     bswap32s(&hdr->ih_time);
510     bswap32s(&hdr->ih_size);
511     bswap32s(&hdr->ih_load);
512     bswap32s(&hdr->ih_ep);
513     bswap32s(&hdr->ih_dcrc);
514 #endif
515 }
516 
517 
518 #define ZALLOC_ALIGNMENT	16
519 
520 static void *zalloc(void *x, unsigned items, unsigned size)
521 {
522     void *p;
523 
524     size *= items;
525     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
526 
527     p = g_malloc(size);
528 
529     return (p);
530 }
531 
532 static void zfree(void *x, void *addr)
533 {
534     g_free(addr);
535 }
536 
537 
538 #define HEAD_CRC	2
539 #define EXTRA_FIELD	4
540 #define ORIG_NAME	8
541 #define COMMENT		0x10
542 #define RESERVED	0xe0
543 
544 #define DEFLATED	8
545 
546 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
547 {
548     z_stream s;
549     ssize_t dstbytes;
550     int r, i, flags;
551 
552     /* skip header */
553     i = 10;
554     flags = src[3];
555     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
556         puts ("Error: Bad gzipped data\n");
557         return -1;
558     }
559     if ((flags & EXTRA_FIELD) != 0)
560         i = 12 + src[10] + (src[11] << 8);
561     if ((flags & ORIG_NAME) != 0)
562         while (src[i++] != 0)
563             ;
564     if ((flags & COMMENT) != 0)
565         while (src[i++] != 0)
566             ;
567     if ((flags & HEAD_CRC) != 0)
568         i += 2;
569     if (i >= srclen) {
570         puts ("Error: gunzip out of data in header\n");
571         return -1;
572     }
573 
574     s.zalloc = zalloc;
575     s.zfree = zfree;
576 
577     r = inflateInit2(&s, -MAX_WBITS);
578     if (r != Z_OK) {
579         printf ("Error: inflateInit2() returned %d\n", r);
580         return (-1);
581     }
582     s.next_in = src + i;
583     s.avail_in = srclen - i;
584     s.next_out = dst;
585     s.avail_out = dstlen;
586     r = inflate(&s, Z_FINISH);
587     if (r != Z_OK && r != Z_STREAM_END) {
588         printf ("Error: inflate() returned %d\n", r);
589         return -1;
590     }
591     dstbytes = s.next_out - (unsigned char *) dst;
592     inflateEnd(&s);
593 
594     return dstbytes;
595 }
596 
597 /* Load a U-Boot image.  */
598 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
599                             int *is_linux, uint8_t image_type,
600                             uint64_t (*translate_fn)(void *, uint64_t),
601                             void *translate_opaque, AddressSpace *as)
602 {
603     int fd;
604     int size;
605     hwaddr address;
606     uboot_image_header_t h;
607     uboot_image_header_t *hdr = &h;
608     uint8_t *data = NULL;
609     int ret = -1;
610     int do_uncompress = 0;
611 
612     fd = open(filename, O_RDONLY | O_BINARY);
613     if (fd < 0)
614         return -1;
615 
616     size = read(fd, hdr, sizeof(uboot_image_header_t));
617     if (size < sizeof(uboot_image_header_t)) {
618         goto out;
619     }
620 
621     bswap_uboot_header(hdr);
622 
623     if (hdr->ih_magic != IH_MAGIC)
624         goto out;
625 
626     if (hdr->ih_type != image_type) {
627         if (!(image_type == IH_TYPE_KERNEL &&
628             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
629             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
630                     image_type);
631             goto out;
632         }
633     }
634 
635     /* TODO: Implement other image types.  */
636     switch (hdr->ih_type) {
637     case IH_TYPE_KERNEL_NOLOAD:
638         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
639             fprintf(stderr, "this image format (kernel_noload) cannot be "
640                     "loaded on this machine type");
641             goto out;
642         }
643 
644         hdr->ih_load = *loadaddr + sizeof(*hdr);
645         hdr->ih_ep += hdr->ih_load;
646         /* fall through */
647     case IH_TYPE_KERNEL:
648         address = hdr->ih_load;
649         if (translate_fn) {
650             address = translate_fn(translate_opaque, address);
651         }
652         if (loadaddr) {
653             *loadaddr = hdr->ih_load;
654         }
655 
656         switch (hdr->ih_comp) {
657         case IH_COMP_NONE:
658             break;
659         case IH_COMP_GZIP:
660             do_uncompress = 1;
661             break;
662         default:
663             fprintf(stderr,
664                     "Unable to load u-boot images with compression type %d\n",
665                     hdr->ih_comp);
666             goto out;
667         }
668 
669         if (ep) {
670             *ep = hdr->ih_ep;
671         }
672 
673         /* TODO: Check CPU type.  */
674         if (is_linux) {
675             if (hdr->ih_os == IH_OS_LINUX) {
676                 *is_linux = 1;
677             } else {
678                 *is_linux = 0;
679             }
680         }
681 
682         break;
683     case IH_TYPE_RAMDISK:
684         address = *loadaddr;
685         break;
686     default:
687         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
688         goto out;
689     }
690 
691     data = g_malloc(hdr->ih_size);
692 
693     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
694         fprintf(stderr, "Error reading file\n");
695         goto out;
696     }
697 
698     if (do_uncompress) {
699         uint8_t *compressed_data;
700         size_t max_bytes;
701         ssize_t bytes;
702 
703         compressed_data = data;
704         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
705         data = g_malloc(max_bytes);
706 
707         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
708         g_free(compressed_data);
709         if (bytes < 0) {
710             fprintf(stderr, "Unable to decompress gzipped image!\n");
711             goto out;
712         }
713         hdr->ih_size = bytes;
714     }
715 
716     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
717 
718     ret = hdr->ih_size;
719 
720 out:
721     g_free(data);
722     close(fd);
723     return ret;
724 }
725 
726 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
727                 int *is_linux,
728                 uint64_t (*translate_fn)(void *, uint64_t),
729                 void *translate_opaque)
730 {
731     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
732                             translate_fn, translate_opaque, NULL);
733 }
734 
735 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
736                    int *is_linux,
737                    uint64_t (*translate_fn)(void *, uint64_t),
738                    void *translate_opaque, AddressSpace *as)
739 {
740     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
741                             translate_fn, translate_opaque, as);
742 }
743 
744 /* Load a ramdisk.  */
745 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
746 {
747     return load_ramdisk_as(filename, addr, max_sz, NULL);
748 }
749 
750 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
751                     AddressSpace *as)
752 {
753     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
754                             NULL, NULL, as);
755 }
756 
757 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
758 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
759                               uint8_t **buffer)
760 {
761     uint8_t *compressed_data = NULL;
762     uint8_t *data = NULL;
763     gsize len;
764     ssize_t bytes;
765     int ret = -1;
766 
767     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
768                              NULL)) {
769         goto out;
770     }
771 
772     /* Is it a gzip-compressed file? */
773     if (len < 2 ||
774         compressed_data[0] != 0x1f ||
775         compressed_data[1] != 0x8b) {
776         goto out;
777     }
778 
779     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
780         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
781     }
782 
783     data = g_malloc(max_sz);
784     bytes = gunzip(data, max_sz, compressed_data, len);
785     if (bytes < 0) {
786         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
787                 filename);
788         goto out;
789     }
790 
791     /* trim to actual size and return to caller */
792     *buffer = g_realloc(data, bytes);
793     ret = bytes;
794     /* ownership has been transferred to caller */
795     data = NULL;
796 
797  out:
798     g_free(compressed_data);
799     g_free(data);
800     return ret;
801 }
802 
803 /* Load a gzip-compressed kernel. */
804 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
805 {
806     int bytes;
807     uint8_t *data;
808 
809     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
810     if (bytes != -1) {
811         rom_add_blob_fixed(filename, data, bytes, addr);
812         g_free(data);
813     }
814     return bytes;
815 }
816 
817 /*
818  * Functions for reboot-persistent memory regions.
819  *  - used for vga bios and option roms.
820  *  - also linux kernel (-kernel / -initrd).
821  */
822 
823 typedef struct Rom Rom;
824 
825 struct Rom {
826     char *name;
827     char *path;
828 
829     /* datasize is the amount of memory allocated in "data". If datasize is less
830      * than romsize, it means that the area from datasize to romsize is filled
831      * with zeros.
832      */
833     size_t romsize;
834     size_t datasize;
835 
836     uint8_t *data;
837     MemoryRegion *mr;
838     AddressSpace *as;
839     int isrom;
840     char *fw_dir;
841     char *fw_file;
842     GMappedFile *mapped_file;
843 
844     bool committed;
845 
846     hwaddr addr;
847     QTAILQ_ENTRY(Rom) next;
848 };
849 
850 static FWCfgState *fw_cfg;
851 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
852 
853 /*
854  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
855  * rom_add_elf_program())
856  */
857 static void rom_free_data(Rom *rom)
858 {
859     if (rom->mapped_file) {
860         g_mapped_file_unref(rom->mapped_file);
861         rom->mapped_file = NULL;
862     } else {
863         g_free(rom->data);
864     }
865 
866     rom->data = NULL;
867 }
868 
869 static void rom_free(Rom *rom)
870 {
871     rom_free_data(rom);
872     g_free(rom->path);
873     g_free(rom->name);
874     g_free(rom->fw_dir);
875     g_free(rom->fw_file);
876     g_free(rom);
877 }
878 
879 static inline bool rom_order_compare(Rom *rom, Rom *item)
880 {
881     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
882            (rom->as == item->as && rom->addr >= item->addr);
883 }
884 
885 static void rom_insert(Rom *rom)
886 {
887     Rom *item;
888 
889     if (roms_loaded) {
890         hw_error ("ROM images must be loaded at startup\n");
891     }
892 
893     /* The user didn't specify an address space, this is the default */
894     if (!rom->as) {
895         rom->as = &address_space_memory;
896     }
897 
898     rom->committed = false;
899 
900     /* List is ordered by load address in the same address space */
901     QTAILQ_FOREACH(item, &roms, next) {
902         if (rom_order_compare(rom, item)) {
903             continue;
904         }
905         QTAILQ_INSERT_BEFORE(item, rom, next);
906         return;
907     }
908     QTAILQ_INSERT_TAIL(&roms, rom, next);
909 }
910 
911 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
912 {
913     if (fw_cfg) {
914         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
915     }
916 }
917 
918 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
919 {
920     void *data;
921 
922     rom->mr = g_malloc(sizeof(*rom->mr));
923     memory_region_init_resizeable_ram(rom->mr, owner, name,
924                                       rom->datasize, rom->romsize,
925                                       fw_cfg_resized,
926                                       &error_fatal);
927     memory_region_set_readonly(rom->mr, ro);
928     vmstate_register_ram_global(rom->mr);
929 
930     data = memory_region_get_ram_ptr(rom->mr);
931     memcpy(data, rom->data, rom->datasize);
932 
933     return data;
934 }
935 
936 int rom_add_file(const char *file, const char *fw_dir,
937                  hwaddr addr, int32_t bootindex,
938                  bool option_rom, MemoryRegion *mr,
939                  AddressSpace *as)
940 {
941     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
942     Rom *rom;
943     int rc, fd = -1;
944     char devpath[100];
945 
946     if (as && mr) {
947         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
948                 "not valid when loading a rom\n");
949         /* We haven't allocated anything so we don't need any cleanup */
950         return -1;
951     }
952 
953     rom = g_malloc0(sizeof(*rom));
954     rom->name = g_strdup(file);
955     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
956     rom->as = as;
957     if (rom->path == NULL) {
958         rom->path = g_strdup(file);
959     }
960 
961     fd = open(rom->path, O_RDONLY | O_BINARY);
962     if (fd == -1) {
963         fprintf(stderr, "Could not open option rom '%s': %s\n",
964                 rom->path, strerror(errno));
965         goto err;
966     }
967 
968     if (fw_dir) {
969         rom->fw_dir  = g_strdup(fw_dir);
970         rom->fw_file = g_strdup(file);
971     }
972     rom->addr     = addr;
973     rom->romsize  = lseek(fd, 0, SEEK_END);
974     if (rom->romsize == -1) {
975         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
976                 rom->name, strerror(errno));
977         goto err;
978     }
979 
980     rom->datasize = rom->romsize;
981     rom->data     = g_malloc0(rom->datasize);
982     lseek(fd, 0, SEEK_SET);
983     rc = read(fd, rom->data, rom->datasize);
984     if (rc != rom->datasize) {
985         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
986                 rom->name, rc, rom->datasize);
987         goto err;
988     }
989     close(fd);
990     rom_insert(rom);
991     if (rom->fw_file && fw_cfg) {
992         const char *basename;
993         char fw_file_name[FW_CFG_MAX_FILE_PATH];
994         void *data;
995 
996         basename = strrchr(rom->fw_file, '/');
997         if (basename) {
998             basename++;
999         } else {
1000             basename = rom->fw_file;
1001         }
1002         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1003                  basename);
1004         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1005 
1006         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1007             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1008         } else {
1009             data = rom->data;
1010         }
1011 
1012         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1013     } else {
1014         if (mr) {
1015             rom->mr = mr;
1016             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1017         } else {
1018             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1019         }
1020     }
1021 
1022     add_boot_device_path(bootindex, NULL, devpath);
1023     return 0;
1024 
1025 err:
1026     if (fd != -1)
1027         close(fd);
1028 
1029     rom_free(rom);
1030     return -1;
1031 }
1032 
1033 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1034                    size_t max_len, hwaddr addr, const char *fw_file_name,
1035                    FWCfgCallback fw_callback, void *callback_opaque,
1036                    AddressSpace *as, bool read_only)
1037 {
1038     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1039     Rom *rom;
1040     MemoryRegion *mr = NULL;
1041 
1042     rom           = g_malloc0(sizeof(*rom));
1043     rom->name     = g_strdup(name);
1044     rom->as       = as;
1045     rom->addr     = addr;
1046     rom->romsize  = max_len ? max_len : len;
1047     rom->datasize = len;
1048     g_assert(rom->romsize >= rom->datasize);
1049     rom->data     = g_malloc0(rom->datasize);
1050     memcpy(rom->data, blob, len);
1051     rom_insert(rom);
1052     if (fw_file_name && fw_cfg) {
1053         char devpath[100];
1054         void *data;
1055 
1056         if (read_only) {
1057             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1058         } else {
1059             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1060         }
1061 
1062         if (mc->rom_file_has_mr) {
1063             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1064             mr = rom->mr;
1065         } else {
1066             data = rom->data;
1067         }
1068 
1069         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1070                                  fw_callback, NULL, callback_opaque,
1071                                  data, rom->datasize, read_only);
1072     }
1073     return mr;
1074 }
1075 
1076 /* This function is specific for elf program because we don't need to allocate
1077  * all the rom. We just allocate the first part and the rest is just zeros. This
1078  * is why romsize and datasize are different. Also, this function takes its own
1079  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1080  */
1081 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1082                         size_t datasize, size_t romsize, hwaddr addr,
1083                         AddressSpace *as)
1084 {
1085     Rom *rom;
1086 
1087     rom           = g_malloc0(sizeof(*rom));
1088     rom->name     = g_strdup(name);
1089     rom->addr     = addr;
1090     rom->datasize = datasize;
1091     rom->romsize  = romsize;
1092     rom->data     = data;
1093     rom->as       = as;
1094 
1095     if (mapped_file && data) {
1096         g_mapped_file_ref(mapped_file);
1097         rom->mapped_file = mapped_file;
1098     }
1099 
1100     rom_insert(rom);
1101     return 0;
1102 }
1103 
1104 int rom_add_vga(const char *file)
1105 {
1106     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1107 }
1108 
1109 int rom_add_option(const char *file, int32_t bootindex)
1110 {
1111     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1112 }
1113 
1114 static void rom_reset(void *unused)
1115 {
1116     Rom *rom;
1117 
1118     /*
1119      * We don't need to fill in the RAM with ROM data because we'll fill
1120      * the data in during the next incoming migration in all cases.  Note
1121      * that some of those RAMs can actually be modified by the guest on ARM
1122      * so this is probably the only right thing to do here.
1123      */
1124     if (runstate_check(RUN_STATE_INMIGRATE))
1125         return;
1126 
1127     QTAILQ_FOREACH(rom, &roms, next) {
1128         if (rom->fw_file) {
1129             continue;
1130         }
1131         if (rom->data == NULL) {
1132             continue;
1133         }
1134         if (rom->mr) {
1135             void *host = memory_region_get_ram_ptr(rom->mr);
1136             memcpy(host, rom->data, rom->datasize);
1137         } else {
1138             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1139                                     rom->data, rom->datasize);
1140         }
1141         if (rom->isrom) {
1142             /* rom needs to be written only once */
1143             rom_free_data(rom);
1144         }
1145         /*
1146          * The rom loader is really on the same level as firmware in the guest
1147          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1148          * that the instruction cache for that new region is clear, so that the
1149          * CPU definitely fetches its instructions from the just written data.
1150          */
1151         cpu_flush_icache_range(rom->addr, rom->datasize);
1152     }
1153 }
1154 
1155 int rom_check_and_register_reset(void)
1156 {
1157     hwaddr addr = 0;
1158     MemoryRegionSection section;
1159     Rom *rom;
1160     AddressSpace *as = NULL;
1161 
1162     QTAILQ_FOREACH(rom, &roms, next) {
1163         if (rom->fw_file) {
1164             continue;
1165         }
1166         if (!rom->mr) {
1167             if ((addr > rom->addr) && (as == rom->as)) {
1168                 fprintf(stderr, "rom: requested regions overlap "
1169                         "(rom %s. free=0x" TARGET_FMT_plx
1170                         ", addr=0x" TARGET_FMT_plx ")\n",
1171                         rom->name, addr, rom->addr);
1172                 return -1;
1173             }
1174             addr  = rom->addr;
1175             addr += rom->romsize;
1176             as = rom->as;
1177         }
1178         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1179                                      rom->addr, 1);
1180         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1181         memory_region_unref(section.mr);
1182     }
1183     qemu_register_reset(rom_reset, NULL);
1184     roms_loaded = 1;
1185     return 0;
1186 }
1187 
1188 void rom_set_fw(FWCfgState *f)
1189 {
1190     fw_cfg = f;
1191 }
1192 
1193 void rom_set_order_override(int order)
1194 {
1195     if (!fw_cfg)
1196         return;
1197     fw_cfg_set_order_override(fw_cfg, order);
1198 }
1199 
1200 void rom_reset_order_override(void)
1201 {
1202     if (!fw_cfg)
1203         return;
1204     fw_cfg_reset_order_override(fw_cfg);
1205 }
1206 
1207 void rom_transaction_begin(void)
1208 {
1209     Rom *rom;
1210 
1211     /* Ignore ROMs added without the transaction API */
1212     QTAILQ_FOREACH(rom, &roms, next) {
1213         rom->committed = true;
1214     }
1215 }
1216 
1217 void rom_transaction_end(bool commit)
1218 {
1219     Rom *rom;
1220     Rom *tmp;
1221 
1222     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1223         if (rom->committed) {
1224             continue;
1225         }
1226         if (commit) {
1227             rom->committed = true;
1228         } else {
1229             QTAILQ_REMOVE(&roms, rom, next);
1230             rom_free(rom);
1231         }
1232     }
1233 }
1234 
1235 static Rom *find_rom(hwaddr addr, size_t size)
1236 {
1237     Rom *rom;
1238 
1239     QTAILQ_FOREACH(rom, &roms, next) {
1240         if (rom->fw_file) {
1241             continue;
1242         }
1243         if (rom->mr) {
1244             continue;
1245         }
1246         if (rom->addr > addr) {
1247             continue;
1248         }
1249         if (rom->addr + rom->romsize < addr + size) {
1250             continue;
1251         }
1252         return rom;
1253     }
1254     return NULL;
1255 }
1256 
1257 /*
1258  * Copies memory from registered ROMs to dest. Any memory that is contained in
1259  * a ROM between addr and addr + size is copied. Note that this can involve
1260  * multiple ROMs, which need not start at addr and need not end at addr + size.
1261  */
1262 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1263 {
1264     hwaddr end = addr + size;
1265     uint8_t *s, *d = dest;
1266     size_t l = 0;
1267     Rom *rom;
1268 
1269     QTAILQ_FOREACH(rom, &roms, next) {
1270         if (rom->fw_file) {
1271             continue;
1272         }
1273         if (rom->mr) {
1274             continue;
1275         }
1276         if (rom->addr + rom->romsize < addr) {
1277             continue;
1278         }
1279         if (rom->addr > end) {
1280             break;
1281         }
1282 
1283         d = dest + (rom->addr - addr);
1284         s = rom->data;
1285         l = rom->datasize;
1286 
1287         if ((d + l) > (dest + size)) {
1288             l = dest - d;
1289         }
1290 
1291         if (l > 0) {
1292             memcpy(d, s, l);
1293         }
1294 
1295         if (rom->romsize > rom->datasize) {
1296             /* If datasize is less than romsize, it means that we didn't
1297              * allocate all the ROM because the trailing data are only zeros.
1298              */
1299 
1300             d += l;
1301             l = rom->romsize - rom->datasize;
1302 
1303             if ((d + l) > (dest + size)) {
1304                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1305                  * overflow.
1306                  */
1307                 l = dest - d;
1308             }
1309 
1310             if (l > 0) {
1311                 memset(d, 0x0, l);
1312             }
1313         }
1314     }
1315 
1316     return (d + l) - dest;
1317 }
1318 
1319 void *rom_ptr(hwaddr addr, size_t size)
1320 {
1321     Rom *rom;
1322 
1323     rom = find_rom(addr, size);
1324     if (!rom || !rom->data)
1325         return NULL;
1326     return rom->data + (addr - rom->addr);
1327 }
1328 
1329 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1330 {
1331     Rom *rom;
1332 
1333     QTAILQ_FOREACH(rom, &roms, next) {
1334         if (rom->mr) {
1335             monitor_printf(mon, "%s"
1336                            " size=0x%06zx name=\"%s\"\n",
1337                            memory_region_name(rom->mr),
1338                            rom->romsize,
1339                            rom->name);
1340         } else if (!rom->fw_file) {
1341             monitor_printf(mon, "addr=" TARGET_FMT_plx
1342                            " size=0x%06zx mem=%s name=\"%s\"\n",
1343                            rom->addr, rom->romsize,
1344                            rom->isrom ? "rom" : "ram",
1345                            rom->name);
1346         } else {
1347             monitor_printf(mon, "fw=%s/%s"
1348                            " size=0x%06zx name=\"%s\"\n",
1349                            rom->fw_dir,
1350                            rom->fw_file,
1351                            rom->romsize,
1352                            rom->name);
1353         }
1354     }
1355 }
1356 
1357 typedef enum HexRecord HexRecord;
1358 enum HexRecord {
1359     DATA_RECORD = 0,
1360     EOF_RECORD,
1361     EXT_SEG_ADDR_RECORD,
1362     START_SEG_ADDR_RECORD,
1363     EXT_LINEAR_ADDR_RECORD,
1364     START_LINEAR_ADDR_RECORD,
1365 };
1366 
1367 /* Each record contains a 16-bit address which is combined with the upper 16
1368  * bits of the implicit "next address" to form a 32-bit address.
1369  */
1370 #define NEXT_ADDR_MASK 0xffff0000
1371 
1372 #define DATA_FIELD_MAX_LEN 0xff
1373 #define LEN_EXCEPT_DATA 0x5
1374 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1375  *       sizeof(checksum) */
1376 typedef struct {
1377     uint8_t byte_count;
1378     uint16_t address;
1379     uint8_t record_type;
1380     uint8_t data[DATA_FIELD_MAX_LEN];
1381     uint8_t checksum;
1382 } HexLine;
1383 
1384 /* return 0 or -1 if error */
1385 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1386                          uint32_t *index, const bool in_process)
1387 {
1388     /* +-------+---------------+-------+---------------------+--------+
1389      * | byte  |               |record |                     |        |
1390      * | count |    address    | type  |        data         |checksum|
1391      * +-------+---------------+-------+---------------------+--------+
1392      * ^       ^               ^       ^                     ^        ^
1393      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1394      */
1395     uint8_t value = 0;
1396     uint32_t idx = *index;
1397     /* ignore space */
1398     if (g_ascii_isspace(c)) {
1399         return true;
1400     }
1401     if (!g_ascii_isxdigit(c) || !in_process) {
1402         return false;
1403     }
1404     value = g_ascii_xdigit_value(c);
1405     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1406     if (idx < 2) {
1407         line->byte_count |= value;
1408     } else if (2 <= idx && idx < 6) {
1409         line->address <<= 4;
1410         line->address += g_ascii_xdigit_value(c);
1411     } else if (6 <= idx && idx < 8) {
1412         line->record_type |= value;
1413     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1414         line->data[(idx - 8) >> 1] |= value;
1415     } else if (8 + 2 * line->byte_count <= idx &&
1416                idx < 10 + 2 * line->byte_count) {
1417         line->checksum |= value;
1418     } else {
1419         return false;
1420     }
1421     *our_checksum += value;
1422     ++(*index);
1423     return true;
1424 }
1425 
1426 typedef struct {
1427     const char *filename;
1428     HexLine line;
1429     uint8_t *bin_buf;
1430     hwaddr *start_addr;
1431     int total_size;
1432     uint32_t next_address_to_write;
1433     uint32_t current_address;
1434     uint32_t current_rom_index;
1435     uint32_t rom_start_address;
1436     AddressSpace *as;
1437 } HexParser;
1438 
1439 /* return size or -1 if error */
1440 static int handle_record_type(HexParser *parser)
1441 {
1442     HexLine *line = &(parser->line);
1443     switch (line->record_type) {
1444     case DATA_RECORD:
1445         parser->current_address =
1446             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1447         /* verify this is a contiguous block of memory */
1448         if (parser->current_address != parser->next_address_to_write) {
1449             if (parser->current_rom_index != 0) {
1450                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1451                                       parser->current_rom_index,
1452                                       parser->rom_start_address, parser->as);
1453             }
1454             parser->rom_start_address = parser->current_address;
1455             parser->current_rom_index = 0;
1456         }
1457 
1458         /* copy from line buffer to output bin_buf */
1459         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1460                line->byte_count);
1461         parser->current_rom_index += line->byte_count;
1462         parser->total_size += line->byte_count;
1463         /* save next address to write */
1464         parser->next_address_to_write =
1465             parser->current_address + line->byte_count;
1466         break;
1467 
1468     case EOF_RECORD:
1469         if (parser->current_rom_index != 0) {
1470             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1471                                   parser->current_rom_index,
1472                                   parser->rom_start_address, parser->as);
1473         }
1474         return parser->total_size;
1475     case EXT_SEG_ADDR_RECORD:
1476     case EXT_LINEAR_ADDR_RECORD:
1477         if (line->byte_count != 2 && line->address != 0) {
1478             return -1;
1479         }
1480 
1481         if (parser->current_rom_index != 0) {
1482             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1483                                   parser->current_rom_index,
1484                                   parser->rom_start_address, parser->as);
1485         }
1486 
1487         /* save next address to write,
1488          * in case of non-contiguous block of memory */
1489         parser->next_address_to_write = (line->data[0] << 12) |
1490                                         (line->data[1] << 4);
1491         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1492             parser->next_address_to_write <<= 12;
1493         }
1494 
1495         parser->rom_start_address = parser->next_address_to_write;
1496         parser->current_rom_index = 0;
1497         break;
1498 
1499     case START_SEG_ADDR_RECORD:
1500         if (line->byte_count != 4 && line->address != 0) {
1501             return -1;
1502         }
1503 
1504         /* x86 16-bit CS:IP segmented addressing */
1505         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1506                                 ((line->data[2] << 8) | line->data[3]);
1507         break;
1508 
1509     case START_LINEAR_ADDR_RECORD:
1510         if (line->byte_count != 4 && line->address != 0) {
1511             return -1;
1512         }
1513 
1514         *(parser->start_addr) = ldl_be_p(line->data);
1515         break;
1516 
1517     default:
1518         return -1;
1519     }
1520 
1521     return parser->total_size;
1522 }
1523 
1524 /* return size or -1 if error */
1525 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1526                           size_t hex_blob_size, AddressSpace *as)
1527 {
1528     bool in_process = false; /* avoid re-enter and
1529                               * check whether record begin with ':' */
1530     uint8_t *end = hex_blob + hex_blob_size;
1531     uint8_t our_checksum = 0;
1532     uint32_t record_index = 0;
1533     HexParser parser = {
1534         .filename = filename,
1535         .bin_buf = g_malloc(hex_blob_size),
1536         .start_addr = addr,
1537         .as = as,
1538     };
1539 
1540     rom_transaction_begin();
1541 
1542     for (; hex_blob < end; ++hex_blob) {
1543         switch (*hex_blob) {
1544         case '\r':
1545         case '\n':
1546             if (!in_process) {
1547                 break;
1548             }
1549 
1550             in_process = false;
1551             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1552                     record_index ||
1553                 our_checksum != 0) {
1554                 parser.total_size = -1;
1555                 goto out;
1556             }
1557 
1558             if (handle_record_type(&parser) == -1) {
1559                 parser.total_size = -1;
1560                 goto out;
1561             }
1562             break;
1563 
1564         /* start of a new record. */
1565         case ':':
1566             memset(&parser.line, 0, sizeof(HexLine));
1567             in_process = true;
1568             record_index = 0;
1569             break;
1570 
1571         /* decoding lines */
1572         default:
1573             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1574                               &record_index, in_process)) {
1575                 parser.total_size = -1;
1576                 goto out;
1577             }
1578             break;
1579         }
1580     }
1581 
1582 out:
1583     g_free(parser.bin_buf);
1584     rom_transaction_end(parser.total_size != -1);
1585     return parser.total_size;
1586 }
1587 
1588 /* return size or -1 if error */
1589 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1590 {
1591     gsize hex_blob_size;
1592     gchar *hex_blob;
1593     int total_size = 0;
1594 
1595     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1596         return -1;
1597     }
1598 
1599     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1600                                 hex_blob_size, as);
1601 
1602     g_free(hex_blob);
1603     return total_size;
1604 }
1605