xref: /qemu/hw/display/ssd0323.c (revision abff1abf)
1 /*
2  * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* The controller can support a variety of different displays, but we only
11    implement one.  Most of the commends relating to brightness and geometry
12    setup are ignored. */
13 
14 #include "qemu/osdep.h"
15 #include "hw/ssi/ssi.h"
16 #include "migration/vmstate.h"
17 #include "qemu/module.h"
18 #include "ui/console.h"
19 
20 //#define DEBUG_SSD0323 1
21 
22 #ifdef DEBUG_SSD0323
23 #define DPRINTF(fmt, ...) \
24 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
25 #define BADF(fmt, ...) \
26 do { \
27     fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
28 } while (0)
29 #else
30 #define DPRINTF(fmt, ...) do {} while(0)
31 #define BADF(fmt, ...) \
32 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
33 #endif
34 
35 /* Scaling factor for pixels.  */
36 #define MAGNIFY 4
37 
38 #define REMAP_SWAP_COLUMN 0x01
39 #define REMAP_SWAP_NYBBLE 0x02
40 #define REMAP_VERTICAL    0x04
41 #define REMAP_SWAP_COM    0x10
42 #define REMAP_SPLIT_COM   0x40
43 
44 enum ssd0323_mode
45 {
46     SSD0323_CMD,
47     SSD0323_DATA
48 };
49 
50 typedef struct {
51     SSISlave ssidev;
52     QemuConsole *con;
53 
54     uint32_t cmd_len;
55     int32_t cmd;
56     int32_t cmd_data[8];
57     int32_t row;
58     int32_t row_start;
59     int32_t row_end;
60     int32_t col;
61     int32_t col_start;
62     int32_t col_end;
63     int32_t redraw;
64     int32_t remap;
65     uint32_t mode;
66     uint8_t framebuffer[128 * 80 / 2];
67 } ssd0323_state;
68 
69 #define TYPE_SSD0323 "ssd0323"
70 #define SSD0323(obj) OBJECT_CHECK(ssd0323_state, (obj), TYPE_SSD0323)
71 
72 
73 static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data)
74 {
75     ssd0323_state *s = SSD0323(dev);
76 
77     switch (s->mode) {
78     case SSD0323_DATA:
79         DPRINTF("data 0x%02x\n", data);
80         s->framebuffer[s->col + s->row * 64] = data;
81         if (s->remap & REMAP_VERTICAL) {
82             s->row++;
83             if (s->row > s->row_end) {
84                 s->row = s->row_start;
85                 s->col++;
86             }
87             if (s->col > s->col_end) {
88                 s->col = s->col_start;
89             }
90         } else {
91             s->col++;
92             if (s->col > s->col_end) {
93                 s->row++;
94                 s->col = s->col_start;
95             }
96             if (s->row > s->row_end) {
97                 s->row = s->row_start;
98             }
99         }
100         s->redraw = 1;
101         break;
102     case SSD0323_CMD:
103         DPRINTF("cmd 0x%02x\n", data);
104         if (s->cmd_len == 0) {
105             s->cmd = data;
106         } else {
107             s->cmd_data[s->cmd_len - 1] = data;
108         }
109         s->cmd_len++;
110         switch (s->cmd) {
111 #define DATA(x) if (s->cmd_len <= (x)) return 0
112         case 0x15: /* Set column.  */
113             DATA(2);
114             s->col = s->col_start = s->cmd_data[0] % 64;
115             s->col_end = s->cmd_data[1] % 64;
116             break;
117         case 0x75: /* Set row.  */
118             DATA(2);
119             s->row = s->row_start = s->cmd_data[0] % 80;
120             s->row_end = s->cmd_data[1] % 80;
121             break;
122         case 0x81: /* Set contrast */
123             DATA(1);
124             break;
125         case 0x84: case 0x85: case 0x86: /* Max current.  */
126             DATA(0);
127             break;
128         case 0xa0: /* Set remapping.  */
129             /* FIXME: Implement this.  */
130             DATA(1);
131             s->remap = s->cmd_data[0];
132             break;
133         case 0xa1: /* Set display start line.  */
134         case 0xa2: /* Set display offset.  */
135             /* FIXME: Implement these.  */
136             DATA(1);
137             break;
138         case 0xa4: /* Normal mode.  */
139         case 0xa5: /* All on.  */
140         case 0xa6: /* All off.  */
141         case 0xa7: /* Inverse.  */
142             /* FIXME: Implement these.  */
143             DATA(0);
144             break;
145         case 0xa8: /* Set multiplex ratio.  */
146         case 0xad: /* Set DC-DC converter.  */
147             DATA(1);
148             /* Ignored.  Don't care.  */
149             break;
150         case 0xae: /* Display off.  */
151         case 0xaf: /* Display on.  */
152             DATA(0);
153             /* TODO: Implement power control.  */
154             break;
155         case 0xb1: /* Set phase length.  */
156         case 0xb2: /* Set row period.  */
157         case 0xb3: /* Set clock rate.  */
158         case 0xbc: /* Set precharge.  */
159         case 0xbe: /* Set VCOMH.  */
160         case 0xbf: /* Set segment low.  */
161             DATA(1);
162             /* Ignored.  Don't care.  */
163             break;
164         case 0xb8: /* Set grey scale table.  */
165             /* FIXME: Implement this.  */
166             DATA(8);
167             break;
168         case 0xe3: /* NOP.  */
169             DATA(0);
170             break;
171         case 0xff: /* Nasty hack because we don't handle chip selects
172                       properly.  */
173             break;
174         default:
175             BADF("Unknown command: 0x%x\n", data);
176         }
177         s->cmd_len = 0;
178         return 0;
179     }
180     return 0;
181 }
182 
183 static void ssd0323_update_display(void *opaque)
184 {
185     ssd0323_state *s = (ssd0323_state *)opaque;
186     DisplaySurface *surface = qemu_console_surface(s->con);
187     uint8_t *dest;
188     uint8_t *src;
189     int x;
190     int y;
191     int i;
192     int line;
193     char *colors[16];
194     char colortab[MAGNIFY * 64];
195     char *p;
196     int dest_width;
197 
198     if (!s->redraw)
199         return;
200 
201     switch (surface_bits_per_pixel(surface)) {
202     case 0:
203         return;
204     case 15:
205         dest_width = 2;
206         break;
207     case 16:
208         dest_width = 2;
209         break;
210     case 24:
211         dest_width = 3;
212         break;
213     case 32:
214         dest_width = 4;
215         break;
216     default:
217         BADF("Bad color depth\n");
218         return;
219     }
220     p = colortab;
221     for (i = 0; i < 16; i++) {
222         int n;
223         colors[i] = p;
224         switch (surface_bits_per_pixel(surface)) {
225         case 15:
226             n = i * 2 + (i >> 3);
227             p[0] = n | (n << 5);
228             p[1] = (n << 2) | (n >> 3);
229             break;
230         case 16:
231             n = i * 2 + (i >> 3);
232             p[0] = n | (n << 6) | ((n << 1) & 0x20);
233             p[1] = (n << 3) | (n >> 2);
234             break;
235         case 24:
236         case 32:
237             n = (i << 4) | i;
238             p[0] = p[1] = p[2] = n;
239             break;
240         default:
241             BADF("Bad color depth\n");
242             return;
243         }
244         p += dest_width;
245     }
246     /* TODO: Implement row/column remapping.  */
247     dest = surface_data(surface);
248     for (y = 0; y < 64; y++) {
249         line = y;
250         src = s->framebuffer + 64 * line;
251         for (x = 0; x < 64; x++) {
252             int val;
253             val = *src >> 4;
254             for (i = 0; i < MAGNIFY; i++) {
255                 memcpy(dest, colors[val], dest_width);
256                 dest += dest_width;
257             }
258             val = *src & 0xf;
259             for (i = 0; i < MAGNIFY; i++) {
260                 memcpy(dest, colors[val], dest_width);
261                 dest += dest_width;
262             }
263             src++;
264         }
265         for (i = 1; i < MAGNIFY; i++) {
266             memcpy(dest, dest - dest_width * MAGNIFY * 128,
267                    dest_width * 128 * MAGNIFY);
268             dest += dest_width * 128 * MAGNIFY;
269         }
270     }
271     s->redraw = 0;
272     dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
273 }
274 
275 static void ssd0323_invalidate_display(void * opaque)
276 {
277     ssd0323_state *s = (ssd0323_state *)opaque;
278     s->redraw = 1;
279 }
280 
281 /* Command/data input.  */
282 static void ssd0323_cd(void *opaque, int n, int level)
283 {
284     ssd0323_state *s = (ssd0323_state *)opaque;
285     DPRINTF("%s mode\n", level ? "Data" : "Command");
286     s->mode = level ? SSD0323_DATA : SSD0323_CMD;
287 }
288 
289 static int ssd0323_post_load(void *opaque, int version_id)
290 {
291     ssd0323_state *s = (ssd0323_state *)opaque;
292 
293     if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
294         return -EINVAL;
295     }
296     if (s->row < 0 || s->row >= 80) {
297         return -EINVAL;
298     }
299     if (s->row_start < 0 || s->row_start >= 80) {
300         return -EINVAL;
301     }
302     if (s->row_end < 0 || s->row_end >= 80) {
303         return -EINVAL;
304     }
305     if (s->col < 0 || s->col >= 64) {
306         return -EINVAL;
307     }
308     if (s->col_start < 0 || s->col_start >= 64) {
309         return -EINVAL;
310     }
311     if (s->col_end < 0 || s->col_end >= 64) {
312         return -EINVAL;
313     }
314     if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
315         return -EINVAL;
316     }
317 
318     return 0;
319 }
320 
321 static const VMStateDescription vmstate_ssd0323 = {
322     .name = "ssd0323_oled",
323     .version_id = 2,
324     .minimum_version_id = 2,
325     .post_load = ssd0323_post_load,
326     .fields      = (VMStateField []) {
327         VMSTATE_UINT32(cmd_len, ssd0323_state),
328         VMSTATE_INT32(cmd, ssd0323_state),
329         VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
330         VMSTATE_INT32(row, ssd0323_state),
331         VMSTATE_INT32(row_start, ssd0323_state),
332         VMSTATE_INT32(row_end, ssd0323_state),
333         VMSTATE_INT32(col, ssd0323_state),
334         VMSTATE_INT32(col_start, ssd0323_state),
335         VMSTATE_INT32(col_end, ssd0323_state),
336         VMSTATE_INT32(redraw, ssd0323_state),
337         VMSTATE_INT32(remap, ssd0323_state),
338         VMSTATE_UINT32(mode, ssd0323_state),
339         VMSTATE_BUFFER(framebuffer, ssd0323_state),
340         VMSTATE_SSI_SLAVE(ssidev, ssd0323_state),
341         VMSTATE_END_OF_LIST()
342     }
343 };
344 
345 static const GraphicHwOps ssd0323_ops = {
346     .invalidate  = ssd0323_invalidate_display,
347     .gfx_update  = ssd0323_update_display,
348 };
349 
350 static void ssd0323_realize(SSISlave *d, Error **errp)
351 {
352     DeviceState *dev = DEVICE(d);
353     ssd0323_state *s = SSD0323(d);
354 
355     s->col_end = 63;
356     s->row_end = 79;
357     s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
358     qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
359 
360     qdev_init_gpio_in(dev, ssd0323_cd, 1);
361 }
362 
363 static void ssd0323_class_init(ObjectClass *klass, void *data)
364 {
365     DeviceClass *dc = DEVICE_CLASS(klass);
366     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
367 
368     k->realize = ssd0323_realize;
369     k->transfer = ssd0323_transfer;
370     k->cs_polarity = SSI_CS_HIGH;
371     dc->vmsd = &vmstate_ssd0323;
372 }
373 
374 static const TypeInfo ssd0323_info = {
375     .name          = TYPE_SSD0323,
376     .parent        = TYPE_SSI_SLAVE,
377     .instance_size = sizeof(ssd0323_state),
378     .class_init    = ssd0323_class_init,
379 };
380 
381 static void ssd03232_register_types(void)
382 {
383     type_register_static(&ssd0323_info);
384 }
385 
386 type_init(ssd03232_register_types)
387