xref: /qemu/hw/dma/sifive_pdma.c (revision b2a3cbb8)
1 /*
2  * SiFive Platform DMA emulation
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 or
12  * (at your option) version 3 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include "qemu/osdep.h"
24 #include "qemu/bitops.h"
25 #include "qemu/log.h"
26 #include "qapi/error.h"
27 #include "hw/irq.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "sysemu/dma.h"
32 #include "hw/dma/sifive_pdma.h"
33 
34 #define DMA_CONTROL         0x000
35 #define   CONTROL_CLAIM     BIT(0)
36 #define   CONTROL_RUN       BIT(1)
37 #define   CONTROL_DONE_IE   BIT(14)
38 #define   CONTROL_ERR_IE    BIT(15)
39 #define   CONTROL_DONE      BIT(30)
40 #define   CONTROL_ERR       BIT(31)
41 
42 #define DMA_NEXT_CONFIG     0x004
43 #define   CONFIG_REPEAT     BIT(2)
44 #define   CONFIG_ORDER      BIT(3)
45 #define   CONFIG_WRSZ_SHIFT 24
46 #define   CONFIG_RDSZ_SHIFT 28
47 #define   CONFIG_SZ_MASK    0xf
48 
49 #define DMA_NEXT_BYTES      0x008
50 #define DMA_NEXT_DST        0x010
51 #define DMA_NEXT_SRC        0x018
52 #define DMA_EXEC_CONFIG     0x104
53 #define DMA_EXEC_BYTES      0x108
54 #define DMA_EXEC_DST        0x110
55 #define DMA_EXEC_SRC        0x118
56 
57 /*
58  * FU540/FU740 docs are incorrect with NextConfig.wsize/rsize reset values.
59  * The reset values tested on Unleashed/Unmatched boards are 6 instead of 0.
60  */
61 #define CONFIG_WRSZ_DEFAULT 6
62 #define CONFIG_RDSZ_DEFAULT 6
63 
64 enum dma_chan_state {
65     DMA_CHAN_STATE_IDLE,
66     DMA_CHAN_STATE_STARTED,
67     DMA_CHAN_STATE_ERROR,
68     DMA_CHAN_STATE_DONE
69 };
70 
71 static void sifive_pdma_run(SiFivePDMAState *s, int ch)
72 {
73     uint64_t bytes = s->chan[ch].next_bytes;
74     uint64_t dst = s->chan[ch].next_dst;
75     uint64_t src = s->chan[ch].next_src;
76     uint32_t config = s->chan[ch].next_config;
77     int wsize, rsize, size, remainder;
78     uint8_t buf[64];
79     int n;
80 
81     /* do nothing if bytes to transfer is zero */
82     if (!bytes) {
83         goto done;
84     }
85 
86     /*
87      * The manual does not describe how the hardware behaviors when
88      * config.wsize and config.rsize are given different values.
89      * A common case is memory to memory DMA, and in this case they
90      * are normally the same. Abort if this expectation fails.
91      */
92     wsize = (config >> CONFIG_WRSZ_SHIFT) & CONFIG_SZ_MASK;
93     rsize = (config >> CONFIG_RDSZ_SHIFT) & CONFIG_SZ_MASK;
94     if (wsize != rsize) {
95         goto error;
96     }
97 
98     /*
99      * Calculate the transaction size
100      *
101      * size field is base 2 logarithm of DMA transaction size,
102      * but there is an upper limit of 64 bytes per transaction.
103      */
104     size = wsize;
105     if (size > 6) {
106         size = 6;
107     }
108     size = 1 << size;
109     remainder = bytes % size;
110 
111     /* indicate a DMA transfer is started */
112     s->chan[ch].state = DMA_CHAN_STATE_STARTED;
113     s->chan[ch].control &= ~CONTROL_DONE;
114     s->chan[ch].control &= ~CONTROL_ERR;
115 
116     /* load the next_ registers into their exec_ counterparts */
117     s->chan[ch].exec_config = config;
118     s->chan[ch].exec_bytes = bytes;
119     s->chan[ch].exec_dst = dst;
120     s->chan[ch].exec_src = src;
121 
122     for (n = 0; n < bytes / size; n++) {
123         cpu_physical_memory_read(s->chan[ch].exec_src, buf, size);
124         cpu_physical_memory_write(s->chan[ch].exec_dst, buf, size);
125         s->chan[ch].exec_src += size;
126         s->chan[ch].exec_dst += size;
127         s->chan[ch].exec_bytes -= size;
128     }
129 
130     if (remainder) {
131         cpu_physical_memory_read(s->chan[ch].exec_src, buf, remainder);
132         cpu_physical_memory_write(s->chan[ch].exec_dst, buf, remainder);
133         s->chan[ch].exec_src += remainder;
134         s->chan[ch].exec_dst += remainder;
135         s->chan[ch].exec_bytes -= remainder;
136     }
137 
138     /* reload exec_ registers if repeat is required */
139     if (s->chan[ch].next_config & CONFIG_REPEAT) {
140         s->chan[ch].exec_bytes = bytes;
141         s->chan[ch].exec_dst = dst;
142         s->chan[ch].exec_src = src;
143     }
144 
145 done:
146     /* indicate a DMA transfer is done */
147     s->chan[ch].state = DMA_CHAN_STATE_DONE;
148     s->chan[ch].control &= ~CONTROL_RUN;
149     s->chan[ch].control |= CONTROL_DONE;
150     return;
151 
152 error:
153     s->chan[ch].state = DMA_CHAN_STATE_ERROR;
154     s->chan[ch].control |= CONTROL_ERR;
155     return;
156 }
157 
158 static inline void sifive_pdma_update_irq(SiFivePDMAState *s, int ch)
159 {
160     bool done_ie, err_ie;
161 
162     done_ie = !!(s->chan[ch].control & CONTROL_DONE_IE);
163     err_ie = !!(s->chan[ch].control & CONTROL_ERR_IE);
164 
165     if (done_ie && (s->chan[ch].control & CONTROL_DONE)) {
166         qemu_irq_raise(s->irq[ch * 2]);
167     } else {
168         qemu_irq_lower(s->irq[ch * 2]);
169     }
170 
171     if (err_ie && (s->chan[ch].control & CONTROL_ERR)) {
172         qemu_irq_raise(s->irq[ch * 2 + 1]);
173     } else {
174         qemu_irq_lower(s->irq[ch * 2 + 1]);
175     }
176 
177     s->chan[ch].state = DMA_CHAN_STATE_IDLE;
178 }
179 
180 static uint64_t sifive_pdma_readq(SiFivePDMAState *s, int ch, hwaddr offset)
181 {
182     uint64_t val = 0;
183 
184     offset &= 0xfff;
185     switch (offset) {
186     case DMA_NEXT_BYTES:
187         val = s->chan[ch].next_bytes;
188         break;
189     case DMA_NEXT_DST:
190         val = s->chan[ch].next_dst;
191         break;
192     case DMA_NEXT_SRC:
193         val = s->chan[ch].next_src;
194         break;
195     case DMA_EXEC_BYTES:
196         val = s->chan[ch].exec_bytes;
197         break;
198     case DMA_EXEC_DST:
199         val = s->chan[ch].exec_dst;
200         break;
201     case DMA_EXEC_SRC:
202         val = s->chan[ch].exec_src;
203         break;
204     default:
205         qemu_log_mask(LOG_GUEST_ERROR,
206                       "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
207                       __func__, offset);
208         break;
209     }
210 
211     return val;
212 }
213 
214 static uint32_t sifive_pdma_readl(SiFivePDMAState *s, int ch, hwaddr offset)
215 {
216     uint32_t val = 0;
217 
218     offset &= 0xfff;
219     switch (offset) {
220     case DMA_CONTROL:
221         val = s->chan[ch].control;
222         break;
223     case DMA_NEXT_CONFIG:
224         val = s->chan[ch].next_config;
225         break;
226     case DMA_NEXT_BYTES:
227         val = extract64(s->chan[ch].next_bytes, 0, 32);
228         break;
229     case DMA_NEXT_BYTES + 4:
230         val = extract64(s->chan[ch].next_bytes, 32, 32);
231         break;
232     case DMA_NEXT_DST:
233         val = extract64(s->chan[ch].next_dst, 0, 32);
234         break;
235     case DMA_NEXT_DST + 4:
236         val = extract64(s->chan[ch].next_dst, 32, 32);
237         break;
238     case DMA_NEXT_SRC:
239         val = extract64(s->chan[ch].next_src, 0, 32);
240         break;
241     case DMA_NEXT_SRC + 4:
242         val = extract64(s->chan[ch].next_src, 32, 32);
243         break;
244     case DMA_EXEC_CONFIG:
245         val = s->chan[ch].exec_config;
246         break;
247     case DMA_EXEC_BYTES:
248         val = extract64(s->chan[ch].exec_bytes, 0, 32);
249         break;
250     case DMA_EXEC_BYTES + 4:
251         val = extract64(s->chan[ch].exec_bytes, 32, 32);
252         break;
253     case DMA_EXEC_DST:
254         val = extract64(s->chan[ch].exec_dst, 0, 32);
255         break;
256     case DMA_EXEC_DST + 4:
257         val = extract64(s->chan[ch].exec_dst, 32, 32);
258         break;
259     case DMA_EXEC_SRC:
260         val = extract64(s->chan[ch].exec_src, 0, 32);
261         break;
262     case DMA_EXEC_SRC + 4:
263         val = extract64(s->chan[ch].exec_src, 32, 32);
264         break;
265     default:
266         qemu_log_mask(LOG_GUEST_ERROR,
267                       "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
268                       __func__, offset);
269         break;
270     }
271 
272     return val;
273 }
274 
275 static uint64_t sifive_pdma_read(void *opaque, hwaddr offset, unsigned size)
276 {
277     SiFivePDMAState *s = opaque;
278     int ch = SIFIVE_PDMA_CHAN_NO(offset);
279     uint64_t val = 0;
280 
281     if (ch >= SIFIVE_PDMA_CHANS) {
282         qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
283                       __func__, ch);
284         return 0;
285     }
286 
287     switch (size) {
288     case 8:
289         val = sifive_pdma_readq(s, ch, offset);
290         break;
291     case 4:
292         val = sifive_pdma_readl(s, ch, offset);
293         break;
294     default:
295         qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid read size %u to PDMA\n",
296                       __func__, size);
297         return 0;
298     }
299 
300     return val;
301 }
302 
303 static void sifive_pdma_writeq(SiFivePDMAState *s, int ch,
304                                hwaddr offset, uint64_t value)
305 {
306     offset &= 0xfff;
307     switch (offset) {
308     case DMA_NEXT_BYTES:
309         s->chan[ch].next_bytes = value;
310         break;
311     case DMA_NEXT_DST:
312         s->chan[ch].next_dst = value;
313         break;
314     case DMA_NEXT_SRC:
315         s->chan[ch].next_src = value;
316         break;
317     case DMA_EXEC_BYTES:
318     case DMA_EXEC_DST:
319     case DMA_EXEC_SRC:
320         /* these are read-only registers */
321         break;
322     default:
323         qemu_log_mask(LOG_GUEST_ERROR,
324                       "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n",
325                       __func__, offset);
326         break;
327     }
328 }
329 
330 static void sifive_pdma_writel(SiFivePDMAState *s, int ch,
331                                hwaddr offset, uint32_t value)
332 {
333     bool claimed, run;
334 
335     offset &= 0xfff;
336     switch (offset) {
337     case DMA_CONTROL:
338         claimed = !!(s->chan[ch].control & CONTROL_CLAIM);
339         run = !!(s->chan[ch].control & CONTROL_RUN);
340 
341         if (!claimed && (value & CONTROL_CLAIM)) {
342             /* reset Next* registers */
343             s->chan[ch].next_config = (CONFIG_RDSZ_DEFAULT << CONFIG_RDSZ_SHIFT) |
344                                       (CONFIG_WRSZ_DEFAULT << CONFIG_WRSZ_SHIFT);
345             s->chan[ch].next_bytes = 0;
346             s->chan[ch].next_dst = 0;
347             s->chan[ch].next_src = 0;
348         }
349 
350         /* claim bit can only be cleared when run is low */
351         if (run && !(value & CONTROL_CLAIM)) {
352             value |= CONTROL_CLAIM;
353         }
354 
355         s->chan[ch].control = value;
356 
357         /*
358          * If channel was not claimed before run bit is set,
359          * or if the channel is disclaimed when run was low,
360          * DMA won't run.
361          */
362         if (!claimed || (!run && !(value & CONTROL_CLAIM))) {
363             s->chan[ch].control &= ~CONTROL_RUN;
364             return;
365         }
366 
367         if (value & CONTROL_RUN) {
368             sifive_pdma_run(s, ch);
369         }
370 
371         sifive_pdma_update_irq(s, ch);
372         break;
373     case DMA_NEXT_CONFIG:
374         s->chan[ch].next_config = value;
375         break;
376     case DMA_NEXT_BYTES:
377         s->chan[ch].next_bytes =
378             deposit64(s->chan[ch].next_bytes, 0, 32, value);
379         break;
380     case DMA_NEXT_BYTES + 4:
381         s->chan[ch].next_bytes =
382             deposit64(s->chan[ch].next_bytes, 32, 32, value);
383         break;
384     case DMA_NEXT_DST:
385         s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 0, 32, value);
386         break;
387     case DMA_NEXT_DST + 4:
388         s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 32, 32, value);
389         break;
390     case DMA_NEXT_SRC:
391         s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 0, 32, value);
392         break;
393     case DMA_NEXT_SRC + 4:
394         s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 32, 32, value);
395         break;
396     case DMA_EXEC_CONFIG:
397     case DMA_EXEC_BYTES:
398     case DMA_EXEC_BYTES + 4:
399     case DMA_EXEC_DST:
400     case DMA_EXEC_DST + 4:
401     case DMA_EXEC_SRC:
402     case DMA_EXEC_SRC + 4:
403         /* these are read-only registers */
404         break;
405     default:
406         qemu_log_mask(LOG_GUEST_ERROR,
407                       "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n",
408                       __func__, offset);
409         break;
410     }
411 }
412 
413 static void sifive_pdma_write(void *opaque, hwaddr offset,
414                               uint64_t value, unsigned size)
415 {
416     SiFivePDMAState *s = opaque;
417     int ch = SIFIVE_PDMA_CHAN_NO(offset);
418 
419     if (ch >= SIFIVE_PDMA_CHANS) {
420         qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n",
421                       __func__, ch);
422         return;
423     }
424 
425     switch (size) {
426     case 8:
427         sifive_pdma_writeq(s, ch, offset, value);
428         break;
429     case 4:
430         sifive_pdma_writel(s, ch, offset, (uint32_t) value);
431         break;
432     default:
433         qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid write size %u to PDMA\n",
434                       __func__, size);
435         break;
436     }
437 }
438 
439 static const MemoryRegionOps sifive_pdma_ops = {
440     .read = sifive_pdma_read,
441     .write = sifive_pdma_write,
442     .endianness = DEVICE_LITTLE_ENDIAN,
443     /* there are 32-bit and 64-bit wide registers */
444     .impl = {
445         .min_access_size = 4,
446         .max_access_size = 8,
447     },
448     .valid = {
449         .min_access_size = 4,
450         .max_access_size = 8,
451     }
452 };
453 
454 static void sifive_pdma_realize(DeviceState *dev, Error **errp)
455 {
456     SiFivePDMAState *s = SIFIVE_PDMA(dev);
457     int i;
458 
459     memory_region_init_io(&s->iomem, OBJECT(dev), &sifive_pdma_ops, s,
460                           TYPE_SIFIVE_PDMA, SIFIVE_PDMA_REG_SIZE);
461     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
462 
463     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
464         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
465     }
466 }
467 
468 static void sifive_pdma_class_init(ObjectClass *klass, void *data)
469 {
470     DeviceClass *dc = DEVICE_CLASS(klass);
471 
472     dc->desc = "SiFive Platform DMA controller";
473     dc->realize = sifive_pdma_realize;
474 }
475 
476 static const TypeInfo sifive_pdma_info = {
477     .name          = TYPE_SIFIVE_PDMA,
478     .parent        = TYPE_SYS_BUS_DEVICE,
479     .instance_size = sizeof(SiFivePDMAState),
480     .class_init    = sifive_pdma_class_init,
481 };
482 
483 static void sifive_pdma_register_types(void)
484 {
485     type_register_static(&sifive_pdma_info);
486 }
487 
488 type_init(sifive_pdma_register_types)
489