xref: /qemu/hw/core/loader.c (revision 651ccdfa)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64 #include "accel/tcg/debuginfo.h"
65 
66 #include <zlib.h>
67 
68 static int roms_loaded;
69 
70 /* return the size or -1 if error */
71 int64_t get_image_size(const char *filename)
72 {
73     int fd;
74     int64_t size;
75     fd = open(filename, O_RDONLY | O_BINARY);
76     if (fd < 0)
77         return -1;
78     size = lseek(fd, 0, SEEK_END);
79     close(fd);
80     return size;
81 }
82 
83 /* return the size or -1 if error */
84 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 {
86     int fd;
87     ssize_t actsize, l = 0;
88 
89     fd = open(filename, O_RDONLY | O_BINARY);
90     if (fd < 0) {
91         return -1;
92     }
93 
94     while ((actsize = read(fd, addr + l, size - l)) > 0) {
95         l += actsize;
96     }
97 
98     close(fd);
99 
100     return actsize < 0 ? -1 : l;
101 }
102 
103 /* read()-like version */
104 ssize_t read_targphys(const char *name,
105                       int fd, hwaddr dst_addr, size_t nbytes)
106 {
107     uint8_t *buf;
108     ssize_t did;
109 
110     buf = g_malloc(nbytes);
111     did = read(fd, buf, nbytes);
112     if (did > 0)
113         rom_add_blob_fixed("read", buf, did, dst_addr);
114     g_free(buf);
115     return did;
116 }
117 
118 ssize_t load_image_targphys(const char *filename,
119                             hwaddr addr, uint64_t max_sz)
120 {
121     return load_image_targphys_as(filename, addr, max_sz, NULL);
122 }
123 
124 /* return the size or -1 if error */
125 ssize_t load_image_targphys_as(const char *filename,
126                                hwaddr addr, uint64_t max_sz, AddressSpace *as)
127 {
128     ssize_t size;
129 
130     size = get_image_size(filename);
131     if (size < 0 || size > max_sz) {
132         return -1;
133     }
134     if (size > 0) {
135         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
136             return -1;
137         }
138     }
139     return size;
140 }
141 
142 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
143 {
144     ssize_t size;
145 
146     if (!memory_access_is_direct(mr, false)) {
147         /* Can only load an image into RAM or ROM */
148         return -1;
149     }
150 
151     size = get_image_size(filename);
152 
153     if (size < 0 || size > memory_region_size(mr)) {
154         return -1;
155     }
156     if (size > 0) {
157         if (rom_add_file_mr(filename, mr, -1) < 0) {
158             return -1;
159         }
160     }
161     return size;
162 }
163 
164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
165                       const char *source)
166 {
167     const char *nulp;
168     char *ptr;
169 
170     if (buf_size <= 0) return;
171     nulp = memchr(source, 0, buf_size);
172     if (nulp) {
173         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
174     } else {
175         rom_add_blob_fixed(name, source, buf_size, dest);
176         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
177         *ptr = 0;
178     }
179 }
180 
181 /* A.OUT loader */
182 
183 struct exec
184 {
185   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
186   uint32_t a_text;   /* length of text, in bytes */
187   uint32_t a_data;   /* length of data, in bytes */
188   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
189   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
190   uint32_t a_entry;  /* start address */
191   uint32_t a_trsize; /* length of relocation info for text, in bytes */
192   uint32_t a_drsize; /* length of relocation info for data, in bytes */
193 };
194 
195 static void bswap_ahdr(struct exec *e)
196 {
197     bswap32s(&e->a_info);
198     bswap32s(&e->a_text);
199     bswap32s(&e->a_data);
200     bswap32s(&e->a_bss);
201     bswap32s(&e->a_syms);
202     bswap32s(&e->a_entry);
203     bswap32s(&e->a_trsize);
204     bswap32s(&e->a_drsize);
205 }
206 
207 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
208 #define OMAGIC 0407
209 #define NMAGIC 0410
210 #define ZMAGIC 0413
211 #define QMAGIC 0314
212 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
213 #define N_TXTOFF(x)							\
214     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
215      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
218 
219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
220 
221 #define N_DATADDR(x, target_page_size) \
222     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
223      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
224 
225 
226 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
227                   int bswap_needed, hwaddr target_page_size)
228 {
229     int fd;
230     ssize_t size, ret;
231     struct exec e;
232     uint32_t magic;
233 
234     fd = open(filename, O_RDONLY | O_BINARY);
235     if (fd < 0)
236         return -1;
237 
238     size = read(fd, &e, sizeof(e));
239     if (size < 0)
240         goto fail;
241 
242     if (bswap_needed) {
243         bswap_ahdr(&e);
244     }
245 
246     magic = N_MAGIC(e);
247     switch (magic) {
248     case ZMAGIC:
249     case QMAGIC:
250     case OMAGIC:
251         if (e.a_text + e.a_data > max_sz)
252             goto fail;
253         lseek(fd, N_TXTOFF(e), SEEK_SET);
254         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
255         if (size < 0)
256             goto fail;
257         break;
258     case NMAGIC:
259         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
260             goto fail;
261         lseek(fd, N_TXTOFF(e), SEEK_SET);
262         size = read_targphys(filename, fd, addr, e.a_text);
263         if (size < 0)
264             goto fail;
265         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
266                             e.a_data);
267         if (ret < 0)
268             goto fail;
269         size += ret;
270         break;
271     default:
272         goto fail;
273     }
274     close(fd);
275     return size;
276  fail:
277     close(fd);
278     return -1;
279 }
280 
281 /* ELF loader */
282 
283 static void *load_at(int fd, off_t offset, size_t size)
284 {
285     void *ptr;
286     if (lseek(fd, offset, SEEK_SET) < 0)
287         return NULL;
288     ptr = g_malloc(size);
289     if (read(fd, ptr, size) != size) {
290         g_free(ptr);
291         return NULL;
292     }
293     return ptr;
294 }
295 
296 #ifdef ELF_CLASS
297 #undef ELF_CLASS
298 #endif
299 
300 #define ELF_CLASS   ELFCLASS32
301 #include "elf.h"
302 
303 #define SZ		32
304 #define elf_word        uint32_t
305 #define elf_sword        int32_t
306 #define bswapSZs	bswap32s
307 #include "hw/elf_ops.h"
308 
309 #undef elfhdr
310 #undef elf_phdr
311 #undef elf_shdr
312 #undef elf_sym
313 #undef elf_rela
314 #undef elf_note
315 #undef elf_word
316 #undef elf_sword
317 #undef bswapSZs
318 #undef SZ
319 #define elfhdr		elf64_hdr
320 #define elf_phdr	elf64_phdr
321 #define elf_note	elf64_note
322 #define elf_shdr	elf64_shdr
323 #define elf_sym		elf64_sym
324 #define elf_rela        elf64_rela
325 #define elf_word        uint64_t
326 #define elf_sword        int64_t
327 #define bswapSZs	bswap64s
328 #define SZ		64
329 #include "hw/elf_ops.h"
330 
331 const char *load_elf_strerror(ssize_t error)
332 {
333     switch (error) {
334     case 0:
335         return "No error";
336     case ELF_LOAD_FAILED:
337         return "Failed to load ELF";
338     case ELF_LOAD_NOT_ELF:
339         return "The image is not ELF";
340     case ELF_LOAD_WRONG_ARCH:
341         return "The image is from incompatible architecture";
342     case ELF_LOAD_WRONG_ENDIAN:
343         return "The image has incorrect endianness";
344     case ELF_LOAD_TOO_BIG:
345         return "The image segments are too big to load";
346     default:
347         return "Unknown error";
348     }
349 }
350 
351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 {
353     int fd;
354     uint8_t e_ident_local[EI_NIDENT];
355     uint8_t *e_ident;
356     size_t hdr_size, off;
357     bool is64l;
358 
359     if (!hdr) {
360         hdr = e_ident_local;
361     }
362     e_ident = hdr;
363 
364     fd = open(filename, O_RDONLY | O_BINARY);
365     if (fd < 0) {
366         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
367         return;
368     }
369     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
370         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
371         goto fail;
372     }
373     if (e_ident[0] != ELFMAG0 ||
374         e_ident[1] != ELFMAG1 ||
375         e_ident[2] != ELFMAG2 ||
376         e_ident[3] != ELFMAG3) {
377         error_setg(errp, "Bad ELF magic");
378         goto fail;
379     }
380 
381     is64l = e_ident[EI_CLASS] == ELFCLASS64;
382     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
383     if (is64) {
384         *is64 = is64l;
385     }
386 
387     off = EI_NIDENT;
388     while (hdr != e_ident_local && off < hdr_size) {
389         size_t br = read(fd, hdr + off, hdr_size - off);
390         switch (br) {
391         case 0:
392             error_setg(errp, "File too short: %s", filename);
393             goto fail;
394         case -1:
395             error_setg_errno(errp, errno, "Failed to read file: %s",
396                              filename);
397             goto fail;
398         }
399         off += br;
400     }
401 
402 fail:
403     close(fd);
404 }
405 
406 /* return < 0 if error, otherwise the number of bytes loaded in memory */
407 ssize_t load_elf(const char *filename,
408                  uint64_t (*elf_note_fn)(void *, void *, bool),
409                  uint64_t (*translate_fn)(void *, uint64_t),
410                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
411                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
412                  int elf_machine, int clear_lsb, int data_swab)
413 {
414     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
415                        pentry, lowaddr, highaddr, pflags, big_endian,
416                        elf_machine, clear_lsb, data_swab, NULL);
417 }
418 
419 /* return < 0 if error, otherwise the number of bytes loaded in memory */
420 ssize_t load_elf_as(const char *filename,
421                     uint64_t (*elf_note_fn)(void *, void *, bool),
422                     uint64_t (*translate_fn)(void *, uint64_t),
423                     void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
424                     uint64_t *highaddr, uint32_t *pflags, int big_endian,
425                     int elf_machine, int clear_lsb, int data_swab,
426                     AddressSpace *as)
427 {
428     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
429                         pentry, lowaddr, highaddr, pflags, big_endian,
430                         elf_machine, clear_lsb, data_swab, as, true);
431 }
432 
433 /* return < 0 if error, otherwise the number of bytes loaded in memory */
434 ssize_t load_elf_ram(const char *filename,
435                      uint64_t (*elf_note_fn)(void *, void *, bool),
436                      uint64_t (*translate_fn)(void *, uint64_t),
437                      void *translate_opaque, uint64_t *pentry,
438                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
439                      int big_endian, int elf_machine, int clear_lsb,
440                      int data_swab, AddressSpace *as, bool load_rom)
441 {
442     return load_elf_ram_sym(filename, elf_note_fn,
443                             translate_fn, translate_opaque,
444                             pentry, lowaddr, highaddr, pflags, big_endian,
445                             elf_machine, clear_lsb, data_swab, as,
446                             load_rom, NULL);
447 }
448 
449 /* return < 0 if error, otherwise the number of bytes loaded in memory */
450 ssize_t load_elf_ram_sym(const char *filename,
451                          uint64_t (*elf_note_fn)(void *, void *, bool),
452                          uint64_t (*translate_fn)(void *, uint64_t),
453                          void *translate_opaque, uint64_t *pentry,
454                          uint64_t *lowaddr, uint64_t *highaddr,
455                          uint32_t *pflags, int big_endian, int elf_machine,
456                          int clear_lsb, int data_swab,
457                          AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
458 {
459     int fd, data_order, target_data_order, must_swab;
460     ssize_t ret = ELF_LOAD_FAILED;
461     uint8_t e_ident[EI_NIDENT];
462 
463     fd = open(filename, O_RDONLY | O_BINARY);
464     if (fd < 0) {
465         perror(filename);
466         return -1;
467     }
468     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
469         goto fail;
470     if (e_ident[0] != ELFMAG0 ||
471         e_ident[1] != ELFMAG1 ||
472         e_ident[2] != ELFMAG2 ||
473         e_ident[3] != ELFMAG3) {
474         ret = ELF_LOAD_NOT_ELF;
475         goto fail;
476     }
477 #if HOST_BIG_ENDIAN
478     data_order = ELFDATA2MSB;
479 #else
480     data_order = ELFDATA2LSB;
481 #endif
482     must_swab = data_order != e_ident[EI_DATA];
483     if (big_endian) {
484         target_data_order = ELFDATA2MSB;
485     } else {
486         target_data_order = ELFDATA2LSB;
487     }
488 
489     if (target_data_order != e_ident[EI_DATA]) {
490         ret = ELF_LOAD_WRONG_ENDIAN;
491         goto fail;
492     }
493 
494     lseek(fd, 0, SEEK_SET);
495     if (e_ident[EI_CLASS] == ELFCLASS64) {
496         ret = load_elf64(filename, fd, elf_note_fn,
497                          translate_fn, translate_opaque, must_swab,
498                          pentry, lowaddr, highaddr, pflags, elf_machine,
499                          clear_lsb, data_swab, as, load_rom, sym_cb);
500     } else {
501         ret = load_elf32(filename, fd, elf_note_fn,
502                          translate_fn, translate_opaque, must_swab,
503                          pentry, lowaddr, highaddr, pflags, elf_machine,
504                          clear_lsb, data_swab, as, load_rom, sym_cb);
505     }
506 
507     if (ret != ELF_LOAD_FAILED) {
508         debuginfo_report_elf(filename, fd, 0);
509     }
510 
511  fail:
512     close(fd);
513     return ret;
514 }
515 
516 static void bswap_uboot_header(uboot_image_header_t *hdr)
517 {
518 #if !HOST_BIG_ENDIAN
519     bswap32s(&hdr->ih_magic);
520     bswap32s(&hdr->ih_hcrc);
521     bswap32s(&hdr->ih_time);
522     bswap32s(&hdr->ih_size);
523     bswap32s(&hdr->ih_load);
524     bswap32s(&hdr->ih_ep);
525     bswap32s(&hdr->ih_dcrc);
526 #endif
527 }
528 
529 
530 #define ZALLOC_ALIGNMENT	16
531 
532 static void *zalloc(void *x, unsigned items, unsigned size)
533 {
534     void *p;
535 
536     size *= items;
537     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
538 
539     p = g_malloc(size);
540 
541     return (p);
542 }
543 
544 static void zfree(void *x, void *addr)
545 {
546     g_free(addr);
547 }
548 
549 
550 #define HEAD_CRC	2
551 #define EXTRA_FIELD	4
552 #define ORIG_NAME	8
553 #define COMMENT		0x10
554 #define RESERVED	0xe0
555 
556 #define DEFLATED	8
557 
558 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
559 {
560     z_stream s;
561     ssize_t dstbytes;
562     int r, i, flags;
563 
564     /* skip header */
565     i = 10;
566     if (srclen < 4) {
567         goto toosmall;
568     }
569     flags = src[3];
570     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
571         puts ("Error: Bad gzipped data\n");
572         return -1;
573     }
574     if ((flags & EXTRA_FIELD) != 0) {
575         if (srclen < 12) {
576             goto toosmall;
577         }
578         i = 12 + src[10] + (src[11] << 8);
579     }
580     if ((flags & ORIG_NAME) != 0) {
581         while (i < srclen && src[i++] != 0) {
582             /* do nothing */
583         }
584     }
585     if ((flags & COMMENT) != 0) {
586         while (i < srclen && src[i++] != 0) {
587             /* do nothing */
588         }
589     }
590     if ((flags & HEAD_CRC) != 0) {
591         i += 2;
592     }
593     if (i >= srclen) {
594         goto toosmall;
595     }
596 
597     s.zalloc = zalloc;
598     s.zfree = zfree;
599 
600     r = inflateInit2(&s, -MAX_WBITS);
601     if (r != Z_OK) {
602         printf ("Error: inflateInit2() returned %d\n", r);
603         return (-1);
604     }
605     s.next_in = src + i;
606     s.avail_in = srclen - i;
607     s.next_out = dst;
608     s.avail_out = dstlen;
609     r = inflate(&s, Z_FINISH);
610     if (r != Z_OK && r != Z_STREAM_END) {
611         printf ("Error: inflate() returned %d\n", r);
612         return -1;
613     }
614     dstbytes = s.next_out - (unsigned char *) dst;
615     inflateEnd(&s);
616 
617     return dstbytes;
618 
619 toosmall:
620     puts("Error: gunzip out of data in header\n");
621     return -1;
622 }
623 
624 /* Load a U-Boot image.  */
625 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
626                                 hwaddr *loadaddr, int *is_linux,
627                                 uint8_t image_type,
628                                 uint64_t (*translate_fn)(void *, uint64_t),
629                                 void *translate_opaque, AddressSpace *as)
630 {
631     int fd;
632     ssize_t size;
633     hwaddr address;
634     uboot_image_header_t h;
635     uboot_image_header_t *hdr = &h;
636     uint8_t *data = NULL;
637     int ret = -1;
638     int do_uncompress = 0;
639 
640     fd = open(filename, O_RDONLY | O_BINARY);
641     if (fd < 0)
642         return -1;
643 
644     size = read(fd, hdr, sizeof(uboot_image_header_t));
645     if (size < sizeof(uboot_image_header_t)) {
646         goto out;
647     }
648 
649     bswap_uboot_header(hdr);
650 
651     if (hdr->ih_magic != IH_MAGIC)
652         goto out;
653 
654     if (hdr->ih_type != image_type) {
655         if (!(image_type == IH_TYPE_KERNEL &&
656             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
657             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
658                     image_type);
659             goto out;
660         }
661     }
662 
663     /* TODO: Implement other image types.  */
664     switch (hdr->ih_type) {
665     case IH_TYPE_KERNEL_NOLOAD:
666         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
667             fprintf(stderr, "this image format (kernel_noload) cannot be "
668                     "loaded on this machine type");
669             goto out;
670         }
671 
672         hdr->ih_load = *loadaddr + sizeof(*hdr);
673         hdr->ih_ep += hdr->ih_load;
674         /* fall through */
675     case IH_TYPE_KERNEL:
676         address = hdr->ih_load;
677         if (translate_fn) {
678             address = translate_fn(translate_opaque, address);
679         }
680         if (loadaddr) {
681             *loadaddr = hdr->ih_load;
682         }
683 
684         switch (hdr->ih_comp) {
685         case IH_COMP_NONE:
686             break;
687         case IH_COMP_GZIP:
688             do_uncompress = 1;
689             break;
690         default:
691             fprintf(stderr,
692                     "Unable to load u-boot images with compression type %d\n",
693                     hdr->ih_comp);
694             goto out;
695         }
696 
697         if (ep) {
698             *ep = hdr->ih_ep;
699         }
700 
701         /* TODO: Check CPU type.  */
702         if (is_linux) {
703             if (hdr->ih_os == IH_OS_LINUX) {
704                 *is_linux = 1;
705             } else if (hdr->ih_os == IH_OS_VXWORKS) {
706                 /*
707                  * VxWorks 7 uses the same boot interface as the Linux kernel
708                  * on Arm (64-bit only), PowerPC and RISC-V architectures.
709                  */
710                 switch (hdr->ih_arch) {
711                 case IH_ARCH_ARM64:
712                 case IH_ARCH_PPC:
713                 case IH_ARCH_RISCV:
714                     *is_linux = 1;
715                     break;
716                 default:
717                     *is_linux = 0;
718                     break;
719                 }
720             } else {
721                 *is_linux = 0;
722             }
723         }
724 
725         break;
726     case IH_TYPE_RAMDISK:
727         address = *loadaddr;
728         break;
729     default:
730         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
731         goto out;
732     }
733 
734     data = g_malloc(hdr->ih_size);
735 
736     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
737         fprintf(stderr, "Error reading file\n");
738         goto out;
739     }
740 
741     if (do_uncompress) {
742         uint8_t *compressed_data;
743         size_t max_bytes;
744         ssize_t bytes;
745 
746         compressed_data = data;
747         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
748         data = g_malloc(max_bytes);
749 
750         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
751         g_free(compressed_data);
752         if (bytes < 0) {
753             fprintf(stderr, "Unable to decompress gzipped image!\n");
754             goto out;
755         }
756         hdr->ih_size = bytes;
757     }
758 
759     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
760 
761     ret = hdr->ih_size;
762 
763 out:
764     g_free(data);
765     close(fd);
766     return ret;
767 }
768 
769 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
770                     int *is_linux,
771                     uint64_t (*translate_fn)(void *, uint64_t),
772                     void *translate_opaque)
773 {
774     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
775                             translate_fn, translate_opaque, NULL);
776 }
777 
778 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
779                        int *is_linux,
780                        uint64_t (*translate_fn)(void *, uint64_t),
781                        void *translate_opaque, AddressSpace *as)
782 {
783     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
784                             translate_fn, translate_opaque, as);
785 }
786 
787 /* Load a ramdisk.  */
788 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
789 {
790     return load_ramdisk_as(filename, addr, max_sz, NULL);
791 }
792 
793 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
794                         AddressSpace *as)
795 {
796     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
797                             NULL, NULL, as);
798 }
799 
800 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
801 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
802                                   uint8_t **buffer)
803 {
804     uint8_t *compressed_data = NULL;
805     uint8_t *data = NULL;
806     gsize len;
807     ssize_t bytes;
808     int ret = -1;
809 
810     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
811                              NULL)) {
812         goto out;
813     }
814 
815     /* Is it a gzip-compressed file? */
816     if (len < 2 ||
817         compressed_data[0] != 0x1f ||
818         compressed_data[1] != 0x8b) {
819         goto out;
820     }
821 
822     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
823         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
824     }
825 
826     data = g_malloc(max_sz);
827     bytes = gunzip(data, max_sz, compressed_data, len);
828     if (bytes < 0) {
829         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
830                 filename);
831         goto out;
832     }
833 
834     /* trim to actual size and return to caller */
835     *buffer = g_realloc(data, bytes);
836     ret = bytes;
837     /* ownership has been transferred to caller */
838     data = NULL;
839 
840  out:
841     g_free(compressed_data);
842     g_free(data);
843     return ret;
844 }
845 
846 /* Load a gzip-compressed kernel. */
847 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
848 {
849     ssize_t bytes;
850     uint8_t *data;
851 
852     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
853     if (bytes != -1) {
854         rom_add_blob_fixed(filename, data, bytes, addr);
855         g_free(data);
856     }
857     return bytes;
858 }
859 
860 /* The PE/COFF MS-DOS stub magic number */
861 #define EFI_PE_MSDOS_MAGIC        "MZ"
862 
863 /*
864  * The Linux header magic number for a EFI PE/COFF
865  * image targetting an unspecified architecture.
866  */
867 #define EFI_PE_LINUX_MAGIC        "\xcd\x23\x82\x81"
868 
869 /*
870  * Bootable Linux kernel images may be packaged as EFI zboot images, which are
871  * self-decompressing executables when loaded via EFI. The compressed payload
872  * can also be extracted from the image and decompressed by a non-EFI loader.
873  *
874  * The de facto specification for this format is at the following URL:
875  *
876  * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
877  *
878  * This definition is based on Linux upstream commit 29636a5ce87beba.
879  */
880 struct linux_efi_zboot_header {
881     uint8_t     msdos_magic[2];         /* PE/COFF 'MZ' magic number */
882     uint8_t     reserved0[2];
883     uint8_t     zimg[4];                /* "zimg" for Linux EFI zboot images */
884     uint32_t    payload_offset;         /* LE offset to compressed payload */
885     uint32_t    payload_size;           /* LE size of the compressed payload */
886     uint8_t     reserved1[8];
887     char        compression_type[32];   /* Compression type, NUL terminated */
888     uint8_t     linux_magic[4];         /* Linux header magic */
889     uint32_t    pe_header_offset;       /* LE offset to the PE header */
890 };
891 
892 /*
893  * Check whether *buffer points to a Linux EFI zboot image in memory.
894  *
895  * If it does, attempt to decompress it to a new buffer, and free the old one.
896  * If any of this fails, return an error to the caller.
897  *
898  * If the image is not a Linux EFI zboot image, do nothing and return success.
899  */
900 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size)
901 {
902     const struct linux_efi_zboot_header *header;
903     uint8_t *data = NULL;
904     int ploff, plsize;
905     ssize_t bytes;
906 
907     /* ignore if this is too small to be a EFI zboot image */
908     if (*size < sizeof(*header)) {
909         return 0;
910     }
911 
912     header = (struct linux_efi_zboot_header *)*buffer;
913 
914     /* ignore if this is not a Linux EFI zboot image */
915     if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
916         memcmp(&header->zimg, "zimg", 4) != 0 ||
917         memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
918         return 0;
919     }
920 
921     if (strcmp(header->compression_type, "gzip") != 0) {
922         fprintf(stderr,
923                 "unable to handle EFI zboot image with \"%.*s\" compression\n",
924                 (int)sizeof(header->compression_type) - 1,
925                 header->compression_type);
926         return -1;
927     }
928 
929     ploff = ldl_le_p(&header->payload_offset);
930     plsize = ldl_le_p(&header->payload_size);
931 
932     if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
933         fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
934         return -1;
935     }
936 
937     data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
938     bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
939     if (bytes < 0) {
940         fprintf(stderr, "failed to decompress EFI zboot image\n");
941         g_free(data);
942         return -1;
943     }
944 
945     g_free(*buffer);
946     *buffer = g_realloc(data, bytes);
947     *size = bytes;
948     return bytes;
949 }
950 
951 /*
952  * Functions for reboot-persistent memory regions.
953  *  - used for vga bios and option roms.
954  *  - also linux kernel (-kernel / -initrd).
955  */
956 
957 typedef struct Rom Rom;
958 
959 struct Rom {
960     char *name;
961     char *path;
962 
963     /* datasize is the amount of memory allocated in "data". If datasize is less
964      * than romsize, it means that the area from datasize to romsize is filled
965      * with zeros.
966      */
967     size_t romsize;
968     size_t datasize;
969 
970     uint8_t *data;
971     MemoryRegion *mr;
972     AddressSpace *as;
973     int isrom;
974     char *fw_dir;
975     char *fw_file;
976     GMappedFile *mapped_file;
977 
978     bool committed;
979 
980     hwaddr addr;
981     QTAILQ_ENTRY(Rom) next;
982 };
983 
984 static FWCfgState *fw_cfg;
985 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
986 
987 /*
988  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
989  * rom_add_elf_program())
990  */
991 static void rom_free_data(Rom *rom)
992 {
993     if (rom->mapped_file) {
994         g_mapped_file_unref(rom->mapped_file);
995         rom->mapped_file = NULL;
996     } else {
997         g_free(rom->data);
998     }
999 
1000     rom->data = NULL;
1001 }
1002 
1003 static void rom_free(Rom *rom)
1004 {
1005     rom_free_data(rom);
1006     g_free(rom->path);
1007     g_free(rom->name);
1008     g_free(rom->fw_dir);
1009     g_free(rom->fw_file);
1010     g_free(rom);
1011 }
1012 
1013 static inline bool rom_order_compare(Rom *rom, Rom *item)
1014 {
1015     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
1016            (rom->as == item->as && rom->addr >= item->addr);
1017 }
1018 
1019 static void rom_insert(Rom *rom)
1020 {
1021     Rom *item;
1022 
1023     if (roms_loaded) {
1024         hw_error ("ROM images must be loaded at startup\n");
1025     }
1026 
1027     /* The user didn't specify an address space, this is the default */
1028     if (!rom->as) {
1029         rom->as = &address_space_memory;
1030     }
1031 
1032     rom->committed = false;
1033 
1034     /* List is ordered by load address in the same address space */
1035     QTAILQ_FOREACH(item, &roms, next) {
1036         if (rom_order_compare(rom, item)) {
1037             continue;
1038         }
1039         QTAILQ_INSERT_BEFORE(item, rom, next);
1040         return;
1041     }
1042     QTAILQ_INSERT_TAIL(&roms, rom, next);
1043 }
1044 
1045 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
1046 {
1047     if (fw_cfg) {
1048         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
1049     }
1050 }
1051 
1052 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
1053 {
1054     void *data;
1055 
1056     rom->mr = g_malloc(sizeof(*rom->mr));
1057     memory_region_init_resizeable_ram(rom->mr, owner, name,
1058                                       rom->datasize, rom->romsize,
1059                                       fw_cfg_resized,
1060                                       &error_fatal);
1061     memory_region_set_readonly(rom->mr, ro);
1062     vmstate_register_ram_global(rom->mr);
1063 
1064     data = memory_region_get_ram_ptr(rom->mr);
1065     memcpy(data, rom->data, rom->datasize);
1066 
1067     return data;
1068 }
1069 
1070 ssize_t rom_add_file(const char *file, const char *fw_dir,
1071                      hwaddr addr, int32_t bootindex,
1072                      bool option_rom, MemoryRegion *mr,
1073                      AddressSpace *as)
1074 {
1075     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1076     Rom *rom;
1077     ssize_t rc;
1078     int fd = -1;
1079     char devpath[100];
1080 
1081     if (as && mr) {
1082         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
1083                 "not valid when loading a rom\n");
1084         /* We haven't allocated anything so we don't need any cleanup */
1085         return -1;
1086     }
1087 
1088     rom = g_malloc0(sizeof(*rom));
1089     rom->name = g_strdup(file);
1090     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1091     rom->as = as;
1092     if (rom->path == NULL) {
1093         rom->path = g_strdup(file);
1094     }
1095 
1096     fd = open(rom->path, O_RDONLY | O_BINARY);
1097     if (fd == -1) {
1098         fprintf(stderr, "Could not open option rom '%s': %s\n",
1099                 rom->path, strerror(errno));
1100         goto err;
1101     }
1102 
1103     if (fw_dir) {
1104         rom->fw_dir  = g_strdup(fw_dir);
1105         rom->fw_file = g_strdup(file);
1106     }
1107     rom->addr     = addr;
1108     rom->romsize  = lseek(fd, 0, SEEK_END);
1109     if (rom->romsize == -1) {
1110         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1111                 rom->name, strerror(errno));
1112         goto err;
1113     }
1114 
1115     rom->datasize = rom->romsize;
1116     rom->data     = g_malloc0(rom->datasize);
1117     lseek(fd, 0, SEEK_SET);
1118     rc = read(fd, rom->data, rom->datasize);
1119     if (rc != rom->datasize) {
1120         fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1121                 rom->name, rc, rom->datasize);
1122         goto err;
1123     }
1124     close(fd);
1125     rom_insert(rom);
1126     if (rom->fw_file && fw_cfg) {
1127         const char *basename;
1128         char fw_file_name[FW_CFG_MAX_FILE_PATH];
1129         void *data;
1130 
1131         basename = strrchr(rom->fw_file, '/');
1132         if (basename) {
1133             basename++;
1134         } else {
1135             basename = rom->fw_file;
1136         }
1137         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1138                  basename);
1139         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1140 
1141         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1142             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1143         } else {
1144             data = rom->data;
1145         }
1146 
1147         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1148     } else {
1149         if (mr) {
1150             rom->mr = mr;
1151             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1152         } else {
1153             snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1154         }
1155     }
1156 
1157     add_boot_device_path(bootindex, NULL, devpath);
1158     return 0;
1159 
1160 err:
1161     if (fd != -1)
1162         close(fd);
1163 
1164     rom_free(rom);
1165     return -1;
1166 }
1167 
1168 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1169                    size_t max_len, hwaddr addr, const char *fw_file_name,
1170                    FWCfgCallback fw_callback, void *callback_opaque,
1171                    AddressSpace *as, bool read_only)
1172 {
1173     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1174     Rom *rom;
1175     MemoryRegion *mr = NULL;
1176 
1177     rom           = g_malloc0(sizeof(*rom));
1178     rom->name     = g_strdup(name);
1179     rom->as       = as;
1180     rom->addr     = addr;
1181     rom->romsize  = max_len ? max_len : len;
1182     rom->datasize = len;
1183     g_assert(rom->romsize >= rom->datasize);
1184     rom->data     = g_malloc0(rom->datasize);
1185     memcpy(rom->data, blob, len);
1186     rom_insert(rom);
1187     if (fw_file_name && fw_cfg) {
1188         char devpath[100];
1189         void *data;
1190 
1191         if (read_only) {
1192             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1193         } else {
1194             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1195         }
1196 
1197         if (mc->rom_file_has_mr) {
1198             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1199             mr = rom->mr;
1200         } else {
1201             data = rom->data;
1202         }
1203 
1204         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1205                                  fw_callback, NULL, callback_opaque,
1206                                  data, rom->datasize, read_only);
1207     }
1208     return mr;
1209 }
1210 
1211 /* This function is specific for elf program because we don't need to allocate
1212  * all the rom. We just allocate the first part and the rest is just zeros. This
1213  * is why romsize and datasize are different. Also, this function takes its own
1214  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1215  */
1216 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1217                         size_t datasize, size_t romsize, hwaddr addr,
1218                         AddressSpace *as)
1219 {
1220     Rom *rom;
1221 
1222     rom           = g_malloc0(sizeof(*rom));
1223     rom->name     = g_strdup(name);
1224     rom->addr     = addr;
1225     rom->datasize = datasize;
1226     rom->romsize  = romsize;
1227     rom->data     = data;
1228     rom->as       = as;
1229 
1230     if (mapped_file && data) {
1231         g_mapped_file_ref(mapped_file);
1232         rom->mapped_file = mapped_file;
1233     }
1234 
1235     rom_insert(rom);
1236     return 0;
1237 }
1238 
1239 ssize_t rom_add_vga(const char *file)
1240 {
1241     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1242 }
1243 
1244 ssize_t rom_add_option(const char *file, int32_t bootindex)
1245 {
1246     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1247 }
1248 
1249 static void rom_reset(void *unused)
1250 {
1251     Rom *rom;
1252 
1253     QTAILQ_FOREACH(rom, &roms, next) {
1254         if (rom->fw_file) {
1255             continue;
1256         }
1257         /*
1258          * We don't need to fill in the RAM with ROM data because we'll fill
1259          * the data in during the next incoming migration in all cases.  Note
1260          * that some of those RAMs can actually be modified by the guest.
1261          */
1262         if (runstate_check(RUN_STATE_INMIGRATE)) {
1263             if (rom->data && rom->isrom) {
1264                 /*
1265                  * Free it so that a rom_reset after migration doesn't
1266                  * overwrite a potentially modified 'rom'.
1267                  */
1268                 rom_free_data(rom);
1269             }
1270             continue;
1271         }
1272 
1273         if (rom->data == NULL) {
1274             continue;
1275         }
1276         if (rom->mr) {
1277             void *host = memory_region_get_ram_ptr(rom->mr);
1278             memcpy(host, rom->data, rom->datasize);
1279             memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1280         } else {
1281             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1282                                     rom->data, rom->datasize);
1283             address_space_set(rom->as, rom->addr + rom->datasize, 0,
1284                               rom->romsize - rom->datasize,
1285                               MEMTXATTRS_UNSPECIFIED);
1286         }
1287         if (rom->isrom) {
1288             /* rom needs to be written only once */
1289             rom_free_data(rom);
1290         }
1291         /*
1292          * The rom loader is really on the same level as firmware in the guest
1293          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1294          * that the instruction cache for that new region is clear, so that the
1295          * CPU definitely fetches its instructions from the just written data.
1296          */
1297         cpu_flush_icache_range(rom->addr, rom->datasize);
1298 
1299         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1300     }
1301 }
1302 
1303 /* Return true if two consecutive ROMs in the ROM list overlap */
1304 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1305 {
1306     if (!last_rom) {
1307         return false;
1308     }
1309     return last_rom->as == this_rom->as &&
1310         last_rom->addr + last_rom->romsize > this_rom->addr;
1311 }
1312 
1313 static const char *rom_as_name(Rom *rom)
1314 {
1315     const char *name = rom->as ? rom->as->name : NULL;
1316     return name ?: "anonymous";
1317 }
1318 
1319 static void rom_print_overlap_error_header(void)
1320 {
1321     error_report("Some ROM regions are overlapping");
1322     error_printf(
1323         "These ROM regions might have been loaded by "
1324         "direct user request or by default.\n"
1325         "They could be BIOS/firmware images, a guest kernel, "
1326         "initrd or some other file loaded into guest memory.\n"
1327         "Check whether you intended to load all this guest code, and "
1328         "whether it has been built to load to the correct addresses.\n");
1329 }
1330 
1331 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1332 {
1333     error_printf(
1334         "\nThe following two regions overlap (in the %s address space):\n",
1335         rom_as_name(rom));
1336     error_printf(
1337         "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1338         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1339     error_printf(
1340         "  %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1341         rom->name, rom->addr, rom->addr + rom->romsize);
1342 }
1343 
1344 int rom_check_and_register_reset(void)
1345 {
1346     MemoryRegionSection section;
1347     Rom *rom, *last_rom = NULL;
1348     bool found_overlap = false;
1349 
1350     QTAILQ_FOREACH(rom, &roms, next) {
1351         if (rom->fw_file) {
1352             continue;
1353         }
1354         if (!rom->mr) {
1355             if (roms_overlap(last_rom, rom)) {
1356                 if (!found_overlap) {
1357                     found_overlap = true;
1358                     rom_print_overlap_error_header();
1359                 }
1360                 rom_print_one_overlap_error(last_rom, rom);
1361                 /* Keep going through the list so we report all overlaps */
1362             }
1363             last_rom = rom;
1364         }
1365         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1366                                      rom->addr, 1);
1367         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1368         memory_region_unref(section.mr);
1369     }
1370     if (found_overlap) {
1371         return -1;
1372     }
1373 
1374     qemu_register_reset(rom_reset, NULL);
1375     roms_loaded = 1;
1376     return 0;
1377 }
1378 
1379 void rom_set_fw(FWCfgState *f)
1380 {
1381     fw_cfg = f;
1382 }
1383 
1384 void rom_set_order_override(int order)
1385 {
1386     if (!fw_cfg)
1387         return;
1388     fw_cfg_set_order_override(fw_cfg, order);
1389 }
1390 
1391 void rom_reset_order_override(void)
1392 {
1393     if (!fw_cfg)
1394         return;
1395     fw_cfg_reset_order_override(fw_cfg);
1396 }
1397 
1398 void rom_transaction_begin(void)
1399 {
1400     Rom *rom;
1401 
1402     /* Ignore ROMs added without the transaction API */
1403     QTAILQ_FOREACH(rom, &roms, next) {
1404         rom->committed = true;
1405     }
1406 }
1407 
1408 void rom_transaction_end(bool commit)
1409 {
1410     Rom *rom;
1411     Rom *tmp;
1412 
1413     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1414         if (rom->committed) {
1415             continue;
1416         }
1417         if (commit) {
1418             rom->committed = true;
1419         } else {
1420             QTAILQ_REMOVE(&roms, rom, next);
1421             rom_free(rom);
1422         }
1423     }
1424 }
1425 
1426 static Rom *find_rom(hwaddr addr, size_t size)
1427 {
1428     Rom *rom;
1429 
1430     QTAILQ_FOREACH(rom, &roms, next) {
1431         if (rom->fw_file) {
1432             continue;
1433         }
1434         if (rom->mr) {
1435             continue;
1436         }
1437         if (rom->addr > addr) {
1438             continue;
1439         }
1440         if (rom->addr + rom->romsize < addr + size) {
1441             continue;
1442         }
1443         return rom;
1444     }
1445     return NULL;
1446 }
1447 
1448 typedef struct RomSec {
1449     hwaddr base;
1450     int se; /* start/end flag */
1451 } RomSec;
1452 
1453 
1454 /*
1455  * Sort into address order. We break ties between rom-startpoints
1456  * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1457  * transition before the 1->0 transition. Either way round would
1458  * work, but this way saves a little work later by avoiding
1459  * dealing with "gaps" of 0 length.
1460  */
1461 static gint sort_secs(gconstpointer a, gconstpointer b)
1462 {
1463     RomSec *ra = (RomSec *) a;
1464     RomSec *rb = (RomSec *) b;
1465 
1466     if (ra->base == rb->base) {
1467         return ra->se - rb->se;
1468     }
1469     return ra->base > rb->base ? 1 : -1;
1470 }
1471 
1472 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1473 {
1474    RomSec *cand = g_new(RomSec, 1);
1475    cand->base = base;
1476    cand->se = se;
1477    return g_list_prepend(secs, cand);
1478 }
1479 
1480 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1481 {
1482     Rom *rom;
1483     RomSec *cand;
1484     RomGap res = {0, 0};
1485     hwaddr gapstart = base;
1486     GList *it, *secs = NULL;
1487     int count = 0;
1488 
1489     QTAILQ_FOREACH(rom, &roms, next) {
1490         /* Ignore blobs being loaded to special places */
1491         if (rom->mr || rom->fw_file) {
1492             continue;
1493         }
1494         /* ignore anything finishing bellow base */
1495         if (rom->addr + rom->romsize <= base) {
1496             continue;
1497         }
1498         /* ignore anything starting above the region */
1499         if (rom->addr >= base + size) {
1500             continue;
1501         }
1502 
1503         /* Save the start and end of each relevant ROM */
1504         secs = add_romsec_to_list(secs, rom->addr, 1);
1505 
1506         if (rom->addr + rom->romsize < base + size) {
1507             secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1508         }
1509     }
1510 
1511     /* sentinel */
1512     secs = add_romsec_to_list(secs, base + size, 1);
1513 
1514     secs = g_list_sort(secs, sort_secs);
1515 
1516     for (it = g_list_first(secs); it; it = g_list_next(it)) {
1517         cand = (RomSec *) it->data;
1518         if (count == 0 && count + cand->se == 1) {
1519             size_t gap = cand->base - gapstart;
1520             if (gap > res.size) {
1521                 res.base = gapstart;
1522                 res.size = gap;
1523             }
1524         } else if (count == 1 && count + cand->se == 0) {
1525             gapstart = cand->base;
1526         }
1527         count += cand->se;
1528     }
1529 
1530     g_list_free_full(secs, g_free);
1531     return res;
1532 }
1533 
1534 /*
1535  * Copies memory from registered ROMs to dest. Any memory that is contained in
1536  * a ROM between addr and addr + size is copied. Note that this can involve
1537  * multiple ROMs, which need not start at addr and need not end at addr + size.
1538  */
1539 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1540 {
1541     hwaddr end = addr + size;
1542     uint8_t *s, *d = dest;
1543     size_t l = 0;
1544     Rom *rom;
1545 
1546     QTAILQ_FOREACH(rom, &roms, next) {
1547         if (rom->fw_file) {
1548             continue;
1549         }
1550         if (rom->mr) {
1551             continue;
1552         }
1553         if (rom->addr + rom->romsize < addr) {
1554             continue;
1555         }
1556         if (rom->addr > end || rom->addr < addr) {
1557             break;
1558         }
1559 
1560         d = dest + (rom->addr - addr);
1561         s = rom->data;
1562         l = rom->datasize;
1563 
1564         if ((d + l) > (dest + size)) {
1565             l = dest - d;
1566         }
1567 
1568         if (l > 0) {
1569             memcpy(d, s, l);
1570         }
1571 
1572         if (rom->romsize > rom->datasize) {
1573             /* If datasize is less than romsize, it means that we didn't
1574              * allocate all the ROM because the trailing data are only zeros.
1575              */
1576 
1577             d += l;
1578             l = rom->romsize - rom->datasize;
1579 
1580             if ((d + l) > (dest + size)) {
1581                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1582                  * overflow.
1583                  */
1584                 l = dest - d;
1585             }
1586 
1587             if (l > 0) {
1588                 memset(d, 0x0, l);
1589             }
1590         }
1591     }
1592 
1593     return (d + l) - dest;
1594 }
1595 
1596 void *rom_ptr(hwaddr addr, size_t size)
1597 {
1598     Rom *rom;
1599 
1600     rom = find_rom(addr, size);
1601     if (!rom || !rom->data)
1602         return NULL;
1603     return rom->data + (addr - rom->addr);
1604 }
1605 
1606 typedef struct FindRomCBData {
1607     size_t size; /* Amount of data we want from ROM, in bytes */
1608     MemoryRegion *mr; /* MR at the unaliased guest addr */
1609     hwaddr xlat; /* Offset of addr within mr */
1610     void *rom; /* Output: rom data pointer, if found */
1611 } FindRomCBData;
1612 
1613 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1614                         hwaddr offset_in_region, void *opaque)
1615 {
1616     FindRomCBData *cbdata = opaque;
1617     hwaddr alias_addr;
1618 
1619     if (mr != cbdata->mr) {
1620         return false;
1621     }
1622 
1623     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1624     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1625     if (!cbdata->rom) {
1626         return false;
1627     }
1628     /* Found a match, stop iterating */
1629     return true;
1630 }
1631 
1632 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1633 {
1634     /*
1635      * Find any ROM data for the given guest address range.  If there
1636      * is a ROM blob then return a pointer to the host memory
1637      * corresponding to 'addr'; otherwise return NULL.
1638      *
1639      * We look not only for ROM blobs that were loaded directly to
1640      * addr, but also for ROM blobs that were loaded to aliases of
1641      * that memory at other addresses within the AddressSpace.
1642      *
1643      * Note that we do not check @as against the 'as' member in the
1644      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1645      * AddressSpace which the rom blob should be written to, whereas
1646      * our @as argument is the AddressSpace which we are (effectively)
1647      * reading from, and the same underlying RAM will often be visible
1648      * in multiple AddressSpaces. (A common example is a ROM blob
1649      * written to the 'system' address space but then read back via a
1650      * CPU's cpu->as pointer.) This does mean we might potentially
1651      * return a false-positive match if a ROM blob was loaded into an
1652      * AS which is entirely separate and distinct from the one we're
1653      * querying, but this issue exists also for rom_ptr() and hasn't
1654      * caused any problems in practice.
1655      */
1656     FlatView *fv;
1657     void *rom;
1658     hwaddr len_unused;
1659     FindRomCBData cbdata = {};
1660 
1661     /* Easy case: there's data at the actual address */
1662     rom = rom_ptr(addr, size);
1663     if (rom) {
1664         return rom;
1665     }
1666 
1667     RCU_READ_LOCK_GUARD();
1668 
1669     fv = address_space_to_flatview(as);
1670     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1671                                    false, MEMTXATTRS_UNSPECIFIED);
1672     if (!cbdata.mr) {
1673         /* Nothing at this address, so there can't be any aliasing */
1674         return NULL;
1675     }
1676     cbdata.size = size;
1677     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1678     return cbdata.rom;
1679 }
1680 
1681 HumanReadableText *qmp_x_query_roms(Error **errp)
1682 {
1683     Rom *rom;
1684     g_autoptr(GString) buf = g_string_new("");
1685 
1686     QTAILQ_FOREACH(rom, &roms, next) {
1687         if (rom->mr) {
1688             g_string_append_printf(buf, "%s"
1689                                    " size=0x%06zx name=\"%s\"\n",
1690                                    memory_region_name(rom->mr),
1691                                    rom->romsize,
1692                                    rom->name);
1693         } else if (!rom->fw_file) {
1694             g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1695                                    " size=0x%06zx mem=%s name=\"%s\"\n",
1696                                    rom->addr, rom->romsize,
1697                                    rom->isrom ? "rom" : "ram",
1698                                    rom->name);
1699         } else {
1700             g_string_append_printf(buf, "fw=%s/%s"
1701                                    " size=0x%06zx name=\"%s\"\n",
1702                                    rom->fw_dir,
1703                                    rom->fw_file,
1704                                    rom->romsize,
1705                                    rom->name);
1706         }
1707     }
1708 
1709     return human_readable_text_from_str(buf);
1710 }
1711 
1712 typedef enum HexRecord HexRecord;
1713 enum HexRecord {
1714     DATA_RECORD = 0,
1715     EOF_RECORD,
1716     EXT_SEG_ADDR_RECORD,
1717     START_SEG_ADDR_RECORD,
1718     EXT_LINEAR_ADDR_RECORD,
1719     START_LINEAR_ADDR_RECORD,
1720 };
1721 
1722 /* Each record contains a 16-bit address which is combined with the upper 16
1723  * bits of the implicit "next address" to form a 32-bit address.
1724  */
1725 #define NEXT_ADDR_MASK 0xffff0000
1726 
1727 #define DATA_FIELD_MAX_LEN 0xff
1728 #define LEN_EXCEPT_DATA 0x5
1729 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1730  *       sizeof(checksum) */
1731 typedef struct {
1732     uint8_t byte_count;
1733     uint16_t address;
1734     uint8_t record_type;
1735     uint8_t data[DATA_FIELD_MAX_LEN];
1736     uint8_t checksum;
1737 } HexLine;
1738 
1739 /* return 0 or -1 if error */
1740 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1741                          uint32_t *index, const bool in_process)
1742 {
1743     /* +-------+---------------+-------+---------------------+--------+
1744      * | byte  |               |record |                     |        |
1745      * | count |    address    | type  |        data         |checksum|
1746      * +-------+---------------+-------+---------------------+--------+
1747      * ^       ^               ^       ^                     ^        ^
1748      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1749      */
1750     uint8_t value = 0;
1751     uint32_t idx = *index;
1752     /* ignore space */
1753     if (g_ascii_isspace(c)) {
1754         return true;
1755     }
1756     if (!g_ascii_isxdigit(c) || !in_process) {
1757         return false;
1758     }
1759     value = g_ascii_xdigit_value(c);
1760     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1761     if (idx < 2) {
1762         line->byte_count |= value;
1763     } else if (2 <= idx && idx < 6) {
1764         line->address <<= 4;
1765         line->address += g_ascii_xdigit_value(c);
1766     } else if (6 <= idx && idx < 8) {
1767         line->record_type |= value;
1768     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1769         line->data[(idx - 8) >> 1] |= value;
1770     } else if (8 + 2 * line->byte_count <= idx &&
1771                idx < 10 + 2 * line->byte_count) {
1772         line->checksum |= value;
1773     } else {
1774         return false;
1775     }
1776     *our_checksum += value;
1777     ++(*index);
1778     return true;
1779 }
1780 
1781 typedef struct {
1782     const char *filename;
1783     HexLine line;
1784     uint8_t *bin_buf;
1785     hwaddr *start_addr;
1786     int total_size;
1787     uint32_t next_address_to_write;
1788     uint32_t current_address;
1789     uint32_t current_rom_index;
1790     uint32_t rom_start_address;
1791     AddressSpace *as;
1792     bool complete;
1793 } HexParser;
1794 
1795 /* return size or -1 if error */
1796 static int handle_record_type(HexParser *parser)
1797 {
1798     HexLine *line = &(parser->line);
1799     switch (line->record_type) {
1800     case DATA_RECORD:
1801         parser->current_address =
1802             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1803         /* verify this is a contiguous block of memory */
1804         if (parser->current_address != parser->next_address_to_write) {
1805             if (parser->current_rom_index != 0) {
1806                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1807                                       parser->current_rom_index,
1808                                       parser->rom_start_address, parser->as);
1809             }
1810             parser->rom_start_address = parser->current_address;
1811             parser->current_rom_index = 0;
1812         }
1813 
1814         /* copy from line buffer to output bin_buf */
1815         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1816                line->byte_count);
1817         parser->current_rom_index += line->byte_count;
1818         parser->total_size += line->byte_count;
1819         /* save next address to write */
1820         parser->next_address_to_write =
1821             parser->current_address + line->byte_count;
1822         break;
1823 
1824     case EOF_RECORD:
1825         if (parser->current_rom_index != 0) {
1826             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1827                                   parser->current_rom_index,
1828                                   parser->rom_start_address, parser->as);
1829         }
1830         parser->complete = true;
1831         return parser->total_size;
1832     case EXT_SEG_ADDR_RECORD:
1833     case EXT_LINEAR_ADDR_RECORD:
1834         if (line->byte_count != 2 && line->address != 0) {
1835             return -1;
1836         }
1837 
1838         if (parser->current_rom_index != 0) {
1839             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1840                                   parser->current_rom_index,
1841                                   parser->rom_start_address, parser->as);
1842         }
1843 
1844         /* save next address to write,
1845          * in case of non-contiguous block of memory */
1846         parser->next_address_to_write = (line->data[0] << 12) |
1847                                         (line->data[1] << 4);
1848         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1849             parser->next_address_to_write <<= 12;
1850         }
1851 
1852         parser->rom_start_address = parser->next_address_to_write;
1853         parser->current_rom_index = 0;
1854         break;
1855 
1856     case START_SEG_ADDR_RECORD:
1857         if (line->byte_count != 4 && line->address != 0) {
1858             return -1;
1859         }
1860 
1861         /* x86 16-bit CS:IP segmented addressing */
1862         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1863                                 ((line->data[2] << 8) | line->data[3]);
1864         break;
1865 
1866     case START_LINEAR_ADDR_RECORD:
1867         if (line->byte_count != 4 && line->address != 0) {
1868             return -1;
1869         }
1870 
1871         *(parser->start_addr) = ldl_be_p(line->data);
1872         break;
1873 
1874     default:
1875         return -1;
1876     }
1877 
1878     return parser->total_size;
1879 }
1880 
1881 /* return size or -1 if error */
1882 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1883                           size_t hex_blob_size, AddressSpace *as)
1884 {
1885     bool in_process = false; /* avoid re-enter and
1886                               * check whether record begin with ':' */
1887     uint8_t *end = hex_blob + hex_blob_size;
1888     uint8_t our_checksum = 0;
1889     uint32_t record_index = 0;
1890     HexParser parser = {
1891         .filename = filename,
1892         .bin_buf = g_malloc(hex_blob_size),
1893         .start_addr = addr,
1894         .as = as,
1895         .complete = false
1896     };
1897 
1898     rom_transaction_begin();
1899 
1900     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1901         switch (*hex_blob) {
1902         case '\r':
1903         case '\n':
1904             if (!in_process) {
1905                 break;
1906             }
1907 
1908             in_process = false;
1909             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1910                     record_index ||
1911                 our_checksum != 0) {
1912                 parser.total_size = -1;
1913                 goto out;
1914             }
1915 
1916             if (handle_record_type(&parser) == -1) {
1917                 parser.total_size = -1;
1918                 goto out;
1919             }
1920             break;
1921 
1922         /* start of a new record. */
1923         case ':':
1924             memset(&parser.line, 0, sizeof(HexLine));
1925             in_process = true;
1926             record_index = 0;
1927             break;
1928 
1929         /* decoding lines */
1930         default:
1931             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1932                               &record_index, in_process)) {
1933                 parser.total_size = -1;
1934                 goto out;
1935             }
1936             break;
1937         }
1938     }
1939 
1940 out:
1941     g_free(parser.bin_buf);
1942     rom_transaction_end(parser.total_size != -1);
1943     return parser.total_size;
1944 }
1945 
1946 /* return size or -1 if error */
1947 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1948                              AddressSpace *as)
1949 {
1950     gsize hex_blob_size;
1951     gchar *hex_blob;
1952     ssize_t total_size = 0;
1953 
1954     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1955         return -1;
1956     }
1957 
1958     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1959                                 hex_blob_size, as);
1960 
1961     g_free(hex_blob);
1962     return total_size;
1963 }
1964