xref: /qemu/hw/i2c/smbus_eeprom.c (revision 8110fa1d)
1 /*
2  * QEMU SMBus EEPROM device
3  *
4  * Copyright (c) 2007 Arastra, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "hw/i2c/smbus_eeprom.h"
34 #include "qom/object.h"
35 
36 //#define DEBUG
37 
38 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
39 
40 typedef struct SMBusEEPROMDevice SMBusEEPROMDevice;
41 DECLARE_INSTANCE_CHECKER(SMBusEEPROMDevice, SMBUS_EEPROM,
42                          TYPE_SMBUS_EEPROM)
43 
44 #define SMBUS_EEPROM_SIZE 256
45 
46 struct SMBusEEPROMDevice {
47     SMBusDevice smbusdev;
48     uint8_t data[SMBUS_EEPROM_SIZE];
49     uint8_t *init_data;
50     uint8_t offset;
51     bool accessed;
52 };
53 
54 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
55 {
56     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
57     uint8_t *data = eeprom->data;
58     uint8_t val = data[eeprom->offset++];
59 
60     eeprom->accessed = true;
61 #ifdef DEBUG
62     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
63            dev->i2c.address, val);
64 #endif
65     return val;
66 }
67 
68 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
69 {
70     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
71     uint8_t *data = eeprom->data;
72 
73     eeprom->accessed = true;
74 #ifdef DEBUG
75     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
76            dev->i2c.address, buf[0], buf[1]);
77 #endif
78     /* len is guaranteed to be > 0 */
79     eeprom->offset = buf[0];
80     buf++;
81     len--;
82 
83     for (; len > 0; len--) {
84         data[eeprom->offset] = *buf++;
85         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
86     }
87 
88     return 0;
89 }
90 
91 static bool smbus_eeprom_vmstate_needed(void *opaque)
92 {
93     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
94     SMBusEEPROMDevice *eeprom = opaque;
95 
96     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
97         !mc->smbus_no_migration_support;
98 }
99 
100 static const VMStateDescription vmstate_smbus_eeprom = {
101     .name = "smbus-eeprom",
102     .version_id = 1,
103     .minimum_version_id = 1,
104     .needed = smbus_eeprom_vmstate_needed,
105     .fields      = (VMStateField[]) {
106         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
107         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
108         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
109         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
110         VMSTATE_END_OF_LIST()
111     }
112 };
113 
114 /*
115  * Reset the EEPROM contents to the initial state on a reset.  This
116  * isn't really how an EEPROM works, of course, but the general
117  * principle of QEMU is to restore function on reset to what it would
118  * be if QEMU was stopped and started.
119  *
120  * The proper thing to do would be to have a backing blockdev to hold
121  * the contents and restore that on startup, and not do this on reset.
122  * But until that time, act as if we had been stopped and restarted.
123  */
124 static void smbus_eeprom_reset(DeviceState *dev)
125 {
126     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
127 
128     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
129     eeprom->offset = 0;
130 }
131 
132 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
133 {
134     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
135 
136     smbus_eeprom_reset(dev);
137     if (eeprom->init_data == NULL) {
138         error_setg(errp, "init_data cannot be NULL");
139     }
140 }
141 
142 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
143 {
144     DeviceClass *dc = DEVICE_CLASS(klass);
145     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
146 
147     dc->realize = smbus_eeprom_realize;
148     dc->reset = smbus_eeprom_reset;
149     sc->receive_byte = eeprom_receive_byte;
150     sc->write_data = eeprom_write_data;
151     dc->vmsd = &vmstate_smbus_eeprom;
152     /* Reason: init_data */
153     dc->user_creatable = false;
154 }
155 
156 static const TypeInfo smbus_eeprom_info = {
157     .name          = TYPE_SMBUS_EEPROM,
158     .parent        = TYPE_SMBUS_DEVICE,
159     .instance_size = sizeof(SMBusEEPROMDevice),
160     .class_init    = smbus_eeprom_class_initfn,
161 };
162 
163 static void smbus_eeprom_register_types(void)
164 {
165     type_register_static(&smbus_eeprom_info);
166 }
167 
168 type_init(smbus_eeprom_register_types)
169 
170 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
171 {
172     DeviceState *dev;
173 
174     dev = qdev_new(TYPE_SMBUS_EEPROM);
175     qdev_prop_set_uint8(dev, "address", address);
176     /* FIXME: use an array of byte or block backend property? */
177     SMBUS_EEPROM(dev)->init_data = eeprom_buf;
178     qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
179 }
180 
181 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
182                        const uint8_t *eeprom_spd, int eeprom_spd_size)
183 {
184     int i;
185      /* XXX: make this persistent */
186 
187     assert(nb_eeprom <= 8);
188     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
189     if (eeprom_spd_size > 0) {
190         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
191     }
192 
193     for (i = 0; i < nb_eeprom; i++) {
194         smbus_eeprom_init_one(smbus, 0x50 + i,
195                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
196     }
197 }
198 
199 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
200 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
201 {
202     uint8_t *spd;
203     uint8_t nbanks;
204     uint16_t density;
205     uint32_t size;
206     int min_log2, max_log2, sz_log2;
207     int i;
208 
209     switch (type) {
210     case SDR:
211         min_log2 = 2;
212         max_log2 = 9;
213         break;
214     case DDR:
215         min_log2 = 5;
216         max_log2 = 12;
217         break;
218     case DDR2:
219         min_log2 = 7;
220         max_log2 = 14;
221         break;
222     default:
223         g_assert_not_reached();
224     }
225     size = ram_size >> 20; /* work in terms of megabytes */
226     sz_log2 = 31 - clz32(size);
227     size = 1U << sz_log2;
228     assert(ram_size == size * MiB);
229     assert(sz_log2 >= min_log2);
230 
231     nbanks = 1;
232     while (sz_log2 > max_log2 && nbanks < 8) {
233         sz_log2--;
234         nbanks *= 2;
235     }
236 
237     assert(size == (1ULL << sz_log2) * nbanks);
238 
239     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
240     if (nbanks == 1 && sz_log2 > min_log2) {
241         sz_log2--;
242         nbanks++;
243     }
244 
245     density = 1ULL << (sz_log2 - 2);
246     switch (type) {
247     case DDR2:
248         density = (density & 0xe0) | (density >> 8 & 0x1f);
249         break;
250     case DDR:
251         density = (density & 0xf8) | (density >> 8 & 0x07);
252         break;
253     case SDR:
254     default:
255         density &= 0xff;
256         break;
257     }
258 
259     spd = g_malloc0(256);
260     spd[0] = 128;   /* data bytes in EEPROM */
261     spd[1] = 8;     /* log2 size of EEPROM */
262     spd[2] = type;
263     spd[3] = 13;    /* row address bits */
264     spd[4] = 10;    /* column address bits */
265     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
266     spd[6] = 64;    /* module data width */
267                     /* reserved / data width high */
268     spd[8] = 4;     /* interface voltage level */
269     spd[9] = 0x25;  /* highest CAS latency */
270     spd[10] = 1;    /* access time */
271                     /* DIMM configuration 0 = non-ECC */
272     spd[12] = 0x82; /* refresh requirements */
273     spd[13] = 8;    /* primary SDRAM width */
274                     /* ECC SDRAM width */
275     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
276     spd[16] = 12;   /* burst lengths supported */
277     spd[17] = 4;    /* banks per SDRAM device */
278     spd[18] = 12;   /* ~CAS latencies supported */
279     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
280     spd[20] = 2;    /* DIMM type / ~WE latencies */
281                     /* module features */
282                     /* memory chip features */
283     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
284                     /* data access time */
285                     /* clock cycle time @ short CAS latency */
286                     /* data access time */
287     spd[27] = 20;   /* min. row precharge time */
288     spd[28] = 15;   /* min. row active row delay */
289     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
290     spd[30] = 45;   /* min. active to precharge time */
291     spd[31] = density;
292     spd[32] = 20;   /* addr/cmd setup time */
293     spd[33] = 8;    /* addr/cmd hold time */
294     spd[34] = 20;   /* data input setup time */
295     spd[35] = 8;    /* data input hold time */
296 
297     /* checksum */
298     for (i = 0; i < 63; i++) {
299         spd[63] += spd[i];
300     }
301     return spd;
302 }
303