xref: /qemu/hw/i2c/smbus_eeprom.c (revision ab9056ff)
1 /*
2  * QEMU SMBus EEPROM device
3  *
4  * Copyright (c) 2007 Arastra, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
33 #include "hw/i2c/smbus_eeprom.h"
34 
35 //#define DEBUG
36 
37 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
38 
39 #define SMBUS_EEPROM(obj) \
40     OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
41 
42 #define SMBUS_EEPROM_SIZE 256
43 
44 typedef struct SMBusEEPROMDevice {
45     SMBusDevice smbusdev;
46     uint8_t data[SMBUS_EEPROM_SIZE];
47     void *init_data;
48     uint8_t offset;
49     bool accessed;
50 } SMBusEEPROMDevice;
51 
52 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
53 {
54     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
55     uint8_t *data = eeprom->data;
56     uint8_t val = data[eeprom->offset++];
57 
58     eeprom->accessed = true;
59 #ifdef DEBUG
60     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
61            dev->i2c.address, val);
62 #endif
63     return val;
64 }
65 
66 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
67 {
68     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
69     uint8_t *data = eeprom->data;
70 
71     eeprom->accessed = true;
72 #ifdef DEBUG
73     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
74            dev->i2c.address, buf[0], buf[1]);
75 #endif
76     /* len is guaranteed to be > 0 */
77     eeprom->offset = buf[0];
78     buf++;
79     len--;
80 
81     for (; len > 0; len--) {
82         data[eeprom->offset] = *buf++;
83         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
84     }
85 
86     return 0;
87 }
88 
89 static bool smbus_eeprom_vmstate_needed(void *opaque)
90 {
91     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
92     SMBusEEPROMDevice *eeprom = opaque;
93 
94     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
95         !mc->smbus_no_migration_support;
96 }
97 
98 static const VMStateDescription vmstate_smbus_eeprom = {
99     .name = "smbus-eeprom",
100     .version_id = 1,
101     .minimum_version_id = 1,
102     .needed = smbus_eeprom_vmstate_needed,
103     .fields      = (VMStateField[]) {
104         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
105         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
106         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
107         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
108         VMSTATE_END_OF_LIST()
109     }
110 };
111 
112 /*
113  * Reset the EEPROM contents to the initial state on a reset.  This
114  * isn't really how an EEPROM works, of course, but the general
115  * principle of QEMU is to restore function on reset to what it would
116  * be if QEMU was stopped and started.
117  *
118  * The proper thing to do would be to have a backing blockdev to hold
119  * the contents and restore that on startup, and not do this on reset.
120  * But until that time, act as if we had been stopped and restarted.
121  */
122 static void smbus_eeprom_reset(DeviceState *dev)
123 {
124     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
125 
126     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
127     eeprom->offset = 0;
128 }
129 
130 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
131 {
132     smbus_eeprom_reset(dev);
133 }
134 
135 static Property smbus_eeprom_properties[] = {
136     DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data),
137     DEFINE_PROP_END_OF_LIST(),
138 };
139 
140 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
141 {
142     DeviceClass *dc = DEVICE_CLASS(klass);
143     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
144 
145     dc->realize = smbus_eeprom_realize;
146     dc->reset = smbus_eeprom_reset;
147     sc->receive_byte = eeprom_receive_byte;
148     sc->write_data = eeprom_write_data;
149     dc->props = smbus_eeprom_properties;
150     dc->vmsd = &vmstate_smbus_eeprom;
151     /* Reason: pointer property "data" */
152     dc->user_creatable = false;
153 }
154 
155 static const TypeInfo smbus_eeprom_info = {
156     .name          = TYPE_SMBUS_EEPROM,
157     .parent        = TYPE_SMBUS_DEVICE,
158     .instance_size = sizeof(SMBusEEPROMDevice),
159     .class_init    = smbus_eeprom_class_initfn,
160 };
161 
162 static void smbus_eeprom_register_types(void)
163 {
164     type_register_static(&smbus_eeprom_info);
165 }
166 
167 type_init(smbus_eeprom_register_types)
168 
169 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
170 {
171     DeviceState *dev;
172 
173     dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
174     qdev_prop_set_uint8(dev, "address", address);
175     qdev_prop_set_ptr(dev, "data", eeprom_buf);
176     qdev_init_nofail(dev);
177 }
178 
179 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
180                        const uint8_t *eeprom_spd, int eeprom_spd_size)
181 {
182     int i;
183      /* XXX: make this persistent */
184 
185     assert(nb_eeprom <= 8);
186     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
187     if (eeprom_spd_size > 0) {
188         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
189     }
190 
191     for (i = 0; i < nb_eeprom; i++) {
192         smbus_eeprom_init_one(smbus, 0x50 + i,
193                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
194     }
195 }
196 
197 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
198 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
199                            Error **errp)
200 {
201     uint8_t *spd;
202     uint8_t nbanks;
203     uint16_t density;
204     uint32_t size;
205     int min_log2, max_log2, sz_log2;
206     int i;
207 
208     switch (type) {
209     case SDR:
210         min_log2 = 2;
211         max_log2 = 9;
212         break;
213     case DDR:
214         min_log2 = 5;
215         max_log2 = 12;
216         break;
217     case DDR2:
218         min_log2 = 7;
219         max_log2 = 14;
220         break;
221     default:
222         g_assert_not_reached();
223     }
224     size = ram_size >> 20; /* work in terms of megabytes */
225     if (size < 4) {
226         error_setg(errp, "SDRAM size is too small");
227         return NULL;
228     }
229     sz_log2 = 31 - clz32(size);
230     size = 1U << sz_log2;
231     if (ram_size > size * MiB) {
232         error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
233                    "truncating to %u MB", ram_size, size);
234     }
235     if (sz_log2 < min_log2) {
236         error_setg(errp,
237                    "Memory size is too small for SDRAM type, adjusting type");
238         if (size >= 32) {
239             type = DDR;
240             min_log2 = 5;
241             max_log2 = 12;
242         } else {
243             type = SDR;
244             min_log2 = 2;
245             max_log2 = 9;
246         }
247     }
248 
249     nbanks = 1;
250     while (sz_log2 > max_log2 && nbanks < 8) {
251         sz_log2--;
252         nbanks++;
253     }
254 
255     if (size > (1ULL << sz_log2) * nbanks) {
256         error_setg(errp, "Memory size is too big for SDRAM, truncating");
257     }
258 
259     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
260     if (nbanks == 1 && sz_log2 > min_log2) {
261         sz_log2--;
262         nbanks++;
263     }
264 
265     density = 1ULL << (sz_log2 - 2);
266     switch (type) {
267     case DDR2:
268         density = (density & 0xe0) | (density >> 8 & 0x1f);
269         break;
270     case DDR:
271         density = (density & 0xf8) | (density >> 8 & 0x07);
272         break;
273     case SDR:
274     default:
275         density &= 0xff;
276         break;
277     }
278 
279     spd = g_malloc0(256);
280     spd[0] = 128;   /* data bytes in EEPROM */
281     spd[1] = 8;     /* log2 size of EEPROM */
282     spd[2] = type;
283     spd[3] = 13;    /* row address bits */
284     spd[4] = 10;    /* column address bits */
285     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
286     spd[6] = 64;    /* module data width */
287                     /* reserved / data width high */
288     spd[8] = 4;     /* interface voltage level */
289     spd[9] = 0x25;  /* highest CAS latency */
290     spd[10] = 1;    /* access time */
291                     /* DIMM configuration 0 = non-ECC */
292     spd[12] = 0x82; /* refresh requirements */
293     spd[13] = 8;    /* primary SDRAM width */
294                     /* ECC SDRAM width */
295     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
296     spd[16] = 12;   /* burst lengths supported */
297     spd[17] = 4;    /* banks per SDRAM device */
298     spd[18] = 12;   /* ~CAS latencies supported */
299     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
300     spd[20] = 2;    /* DIMM type / ~WE latencies */
301                     /* module features */
302                     /* memory chip features */
303     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
304                     /* data access time */
305                     /* clock cycle time @ short CAS latency */
306                     /* data access time */
307     spd[27] = 20;   /* min. row precharge time */
308     spd[28] = 15;   /* min. row active row delay */
309     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
310     spd[30] = 45;   /* min. active to precharge time */
311     spd[31] = density;
312     spd[32] = 20;   /* addr/cmd setup time */
313     spd[33] = 8;    /* addr/cmd hold time */
314     spd[34] = 20;   /* data input setup time */
315     spd[35] = 8;    /* data input hold time */
316 
317     /* checksum */
318     for (i = 0; i < 63; i++) {
319         spd[63] += spd[i];
320     }
321     return spd;
322 }
323