xref: /qemu/hw/i386/intel_iommu.c (revision 33848cee)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 
39 /*#define DEBUG_INTEL_IOMMU*/
40 #ifdef DEBUG_INTEL_IOMMU
41 enum {
42     DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
43     DEBUG_CACHE, DEBUG_IR,
44 };
45 #define VTD_DBGBIT(x)   (1 << DEBUG_##x)
46 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
47 
48 #define VTD_DPRINTF(what, fmt, ...) do { \
49     if (vtd_dbgflags & VTD_DBGBIT(what)) { \
50         fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
51                 ## __VA_ARGS__); } \
52     } while (0)
53 #else
54 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
55 #endif
56 
57 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
58                             uint64_t wmask, uint64_t w1cmask)
59 {
60     stq_le_p(&s->csr[addr], val);
61     stq_le_p(&s->wmask[addr], wmask);
62     stq_le_p(&s->w1cmask[addr], w1cmask);
63 }
64 
65 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
66 {
67     stq_le_p(&s->womask[addr], mask);
68 }
69 
70 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
71                             uint32_t wmask, uint32_t w1cmask)
72 {
73     stl_le_p(&s->csr[addr], val);
74     stl_le_p(&s->wmask[addr], wmask);
75     stl_le_p(&s->w1cmask[addr], w1cmask);
76 }
77 
78 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
79 {
80     stl_le_p(&s->womask[addr], mask);
81 }
82 
83 /* "External" get/set operations */
84 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
85 {
86     uint64_t oldval = ldq_le_p(&s->csr[addr]);
87     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
88     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
89     stq_le_p(&s->csr[addr],
90              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
91 }
92 
93 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
94 {
95     uint32_t oldval = ldl_le_p(&s->csr[addr]);
96     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
97     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
98     stl_le_p(&s->csr[addr],
99              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
100 }
101 
102 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
103 {
104     uint64_t val = ldq_le_p(&s->csr[addr]);
105     uint64_t womask = ldq_le_p(&s->womask[addr]);
106     return val & ~womask;
107 }
108 
109 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
110 {
111     uint32_t val = ldl_le_p(&s->csr[addr]);
112     uint32_t womask = ldl_le_p(&s->womask[addr]);
113     return val & ~womask;
114 }
115 
116 /* "Internal" get/set operations */
117 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
118 {
119     return ldq_le_p(&s->csr[addr]);
120 }
121 
122 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
123 {
124     return ldl_le_p(&s->csr[addr]);
125 }
126 
127 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
128 {
129     stq_le_p(&s->csr[addr], val);
130 }
131 
132 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
133                                         uint32_t clear, uint32_t mask)
134 {
135     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
136     stl_le_p(&s->csr[addr], new_val);
137     return new_val;
138 }
139 
140 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
141                                         uint64_t clear, uint64_t mask)
142 {
143     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
144     stq_le_p(&s->csr[addr], new_val);
145     return new_val;
146 }
147 
148 /* GHashTable functions */
149 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
150 {
151     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
152 }
153 
154 static guint vtd_uint64_hash(gconstpointer v)
155 {
156     return (guint)*(const uint64_t *)v;
157 }
158 
159 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
160                                           gpointer user_data)
161 {
162     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
163     uint16_t domain_id = *(uint16_t *)user_data;
164     return entry->domain_id == domain_id;
165 }
166 
167 /* The shift of an addr for a certain level of paging structure */
168 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
169 {
170     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172 
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177 
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179                                         gpointer user_data)
180 {
181     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185     return (entry->domain_id == info->domain_id) &&
186             (((entry->gfn & info->mask) == gfn) ||
187              (entry->gfn == gfn_tlb));
188 }
189 
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191  * IntelIOMMUState to 1.
192  */
193 static void vtd_reset_context_cache(IntelIOMMUState *s)
194 {
195     VTDAddressSpace *vtd_as;
196     VTDBus *vtd_bus;
197     GHashTableIter bus_it;
198     uint32_t devfn_it;
199 
200     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
201 
202     VTD_DPRINTF(CACHE, "global context_cache_gen=1");
203     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
204         for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
205             vtd_as = vtd_bus->dev_as[devfn_it];
206             if (!vtd_as) {
207                 continue;
208             }
209             vtd_as->context_cache_entry.context_cache_gen = 0;
210         }
211     }
212     s->context_cache_gen = 1;
213 }
214 
215 static void vtd_reset_iotlb(IntelIOMMUState *s)
216 {
217     assert(s->iotlb);
218     g_hash_table_remove_all(s->iotlb);
219 }
220 
221 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
222                                   uint32_t level)
223 {
224     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
225            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
226 }
227 
228 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
229 {
230     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
231 }
232 
233 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
234                                        hwaddr addr)
235 {
236     VTDIOTLBEntry *entry;
237     uint64_t key;
238     int level;
239 
240     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
241         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
242                                 source_id, level);
243         entry = g_hash_table_lookup(s->iotlb, &key);
244         if (entry) {
245             goto out;
246         }
247     }
248 
249 out:
250     return entry;
251 }
252 
253 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
254                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
255                              bool read_flags, bool write_flags,
256                              uint32_t level)
257 {
258     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
259     uint64_t *key = g_malloc(sizeof(*key));
260     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
261 
262     VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
263                 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
264                 domain_id);
265     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
266         VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
267         vtd_reset_iotlb(s);
268     }
269 
270     entry->gfn = gfn;
271     entry->domain_id = domain_id;
272     entry->slpte = slpte;
273     entry->read_flags = read_flags;
274     entry->write_flags = write_flags;
275     entry->mask = vtd_slpt_level_page_mask(level);
276     *key = vtd_get_iotlb_key(gfn, source_id, level);
277     g_hash_table_replace(s->iotlb, key, entry);
278 }
279 
280 /* Given the reg addr of both the message data and address, generate an
281  * interrupt via MSI.
282  */
283 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
284                                    hwaddr mesg_data_reg)
285 {
286     MSIMessage msi;
287 
288     assert(mesg_data_reg < DMAR_REG_SIZE);
289     assert(mesg_addr_reg < DMAR_REG_SIZE);
290 
291     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
292     msi.data = vtd_get_long_raw(s, mesg_data_reg);
293 
294     VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32,
295                 msi.address, msi.data);
296     apic_get_class()->send_msi(&msi);
297 }
298 
299 /* Generate a fault event to software via MSI if conditions are met.
300  * Notice that the value of FSTS_REG being passed to it should be the one
301  * before any update.
302  */
303 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
304 {
305     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
306         pre_fsts & VTD_FSTS_IQE) {
307         VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
308                     "to be serviced by software, fault event is not generated "
309                     "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
310         return;
311     }
312     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
313     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
314         VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
315     } else {
316         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
317         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
318     }
319 }
320 
321 /* Check if the Fault (F) field of the Fault Recording Register referenced by
322  * @index is Set.
323  */
324 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
325 {
326     /* Each reg is 128-bit */
327     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
328     addr += 8; /* Access the high 64-bit half */
329 
330     assert(index < DMAR_FRCD_REG_NR);
331 
332     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
333 }
334 
335 /* Update the PPF field of Fault Status Register.
336  * Should be called whenever change the F field of any fault recording
337  * registers.
338  */
339 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
340 {
341     uint32_t i;
342     uint32_t ppf_mask = 0;
343 
344     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
345         if (vtd_is_frcd_set(s, i)) {
346             ppf_mask = VTD_FSTS_PPF;
347             break;
348         }
349     }
350     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
351     VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
352 }
353 
354 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
355 {
356     /* Each reg is 128-bit */
357     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
358     addr += 8; /* Access the high 64-bit half */
359 
360     assert(index < DMAR_FRCD_REG_NR);
361 
362     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
363     vtd_update_fsts_ppf(s);
364 }
365 
366 /* Must not update F field now, should be done later */
367 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
368                             uint16_t source_id, hwaddr addr,
369                             VTDFaultReason fault, bool is_write)
370 {
371     uint64_t hi = 0, lo;
372     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
373 
374     assert(index < DMAR_FRCD_REG_NR);
375 
376     lo = VTD_FRCD_FI(addr);
377     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
378     if (!is_write) {
379         hi |= VTD_FRCD_T;
380     }
381     vtd_set_quad_raw(s, frcd_reg_addr, lo);
382     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
383     VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
384                 ", lo 0x%"PRIx64, index, hi, lo);
385 }
386 
387 /* Try to collapse multiple pending faults from the same requester */
388 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
389 {
390     uint32_t i;
391     uint64_t frcd_reg;
392     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
393 
394     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
395         frcd_reg = vtd_get_quad_raw(s, addr);
396         VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
397         if ((frcd_reg & VTD_FRCD_F) &&
398             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
399             return true;
400         }
401         addr += 16; /* 128-bit for each */
402     }
403     return false;
404 }
405 
406 /* Log and report an DMAR (address translation) fault to software */
407 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
408                                   hwaddr addr, VTDFaultReason fault,
409                                   bool is_write)
410 {
411     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
412 
413     assert(fault < VTD_FR_MAX);
414 
415     if (fault == VTD_FR_RESERVED_ERR) {
416         /* This is not a normal fault reason case. Drop it. */
417         return;
418     }
419     VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
420                 ", is_write %d", source_id, fault, addr, is_write);
421     if (fsts_reg & VTD_FSTS_PFO) {
422         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423                     "Primary Fault Overflow");
424         return;
425     }
426     if (vtd_try_collapse_fault(s, source_id)) {
427         VTD_DPRINTF(FLOG, "new fault is not recorded due to "
428                     "compression of faults");
429         return;
430     }
431     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
432         VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
433                     "new fault is not recorded, set PFO field");
434         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
435         return;
436     }
437 
438     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
439 
440     if (fsts_reg & VTD_FSTS_PPF) {
441         VTD_DPRINTF(FLOG, "there are pending faults already, "
442                     "fault event is not generated");
443         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
444         s->next_frcd_reg++;
445         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
446             s->next_frcd_reg = 0;
447         }
448     } else {
449         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
450                                 VTD_FSTS_FRI(s->next_frcd_reg));
451         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
452         s->next_frcd_reg++;
453         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
454             s->next_frcd_reg = 0;
455         }
456         /* This case actually cause the PPF to be Set.
457          * So generate fault event (interrupt).
458          */
459          vtd_generate_fault_event(s, fsts_reg);
460     }
461 }
462 
463 /* Handle Invalidation Queue Errors of queued invalidation interface error
464  * conditions.
465  */
466 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
467 {
468     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
469 
470     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
471     vtd_generate_fault_event(s, fsts_reg);
472 }
473 
474 /* Set the IWC field and try to generate an invalidation completion interrupt */
475 static void vtd_generate_completion_event(IntelIOMMUState *s)
476 {
477     VTD_DPRINTF(INV, "completes an invalidation wait command with "
478                 "Interrupt Flag");
479     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
480         VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
481                     "serviced by software, "
482                     "new invalidation event is not generated");
483         return;
484     }
485     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
486     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
487     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
488         VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
489                     "event is not generated");
490         return;
491     } else {
492         /* Generate the interrupt event */
493         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
494         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
495     }
496 }
497 
498 static inline bool vtd_root_entry_present(VTDRootEntry *root)
499 {
500     return root->val & VTD_ROOT_ENTRY_P;
501 }
502 
503 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
504                               VTDRootEntry *re)
505 {
506     dma_addr_t addr;
507 
508     addr = s->root + index * sizeof(*re);
509     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
510         VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
511                     " + %"PRIu8, s->root, index);
512         re->val = 0;
513         return -VTD_FR_ROOT_TABLE_INV;
514     }
515     re->val = le64_to_cpu(re->val);
516     return 0;
517 }
518 
519 static inline bool vtd_context_entry_present(VTDContextEntry *context)
520 {
521     return context->lo & VTD_CONTEXT_ENTRY_P;
522 }
523 
524 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
525                                            VTDContextEntry *ce)
526 {
527     dma_addr_t addr;
528 
529     if (!vtd_root_entry_present(root)) {
530         VTD_DPRINTF(GENERAL, "error: root-entry is not present");
531         return -VTD_FR_ROOT_ENTRY_P;
532     }
533     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
534     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
535         VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
536                     " + %"PRIu8,
537                     (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
538         return -VTD_FR_CONTEXT_TABLE_INV;
539     }
540     ce->lo = le64_to_cpu(ce->lo);
541     ce->hi = le64_to_cpu(ce->hi);
542     return 0;
543 }
544 
545 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
546 {
547     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549 
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
551 {
552     return slpte & VTD_SL_PT_BASE_ADDR_MASK;
553 }
554 
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560 
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564     uint64_t slpte;
565 
566     assert(index < VTD_SL_PT_ENTRY_NR);
567 
568     if (dma_memory_read(&address_space_memory,
569                         base_addr + index * sizeof(slpte), &slpte,
570                         sizeof(slpte))) {
571         slpte = (uint64_t)-1;
572         return slpte;
573     }
574     slpte = le64_to_cpu(slpte);
575     return slpte;
576 }
577 
578 /* Given a gpa and the level of paging structure, return the offset of current
579  * level.
580  */
581 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
582 {
583     return (gpa >> vtd_slpt_level_shift(level)) &
584             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586 
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590     return VTD_CAP_SAGAW_MASK & s->cap &
591            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593 
594 /* Get the page-table level that hardware should use for the second-level
595  * page-table walk from the Address Width field of context-entry.
596  */
597 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
598 {
599     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601 
602 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
603 {
604     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606 
607 static const uint64_t vtd_paging_entry_rsvd_field[] = {
608     [0] = ~0ULL,
609     /* For not large page */
610     [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611     [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612     [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613     [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614     /* For large page */
615     [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616     [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
617     [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
618     [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
619 };
620 
621 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
622 {
623     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
624         /* Maybe large page */
625         return slpte & vtd_paging_entry_rsvd_field[level + 4];
626     } else {
627         return slpte & vtd_paging_entry_rsvd_field[level];
628     }
629 }
630 
631 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
632  * of the translation, can be used for deciding the size of large page.
633  */
634 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
635                             uint64_t *slptep, uint32_t *slpte_level,
636                             bool *reads, bool *writes)
637 {
638     dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
639     uint32_t level = vtd_get_level_from_context_entry(ce);
640     uint32_t offset;
641     uint64_t slpte;
642     uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
643     uint64_t access_right_check;
644 
645     /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
646      * and AW in context-entry.
647      */
648     if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
649         VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
650         return -VTD_FR_ADDR_BEYOND_MGAW;
651     }
652 
653     /* FIXME: what is the Atomics request here? */
654     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
655 
656     while (true) {
657         offset = vtd_gpa_level_offset(gpa, level);
658         slpte = vtd_get_slpte(addr, offset);
659 
660         if (slpte == (uint64_t)-1) {
661             VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
662                         "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
663                         level, gpa);
664             if (level == vtd_get_level_from_context_entry(ce)) {
665                 /* Invalid programming of context-entry */
666                 return -VTD_FR_CONTEXT_ENTRY_INV;
667             } else {
668                 return -VTD_FR_PAGING_ENTRY_INV;
669             }
670         }
671         *reads = (*reads) && (slpte & VTD_SL_R);
672         *writes = (*writes) && (slpte & VTD_SL_W);
673         if (!(slpte & access_right_check)) {
674             VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
675                         "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
676                         (is_write ? "write" : "read"), gpa, slpte);
677             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
678         }
679         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
680             VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
681                         "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
682                         level, slpte);
683             return -VTD_FR_PAGING_ENTRY_RSVD;
684         }
685 
686         if (vtd_is_last_slpte(slpte, level)) {
687             *slptep = slpte;
688             *slpte_level = level;
689             return 0;
690         }
691         addr = vtd_get_slpte_addr(slpte);
692         level--;
693     }
694 }
695 
696 /* Map a device to its corresponding domain (context-entry) */
697 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
698                                     uint8_t devfn, VTDContextEntry *ce)
699 {
700     VTDRootEntry re;
701     int ret_fr;
702 
703     ret_fr = vtd_get_root_entry(s, bus_num, &re);
704     if (ret_fr) {
705         return ret_fr;
706     }
707 
708     if (!vtd_root_entry_present(&re)) {
709         VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
710                     bus_num);
711         return -VTD_FR_ROOT_ENTRY_P;
712     } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
713         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
714                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
715         return -VTD_FR_ROOT_ENTRY_RSVD;
716     }
717 
718     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
719     if (ret_fr) {
720         return ret_fr;
721     }
722 
723     if (!vtd_context_entry_present(ce)) {
724         VTD_DPRINTF(GENERAL,
725                     "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
726                     "is not present", devfn, bus_num);
727         return -VTD_FR_CONTEXT_ENTRY_P;
728     } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
729                (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
730         VTD_DPRINTF(GENERAL,
731                     "error: non-zero reserved field in context-entry "
732                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
733         return -VTD_FR_CONTEXT_ENTRY_RSVD;
734     }
735     /* Check if the programming of context-entry is valid */
736     if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
737         VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
738                     "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739                     ce->hi, ce->lo);
740         return -VTD_FR_CONTEXT_ENTRY_INV;
741     } else {
742         switch (ce->lo & VTD_CONTEXT_ENTRY_TT) {
743         case VTD_CONTEXT_TT_MULTI_LEVEL:
744             /* fall through */
745         case VTD_CONTEXT_TT_DEV_IOTLB:
746             break;
747         default:
748             VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
749                         "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
750                         ce->hi, ce->lo);
751             return -VTD_FR_CONTEXT_ENTRY_INV;
752         }
753     }
754     return 0;
755 }
756 
757 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
758 {
759     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
760 }
761 
762 static const bool vtd_qualified_faults[] = {
763     [VTD_FR_RESERVED] = false,
764     [VTD_FR_ROOT_ENTRY_P] = false,
765     [VTD_FR_CONTEXT_ENTRY_P] = true,
766     [VTD_FR_CONTEXT_ENTRY_INV] = true,
767     [VTD_FR_ADDR_BEYOND_MGAW] = true,
768     [VTD_FR_WRITE] = true,
769     [VTD_FR_READ] = true,
770     [VTD_FR_PAGING_ENTRY_INV] = true,
771     [VTD_FR_ROOT_TABLE_INV] = false,
772     [VTD_FR_CONTEXT_TABLE_INV] = false,
773     [VTD_FR_ROOT_ENTRY_RSVD] = false,
774     [VTD_FR_PAGING_ENTRY_RSVD] = true,
775     [VTD_FR_CONTEXT_ENTRY_TT] = true,
776     [VTD_FR_RESERVED_ERR] = false,
777     [VTD_FR_MAX] = false,
778 };
779 
780 /* To see if a fault condition is "qualified", which is reported to software
781  * only if the FPD field in the context-entry used to process the faulting
782  * request is 0.
783  */
784 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
785 {
786     return vtd_qualified_faults[fault];
787 }
788 
789 static inline bool vtd_is_interrupt_addr(hwaddr addr)
790 {
791     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
792 }
793 
794 /* Map dev to context-entry then do a paging-structures walk to do a iommu
795  * translation.
796  *
797  * Called from RCU critical section.
798  *
799  * @bus_num: The bus number
800  * @devfn: The devfn, which is the  combined of device and function number
801  * @is_write: The access is a write operation
802  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
803  */
804 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
805                                    uint8_t devfn, hwaddr addr, bool is_write,
806                                    IOMMUTLBEntry *entry)
807 {
808     IntelIOMMUState *s = vtd_as->iommu_state;
809     VTDContextEntry ce;
810     uint8_t bus_num = pci_bus_num(bus);
811     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
812     uint64_t slpte, page_mask;
813     uint32_t level;
814     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
815     int ret_fr;
816     bool is_fpd_set = false;
817     bool reads = true;
818     bool writes = true;
819     VTDIOTLBEntry *iotlb_entry;
820 
821     /* Check if the request is in interrupt address range */
822     if (vtd_is_interrupt_addr(addr)) {
823         if (is_write) {
824             /* FIXME: since we don't know the length of the access here, we
825              * treat Non-DWORD length write requests without PASID as
826              * interrupt requests, too. Withoud interrupt remapping support,
827              * we just use 1:1 mapping.
828              */
829             VTD_DPRINTF(MMU, "write request to interrupt address "
830                         "gpa 0x%"PRIx64, addr);
831             entry->iova = addr & VTD_PAGE_MASK_4K;
832             entry->translated_addr = addr & VTD_PAGE_MASK_4K;
833             entry->addr_mask = ~VTD_PAGE_MASK_4K;
834             entry->perm = IOMMU_WO;
835             return;
836         } else {
837             VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
838                         "gpa 0x%"PRIx64, addr);
839             vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
840             return;
841         }
842     }
843     /* Try to fetch slpte form IOTLB */
844     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
845     if (iotlb_entry) {
846         VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
847                     " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
848                     iotlb_entry->slpte, iotlb_entry->domain_id);
849         slpte = iotlb_entry->slpte;
850         reads = iotlb_entry->read_flags;
851         writes = iotlb_entry->write_flags;
852         page_mask = iotlb_entry->mask;
853         goto out;
854     }
855     /* Try to fetch context-entry from cache first */
856     if (cc_entry->context_cache_gen == s->context_cache_gen) {
857         VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
858                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
859                     bus_num, devfn, cc_entry->context_entry.hi,
860                     cc_entry->context_entry.lo, cc_entry->context_cache_gen);
861         ce = cc_entry->context_entry;
862         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
863     } else {
864         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
865         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
866         if (ret_fr) {
867             ret_fr = -ret_fr;
868             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
869                 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
870                             "requests through this context-entry "
871                             "(with FPD Set)");
872             } else {
873                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
874             }
875             return;
876         }
877         /* Update context-cache */
878         VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
879                     "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
880                     bus_num, devfn, ce.hi, ce.lo,
881                     cc_entry->context_cache_gen, s->context_cache_gen);
882         cc_entry->context_entry = ce;
883         cc_entry->context_cache_gen = s->context_cache_gen;
884     }
885 
886     ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
887                               &reads, &writes);
888     if (ret_fr) {
889         ret_fr = -ret_fr;
890         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
891             VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
892                         "through this context-entry (with FPD Set)");
893         } else {
894             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
895         }
896         return;
897     }
898 
899     page_mask = vtd_slpt_level_page_mask(level);
900     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
901                      reads, writes, level);
902 out:
903     entry->iova = addr & page_mask;
904     entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
905     entry->addr_mask = ~page_mask;
906     entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
907 }
908 
909 static void vtd_root_table_setup(IntelIOMMUState *s)
910 {
911     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
912     s->root_extended = s->root & VTD_RTADDR_RTT;
913     s->root &= VTD_RTADDR_ADDR_MASK;
914 
915     VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
916                 (s->root_extended ? "(extended)" : ""));
917 }
918 
919 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
920                                uint32_t index, uint32_t mask)
921 {
922     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
923 }
924 
925 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
926 {
927     uint64_t value = 0;
928     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
929     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
930     s->intr_root = value & VTD_IRTA_ADDR_MASK;
931     s->intr_eime = value & VTD_IRTA_EIME;
932 
933     /* Notify global invalidation */
934     vtd_iec_notify_all(s, true, 0, 0);
935 
936     VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
937                 s->intr_root, s->intr_size);
938 }
939 
940 static void vtd_context_global_invalidate(IntelIOMMUState *s)
941 {
942     s->context_cache_gen++;
943     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
944         vtd_reset_context_cache(s);
945     }
946 }
947 
948 
949 /* Find the VTD address space currently associated with a given bus number,
950  */
951 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
952 {
953     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
954     if (!vtd_bus) {
955         /* Iterate over the registered buses to find the one
956          * which currently hold this bus number, and update the bus_num lookup table:
957          */
958         GHashTableIter iter;
959 
960         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
961         while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
962             if (pci_bus_num(vtd_bus->bus) == bus_num) {
963                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
964                 return vtd_bus;
965             }
966         }
967     }
968     return vtd_bus;
969 }
970 
971 /* Do a context-cache device-selective invalidation.
972  * @func_mask: FM field after shifting
973  */
974 static void vtd_context_device_invalidate(IntelIOMMUState *s,
975                                           uint16_t source_id,
976                                           uint16_t func_mask)
977 {
978     uint16_t mask;
979     VTDBus *vtd_bus;
980     VTDAddressSpace *vtd_as;
981     uint16_t devfn;
982     uint16_t devfn_it;
983 
984     switch (func_mask & 3) {
985     case 0:
986         mask = 0;   /* No bits in the SID field masked */
987         break;
988     case 1:
989         mask = 4;   /* Mask bit 2 in the SID field */
990         break;
991     case 2:
992         mask = 6;   /* Mask bit 2:1 in the SID field */
993         break;
994     case 3:
995         mask = 7;   /* Mask bit 2:0 in the SID field */
996         break;
997     }
998     mask = ~mask;
999     VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
1000                     " mask %"PRIu16, source_id, mask);
1001     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1002     if (vtd_bus) {
1003         devfn = VTD_SID_TO_DEVFN(source_id);
1004         for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
1005             vtd_as = vtd_bus->dev_as[devfn_it];
1006             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1007                 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
1008                             devfn_it);
1009                 vtd_as->context_cache_entry.context_cache_gen = 0;
1010             }
1011         }
1012     }
1013 }
1014 
1015 /* Context-cache invalidation
1016  * Returns the Context Actual Invalidation Granularity.
1017  * @val: the content of the CCMD_REG
1018  */
1019 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1020 {
1021     uint64_t caig;
1022     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1023 
1024     switch (type) {
1025     case VTD_CCMD_DOMAIN_INVL:
1026         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1027                     (uint16_t)VTD_CCMD_DID(val));
1028         /* Fall through */
1029     case VTD_CCMD_GLOBAL_INVL:
1030         VTD_DPRINTF(INV, "global invalidation");
1031         caig = VTD_CCMD_GLOBAL_INVL_A;
1032         vtd_context_global_invalidate(s);
1033         break;
1034 
1035     case VTD_CCMD_DEVICE_INVL:
1036         caig = VTD_CCMD_DEVICE_INVL_A;
1037         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1038         break;
1039 
1040     default:
1041         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1042         caig = 0;
1043     }
1044     return caig;
1045 }
1046 
1047 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1048 {
1049     vtd_reset_iotlb(s);
1050 }
1051 
1052 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1053 {
1054     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1055                                 &domain_id);
1056 }
1057 
1058 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1059                                       hwaddr addr, uint8_t am)
1060 {
1061     VTDIOTLBPageInvInfo info;
1062 
1063     assert(am <= VTD_MAMV);
1064     info.domain_id = domain_id;
1065     info.addr = addr;
1066     info.mask = ~((1 << am) - 1);
1067     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1068 }
1069 
1070 /* Flush IOTLB
1071  * Returns the IOTLB Actual Invalidation Granularity.
1072  * @val: the content of the IOTLB_REG
1073  */
1074 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1075 {
1076     uint64_t iaig;
1077     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1078     uint16_t domain_id;
1079     hwaddr addr;
1080     uint8_t am;
1081 
1082     switch (type) {
1083     case VTD_TLB_GLOBAL_FLUSH:
1084         VTD_DPRINTF(INV, "global invalidation");
1085         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1086         vtd_iotlb_global_invalidate(s);
1087         break;
1088 
1089     case VTD_TLB_DSI_FLUSH:
1090         domain_id = VTD_TLB_DID(val);
1091         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1092                     domain_id);
1093         iaig = VTD_TLB_DSI_FLUSH_A;
1094         vtd_iotlb_domain_invalidate(s, domain_id);
1095         break;
1096 
1097     case VTD_TLB_PSI_FLUSH:
1098         domain_id = VTD_TLB_DID(val);
1099         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1100         am = VTD_IVA_AM(addr);
1101         addr = VTD_IVA_ADDR(addr);
1102         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1103                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1104         if (am > VTD_MAMV) {
1105             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1106                         "%"PRIu8, (uint8_t)VTD_MAMV);
1107             iaig = 0;
1108             break;
1109         }
1110         iaig = VTD_TLB_PSI_FLUSH_A;
1111         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1112         break;
1113 
1114     default:
1115         VTD_DPRINTF(GENERAL, "error: invalid granularity");
1116         iaig = 0;
1117     }
1118     return iaig;
1119 }
1120 
1121 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1122 {
1123     return s->iq_tail == 0;
1124 }
1125 
1126 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1127 {
1128     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1129            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1130 }
1131 
1132 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1133 {
1134     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1135 
1136     VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1137     if (en) {
1138         if (vtd_queued_inv_enable_check(s)) {
1139             s->iq = iqa_val & VTD_IQA_IQA_MASK;
1140             /* 2^(x+8) entries */
1141             s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1142             s->qi_enabled = true;
1143             VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1144             VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1145                         s->iq, s->iq_size);
1146             /* Ok - report back to driver */
1147             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1148         } else {
1149             VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1150                         "tail %"PRIu16, s->iq_tail);
1151         }
1152     } else {
1153         if (vtd_queued_inv_disable_check(s)) {
1154             /* disable Queued Invalidation */
1155             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1156             s->iq_head = 0;
1157             s->qi_enabled = false;
1158             /* Ok - report back to driver */
1159             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1160         } else {
1161             VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1162                         "head %"PRIu16 ", tail %"PRIu16
1163                         ", last_descriptor %"PRIu8,
1164                         s->iq_head, s->iq_tail, s->iq_last_desc_type);
1165         }
1166     }
1167 }
1168 
1169 /* Set Root Table Pointer */
1170 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1171 {
1172     VTD_DPRINTF(CSR, "set Root Table Pointer");
1173 
1174     vtd_root_table_setup(s);
1175     /* Ok - report back to driver */
1176     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1177 }
1178 
1179 /* Set Interrupt Remap Table Pointer */
1180 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1181 {
1182     VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1183 
1184     vtd_interrupt_remap_table_setup(s);
1185     /* Ok - report back to driver */
1186     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1187 }
1188 
1189 /* Handle Translation Enable/Disable */
1190 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1191 {
1192     VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1193 
1194     if (en) {
1195         s->dmar_enabled = true;
1196         /* Ok - report back to driver */
1197         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1198     } else {
1199         s->dmar_enabled = false;
1200 
1201         /* Clear the index of Fault Recording Register */
1202         s->next_frcd_reg = 0;
1203         /* Ok - report back to driver */
1204         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1205     }
1206 }
1207 
1208 /* Handle Interrupt Remap Enable/Disable */
1209 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1210 {
1211     VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1212 
1213     if (en) {
1214         s->intr_enabled = true;
1215         /* Ok - report back to driver */
1216         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1217     } else {
1218         s->intr_enabled = false;
1219         /* Ok - report back to driver */
1220         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1221     }
1222 }
1223 
1224 /* Handle write to Global Command Register */
1225 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1226 {
1227     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1228     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1229     uint32_t changed = status ^ val;
1230 
1231     VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1232     if (changed & VTD_GCMD_TE) {
1233         /* Translation enable/disable */
1234         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1235     }
1236     if (val & VTD_GCMD_SRTP) {
1237         /* Set/update the root-table pointer */
1238         vtd_handle_gcmd_srtp(s);
1239     }
1240     if (changed & VTD_GCMD_QIE) {
1241         /* Queued Invalidation Enable */
1242         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1243     }
1244     if (val & VTD_GCMD_SIRTP) {
1245         /* Set/update the interrupt remapping root-table pointer */
1246         vtd_handle_gcmd_sirtp(s);
1247     }
1248     if (changed & VTD_GCMD_IRE) {
1249         /* Interrupt remap enable/disable */
1250         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1251     }
1252 }
1253 
1254 /* Handle write to Context Command Register */
1255 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1256 {
1257     uint64_t ret;
1258     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1259 
1260     /* Context-cache invalidation request */
1261     if (val & VTD_CCMD_ICC) {
1262         if (s->qi_enabled) {
1263             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1264                         "should not use register-based invalidation");
1265             return;
1266         }
1267         ret = vtd_context_cache_invalidate(s, val);
1268         /* Invalidation completed. Change something to show */
1269         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1270         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1271                                       ret);
1272         VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1273     }
1274 }
1275 
1276 /* Handle write to IOTLB Invalidation Register */
1277 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1278 {
1279     uint64_t ret;
1280     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1281 
1282     /* IOTLB invalidation request */
1283     if (val & VTD_TLB_IVT) {
1284         if (s->qi_enabled) {
1285             VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1286                         "should not use register-based invalidation");
1287             return;
1288         }
1289         ret = vtd_iotlb_flush(s, val);
1290         /* Invalidation completed. Change something to show */
1291         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1292         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1293                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1294         VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1295     }
1296 }
1297 
1298 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1299 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1300                              VTDInvDesc *inv_desc)
1301 {
1302     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1303     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1304         sizeof(*inv_desc))) {
1305         VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1306                     "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1307         inv_desc->lo = 0;
1308         inv_desc->hi = 0;
1309 
1310         return false;
1311     }
1312     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1313     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1314     return true;
1315 }
1316 
1317 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1318 {
1319     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1320         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1321         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1322                     "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1323                     inv_desc->hi, inv_desc->lo);
1324         return false;
1325     }
1326     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1327         /* Status Write */
1328         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1329                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1330 
1331         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1332 
1333         /* FIXME: need to be masked with HAW? */
1334         dma_addr_t status_addr = inv_desc->hi;
1335         VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1336                     status_data, status_addr);
1337         status_data = cpu_to_le32(status_data);
1338         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1339                              sizeof(status_data))) {
1340             VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1341             return false;
1342         }
1343     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1344         /* Interrupt flag */
1345         VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1346         vtd_generate_completion_event(s);
1347     } else {
1348         VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1349                     "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1350         return false;
1351     }
1352     return true;
1353 }
1354 
1355 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1356                                            VTDInvDesc *inv_desc)
1357 {
1358     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1359         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1360                     "Invalidate Descriptor");
1361         return false;
1362     }
1363     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1364     case VTD_INV_DESC_CC_DOMAIN:
1365         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1366                     (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1367         /* Fall through */
1368     case VTD_INV_DESC_CC_GLOBAL:
1369         VTD_DPRINTF(INV, "global invalidation");
1370         vtd_context_global_invalidate(s);
1371         break;
1372 
1373     case VTD_INV_DESC_CC_DEVICE:
1374         vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1375                                       VTD_INV_DESC_CC_FM(inv_desc->lo));
1376         break;
1377 
1378     default:
1379         VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1380                     "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1381                     inv_desc->hi, inv_desc->lo);
1382         return false;
1383     }
1384     return true;
1385 }
1386 
1387 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1388 {
1389     uint16_t domain_id;
1390     uint8_t am;
1391     hwaddr addr;
1392 
1393     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1394         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1395         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1396                     "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1397                     inv_desc->hi, inv_desc->lo);
1398         return false;
1399     }
1400 
1401     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1402     case VTD_INV_DESC_IOTLB_GLOBAL:
1403         VTD_DPRINTF(INV, "global invalidation");
1404         vtd_iotlb_global_invalidate(s);
1405         break;
1406 
1407     case VTD_INV_DESC_IOTLB_DOMAIN:
1408         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1409         VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1410                     domain_id);
1411         vtd_iotlb_domain_invalidate(s, domain_id);
1412         break;
1413 
1414     case VTD_INV_DESC_IOTLB_PAGE:
1415         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1416         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1417         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1418         VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1419                     " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1420         if (am > VTD_MAMV) {
1421             VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1422                         "%"PRIu8, (uint8_t)VTD_MAMV);
1423             return false;
1424         }
1425         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1426         break;
1427 
1428     default:
1429         VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1430                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1431                     inv_desc->hi, inv_desc->lo);
1432         return false;
1433     }
1434     return true;
1435 }
1436 
1437 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1438                                      VTDInvDesc *inv_desc)
1439 {
1440     VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1441                 inv_desc->iec.granularity,
1442                 inv_desc->iec.index,
1443                 inv_desc->iec.index_mask);
1444 
1445     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1446                        inv_desc->iec.index,
1447                        inv_desc->iec.index_mask);
1448     return true;
1449 }
1450 
1451 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1452                                           VTDInvDesc *inv_desc)
1453 {
1454     VTDAddressSpace *vtd_dev_as;
1455     IOMMUTLBEntry entry;
1456     struct VTDBus *vtd_bus;
1457     hwaddr addr;
1458     uint64_t sz;
1459     uint16_t sid;
1460     uint8_t devfn;
1461     bool size;
1462     uint8_t bus_num;
1463 
1464     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1465     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1466     devfn = sid & 0xff;
1467     bus_num = sid >> 8;
1468     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1469 
1470     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1471         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1472         VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Device "
1473                     "IOTLB Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1474                     inv_desc->hi, inv_desc->lo);
1475         return false;
1476     }
1477 
1478     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1479     if (!vtd_bus) {
1480         goto done;
1481     }
1482 
1483     vtd_dev_as = vtd_bus->dev_as[devfn];
1484     if (!vtd_dev_as) {
1485         goto done;
1486     }
1487 
1488     if (size) {
1489         sz = 1 << (ctz64(~(addr | (VTD_PAGE_MASK_4K - 1))) + 1);
1490         addr &= ~(sz - 1);
1491     } else {
1492         sz = VTD_PAGE_SIZE;
1493     }
1494 
1495     entry.target_as = &vtd_dev_as->as;
1496     entry.addr_mask = sz - 1;
1497     entry.iova = addr;
1498     entry.perm = IOMMU_NONE;
1499     entry.translated_addr = 0;
1500     memory_region_notify_iommu(entry.target_as->root, entry);
1501 
1502 done:
1503     return true;
1504 }
1505 
1506 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1507 {
1508     VTDInvDesc inv_desc;
1509     uint8_t desc_type;
1510 
1511     VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1512     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1513         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1514         return false;
1515     }
1516     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1517     /* FIXME: should update at first or at last? */
1518     s->iq_last_desc_type = desc_type;
1519 
1520     switch (desc_type) {
1521     case VTD_INV_DESC_CC:
1522         VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1523                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1524         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1525             return false;
1526         }
1527         break;
1528 
1529     case VTD_INV_DESC_IOTLB:
1530         VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1531                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1532         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1533             return false;
1534         }
1535         break;
1536 
1537     case VTD_INV_DESC_WAIT:
1538         VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1539                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1540         if (!vtd_process_wait_desc(s, &inv_desc)) {
1541             return false;
1542         }
1543         break;
1544 
1545     case VTD_INV_DESC_IEC:
1546         VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1547                     "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1548                     inv_desc.hi, inv_desc.lo);
1549         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1550             return false;
1551         }
1552         break;
1553 
1554     case VTD_INV_DESC_DEVICE:
1555         VTD_DPRINTF(INV, "Device IOTLB Invalidation Descriptor hi 0x%"PRIx64
1556                     " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1557         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1558             return false;
1559         }
1560         break;
1561 
1562     default:
1563         VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1564                     "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1565                     inv_desc.hi, inv_desc.lo, desc_type);
1566         return false;
1567     }
1568     s->iq_head++;
1569     if (s->iq_head == s->iq_size) {
1570         s->iq_head = 0;
1571     }
1572     return true;
1573 }
1574 
1575 /* Try to fetch and process more Invalidation Descriptors */
1576 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1577 {
1578     VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1579     if (s->iq_tail >= s->iq_size) {
1580         /* Detects an invalid Tail pointer */
1581         VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1582                     " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1583         vtd_handle_inv_queue_error(s);
1584         return;
1585     }
1586     while (s->iq_head != s->iq_tail) {
1587         if (!vtd_process_inv_desc(s)) {
1588             /* Invalidation Queue Errors */
1589             vtd_handle_inv_queue_error(s);
1590             break;
1591         }
1592         /* Must update the IQH_REG in time */
1593         vtd_set_quad_raw(s, DMAR_IQH_REG,
1594                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1595                          VTD_IQH_QH_MASK);
1596     }
1597 }
1598 
1599 /* Handle write to Invalidation Queue Tail Register */
1600 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1601 {
1602     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1603 
1604     s->iq_tail = VTD_IQT_QT(val);
1605     VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1606     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1607         /* Process Invalidation Queue here */
1608         vtd_fetch_inv_desc(s);
1609     }
1610 }
1611 
1612 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1613 {
1614     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1615     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1616     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1617 
1618     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1619         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1620         VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1621                     "IP field of FECTL_REG");
1622     }
1623     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1624      * Descriptors if there are any when Queued Invalidation is enabled?
1625      */
1626 }
1627 
1628 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1629 {
1630     uint32_t fectl_reg;
1631     /* FIXME: when software clears the IM field, check the IP field. But do we
1632      * need to compare the old value and the new value to conclude that
1633      * software clears the IM field? Or just check if the IM field is zero?
1634      */
1635     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1636     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1637         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1638         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1639         VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1640                     "fault event interrupt");
1641     }
1642 }
1643 
1644 static void vtd_handle_ics_write(IntelIOMMUState *s)
1645 {
1646     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1647     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1648 
1649     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1650         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1651         VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1652                     "clear IP field of IECTL_REG");
1653     }
1654 }
1655 
1656 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1657 {
1658     uint32_t iectl_reg;
1659     /* FIXME: when software clears the IM field, check the IP field. But do we
1660      * need to compare the old value and the new value to conclude that
1661      * software clears the IM field? Or just check if the IM field is zero?
1662      */
1663     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1664     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1665         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1666         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1667         VTD_DPRINTF(INV, "IM field is cleared, generate "
1668                     "invalidation event interrupt");
1669     }
1670 }
1671 
1672 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1673 {
1674     IntelIOMMUState *s = opaque;
1675     uint64_t val;
1676 
1677     if (addr + size > DMAR_REG_SIZE) {
1678         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1679                     ", got 0x%"PRIx64 " %d",
1680                     (uint64_t)DMAR_REG_SIZE, addr, size);
1681         return (uint64_t)-1;
1682     }
1683 
1684     switch (addr) {
1685     /* Root Table Address Register, 64-bit */
1686     case DMAR_RTADDR_REG:
1687         if (size == 4) {
1688             val = s->root & ((1ULL << 32) - 1);
1689         } else {
1690             val = s->root;
1691         }
1692         break;
1693 
1694     case DMAR_RTADDR_REG_HI:
1695         assert(size == 4);
1696         val = s->root >> 32;
1697         break;
1698 
1699     /* Invalidation Queue Address Register, 64-bit */
1700     case DMAR_IQA_REG:
1701         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1702         if (size == 4) {
1703             val = val & ((1ULL << 32) - 1);
1704         }
1705         break;
1706 
1707     case DMAR_IQA_REG_HI:
1708         assert(size == 4);
1709         val = s->iq >> 32;
1710         break;
1711 
1712     default:
1713         if (size == 4) {
1714             val = vtd_get_long(s, addr);
1715         } else {
1716             val = vtd_get_quad(s, addr);
1717         }
1718     }
1719     VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1720                 addr, size, val);
1721     return val;
1722 }
1723 
1724 static void vtd_mem_write(void *opaque, hwaddr addr,
1725                           uint64_t val, unsigned size)
1726 {
1727     IntelIOMMUState *s = opaque;
1728 
1729     if (addr + size > DMAR_REG_SIZE) {
1730         VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1731                     ", got 0x%"PRIx64 " %d",
1732                     (uint64_t)DMAR_REG_SIZE, addr, size);
1733         return;
1734     }
1735 
1736     switch (addr) {
1737     /* Global Command Register, 32-bit */
1738     case DMAR_GCMD_REG:
1739         VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1740                     ", size %d, val 0x%"PRIx64, addr, size, val);
1741         vtd_set_long(s, addr, val);
1742         vtd_handle_gcmd_write(s);
1743         break;
1744 
1745     /* Context Command Register, 64-bit */
1746     case DMAR_CCMD_REG:
1747         VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1748                     ", size %d, val 0x%"PRIx64, addr, size, val);
1749         if (size == 4) {
1750             vtd_set_long(s, addr, val);
1751         } else {
1752             vtd_set_quad(s, addr, val);
1753             vtd_handle_ccmd_write(s);
1754         }
1755         break;
1756 
1757     case DMAR_CCMD_REG_HI:
1758         VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1759                     ", size %d, val 0x%"PRIx64, addr, size, val);
1760         assert(size == 4);
1761         vtd_set_long(s, addr, val);
1762         vtd_handle_ccmd_write(s);
1763         break;
1764 
1765     /* IOTLB Invalidation Register, 64-bit */
1766     case DMAR_IOTLB_REG:
1767         VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1768                     ", size %d, val 0x%"PRIx64, addr, size, val);
1769         if (size == 4) {
1770             vtd_set_long(s, addr, val);
1771         } else {
1772             vtd_set_quad(s, addr, val);
1773             vtd_handle_iotlb_write(s);
1774         }
1775         break;
1776 
1777     case DMAR_IOTLB_REG_HI:
1778         VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1779                     ", size %d, val 0x%"PRIx64, addr, size, val);
1780         assert(size == 4);
1781         vtd_set_long(s, addr, val);
1782         vtd_handle_iotlb_write(s);
1783         break;
1784 
1785     /* Invalidate Address Register, 64-bit */
1786     case DMAR_IVA_REG:
1787         VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1788                     ", size %d, val 0x%"PRIx64, addr, size, val);
1789         if (size == 4) {
1790             vtd_set_long(s, addr, val);
1791         } else {
1792             vtd_set_quad(s, addr, val);
1793         }
1794         break;
1795 
1796     case DMAR_IVA_REG_HI:
1797         VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1798                     ", size %d, val 0x%"PRIx64, addr, size, val);
1799         assert(size == 4);
1800         vtd_set_long(s, addr, val);
1801         break;
1802 
1803     /* Fault Status Register, 32-bit */
1804     case DMAR_FSTS_REG:
1805         VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1806                     ", size %d, val 0x%"PRIx64, addr, size, val);
1807         assert(size == 4);
1808         vtd_set_long(s, addr, val);
1809         vtd_handle_fsts_write(s);
1810         break;
1811 
1812     /* Fault Event Control Register, 32-bit */
1813     case DMAR_FECTL_REG:
1814         VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1815                     ", size %d, val 0x%"PRIx64, addr, size, val);
1816         assert(size == 4);
1817         vtd_set_long(s, addr, val);
1818         vtd_handle_fectl_write(s);
1819         break;
1820 
1821     /* Fault Event Data Register, 32-bit */
1822     case DMAR_FEDATA_REG:
1823         VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1824                     ", size %d, val 0x%"PRIx64, addr, size, val);
1825         assert(size == 4);
1826         vtd_set_long(s, addr, val);
1827         break;
1828 
1829     /* Fault Event Address Register, 32-bit */
1830     case DMAR_FEADDR_REG:
1831         VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1832                     ", size %d, val 0x%"PRIx64, addr, size, val);
1833         assert(size == 4);
1834         vtd_set_long(s, addr, val);
1835         break;
1836 
1837     /* Fault Event Upper Address Register, 32-bit */
1838     case DMAR_FEUADDR_REG:
1839         VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1840                     ", size %d, val 0x%"PRIx64, addr, size, val);
1841         assert(size == 4);
1842         vtd_set_long(s, addr, val);
1843         break;
1844 
1845     /* Protected Memory Enable Register, 32-bit */
1846     case DMAR_PMEN_REG:
1847         VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1848                     ", size %d, val 0x%"PRIx64, addr, size, val);
1849         assert(size == 4);
1850         vtd_set_long(s, addr, val);
1851         break;
1852 
1853     /* Root Table Address Register, 64-bit */
1854     case DMAR_RTADDR_REG:
1855         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1856                     ", size %d, val 0x%"PRIx64, addr, size, val);
1857         if (size == 4) {
1858             vtd_set_long(s, addr, val);
1859         } else {
1860             vtd_set_quad(s, addr, val);
1861         }
1862         break;
1863 
1864     case DMAR_RTADDR_REG_HI:
1865         VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1866                     ", size %d, val 0x%"PRIx64, addr, size, val);
1867         assert(size == 4);
1868         vtd_set_long(s, addr, val);
1869         break;
1870 
1871     /* Invalidation Queue Tail Register, 64-bit */
1872     case DMAR_IQT_REG:
1873         VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1874                     ", size %d, val 0x%"PRIx64, addr, size, val);
1875         if (size == 4) {
1876             vtd_set_long(s, addr, val);
1877         } else {
1878             vtd_set_quad(s, addr, val);
1879         }
1880         vtd_handle_iqt_write(s);
1881         break;
1882 
1883     case DMAR_IQT_REG_HI:
1884         VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1885                     ", size %d, val 0x%"PRIx64, addr, size, val);
1886         assert(size == 4);
1887         vtd_set_long(s, addr, val);
1888         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1889         break;
1890 
1891     /* Invalidation Queue Address Register, 64-bit */
1892     case DMAR_IQA_REG:
1893         VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1894                     ", size %d, val 0x%"PRIx64, addr, size, val);
1895         if (size == 4) {
1896             vtd_set_long(s, addr, val);
1897         } else {
1898             vtd_set_quad(s, addr, val);
1899         }
1900         break;
1901 
1902     case DMAR_IQA_REG_HI:
1903         VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1904                     ", size %d, val 0x%"PRIx64, addr, size, val);
1905         assert(size == 4);
1906         vtd_set_long(s, addr, val);
1907         break;
1908 
1909     /* Invalidation Completion Status Register, 32-bit */
1910     case DMAR_ICS_REG:
1911         VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1912                     ", size %d, val 0x%"PRIx64, addr, size, val);
1913         assert(size == 4);
1914         vtd_set_long(s, addr, val);
1915         vtd_handle_ics_write(s);
1916         break;
1917 
1918     /* Invalidation Event Control Register, 32-bit */
1919     case DMAR_IECTL_REG:
1920         VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1921                     ", size %d, val 0x%"PRIx64, addr, size, val);
1922         assert(size == 4);
1923         vtd_set_long(s, addr, val);
1924         vtd_handle_iectl_write(s);
1925         break;
1926 
1927     /* Invalidation Event Data Register, 32-bit */
1928     case DMAR_IEDATA_REG:
1929         VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1930                     ", size %d, val 0x%"PRIx64, addr, size, val);
1931         assert(size == 4);
1932         vtd_set_long(s, addr, val);
1933         break;
1934 
1935     /* Invalidation Event Address Register, 32-bit */
1936     case DMAR_IEADDR_REG:
1937         VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1938                     ", size %d, val 0x%"PRIx64, addr, size, val);
1939         assert(size == 4);
1940         vtd_set_long(s, addr, val);
1941         break;
1942 
1943     /* Invalidation Event Upper Address Register, 32-bit */
1944     case DMAR_IEUADDR_REG:
1945         VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1946                     ", size %d, val 0x%"PRIx64, addr, size, val);
1947         assert(size == 4);
1948         vtd_set_long(s, addr, val);
1949         break;
1950 
1951     /* Fault Recording Registers, 128-bit */
1952     case DMAR_FRCD_REG_0_0:
1953         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1954                     ", size %d, val 0x%"PRIx64, addr, size, val);
1955         if (size == 4) {
1956             vtd_set_long(s, addr, val);
1957         } else {
1958             vtd_set_quad(s, addr, val);
1959         }
1960         break;
1961 
1962     case DMAR_FRCD_REG_0_1:
1963         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1964                     ", size %d, val 0x%"PRIx64, addr, size, val);
1965         assert(size == 4);
1966         vtd_set_long(s, addr, val);
1967         break;
1968 
1969     case DMAR_FRCD_REG_0_2:
1970         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1971                     ", size %d, val 0x%"PRIx64, addr, size, val);
1972         if (size == 4) {
1973             vtd_set_long(s, addr, val);
1974         } else {
1975             vtd_set_quad(s, addr, val);
1976             /* May clear bit 127 (Fault), update PPF */
1977             vtd_update_fsts_ppf(s);
1978         }
1979         break;
1980 
1981     case DMAR_FRCD_REG_0_3:
1982         VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1983                     ", size %d, val 0x%"PRIx64, addr, size, val);
1984         assert(size == 4);
1985         vtd_set_long(s, addr, val);
1986         /* May clear bit 127 (Fault), update PPF */
1987         vtd_update_fsts_ppf(s);
1988         break;
1989 
1990     case DMAR_IRTA_REG:
1991         VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1992                     ", size %d, val 0x%"PRIx64, addr, size, val);
1993         if (size == 4) {
1994             vtd_set_long(s, addr, val);
1995         } else {
1996             vtd_set_quad(s, addr, val);
1997         }
1998         break;
1999 
2000     case DMAR_IRTA_REG_HI:
2001         VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
2002                     ", size %d, val 0x%"PRIx64, addr, size, val);
2003         assert(size == 4);
2004         vtd_set_long(s, addr, val);
2005         break;
2006 
2007     default:
2008         VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
2009                     ", size %d, val 0x%"PRIx64, addr, size, val);
2010         if (size == 4) {
2011             vtd_set_long(s, addr, val);
2012         } else {
2013             vtd_set_quad(s, addr, val);
2014         }
2015     }
2016 }
2017 
2018 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
2019                                          bool is_write)
2020 {
2021     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2022     IntelIOMMUState *s = vtd_as->iommu_state;
2023     IOMMUTLBEntry ret = {
2024         .target_as = &address_space_memory,
2025         .iova = addr,
2026         .translated_addr = 0,
2027         .addr_mask = ~(hwaddr)0,
2028         .perm = IOMMU_NONE,
2029     };
2030 
2031     if (!s->dmar_enabled) {
2032         /* DMAR disabled, passthrough, use 4k-page*/
2033         ret.iova = addr & VTD_PAGE_MASK_4K;
2034         ret.translated_addr = addr & VTD_PAGE_MASK_4K;
2035         ret.addr_mask = ~VTD_PAGE_MASK_4K;
2036         ret.perm = IOMMU_RW;
2037         return ret;
2038     }
2039 
2040     vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
2041                            is_write, &ret);
2042     VTD_DPRINTF(MMU,
2043                 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
2044                 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
2045                 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
2046                 vtd_as->devfn, addr, ret.translated_addr);
2047     return ret;
2048 }
2049 
2050 static void vtd_iommu_notify_flag_changed(MemoryRegion *iommu,
2051                                           IOMMUNotifierFlag old,
2052                                           IOMMUNotifierFlag new)
2053 {
2054     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2055 
2056     if (new & IOMMU_NOTIFIER_MAP) {
2057         error_report("Device at bus %s addr %02x.%d requires iommu "
2058                      "notifier which is currently not supported by "
2059                      "intel-iommu emulation",
2060                      vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
2061                      PCI_FUNC(vtd_as->devfn));
2062         exit(1);
2063     }
2064 }
2065 
2066 static const VMStateDescription vtd_vmstate = {
2067     .name = "iommu-intel",
2068     .version_id = 1,
2069     .minimum_version_id = 1,
2070     .priority = MIG_PRI_IOMMU,
2071     .fields = (VMStateField[]) {
2072         VMSTATE_UINT64(root, IntelIOMMUState),
2073         VMSTATE_UINT64(intr_root, IntelIOMMUState),
2074         VMSTATE_UINT64(iq, IntelIOMMUState),
2075         VMSTATE_UINT32(intr_size, IntelIOMMUState),
2076         VMSTATE_UINT16(iq_head, IntelIOMMUState),
2077         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2078         VMSTATE_UINT16(iq_size, IntelIOMMUState),
2079         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2080         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2081         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2082         VMSTATE_BOOL(root_extended, IntelIOMMUState),
2083         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2084         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2085         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2086         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2087         VMSTATE_END_OF_LIST()
2088     }
2089 };
2090 
2091 static const MemoryRegionOps vtd_mem_ops = {
2092     .read = vtd_mem_read,
2093     .write = vtd_mem_write,
2094     .endianness = DEVICE_LITTLE_ENDIAN,
2095     .impl = {
2096         .min_access_size = 4,
2097         .max_access_size = 8,
2098     },
2099     .valid = {
2100         .min_access_size = 4,
2101         .max_access_size = 8,
2102     },
2103 };
2104 
2105 static Property vtd_properties[] = {
2106     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2107     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2108                             ON_OFF_AUTO_AUTO),
2109     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2110     DEFINE_PROP_END_OF_LIST(),
2111 };
2112 
2113 /* Read IRTE entry with specific index */
2114 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2115                         VTD_IR_TableEntry *entry, uint16_t sid)
2116 {
2117     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2118         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2119     dma_addr_t addr = 0x00;
2120     uint16_t mask, source_id;
2121     uint8_t bus, bus_max, bus_min;
2122 
2123     addr = iommu->intr_root + index * sizeof(*entry);
2124     if (dma_memory_read(&address_space_memory, addr, entry,
2125                         sizeof(*entry))) {
2126         VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2127                     " + %"PRIu16, iommu->intr_root, index);
2128         return -VTD_FR_IR_ROOT_INVAL;
2129     }
2130 
2131     if (!entry->irte.present) {
2132         VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2133                     " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2134                     index, le64_to_cpu(entry->data[1]),
2135                     le64_to_cpu(entry->data[0]));
2136         return -VTD_FR_IR_ENTRY_P;
2137     }
2138 
2139     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2140         entry->irte.__reserved_2) {
2141         VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2142                     " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2143                     index, le64_to_cpu(entry->data[1]),
2144                     le64_to_cpu(entry->data[0]));
2145         return -VTD_FR_IR_IRTE_RSVD;
2146     }
2147 
2148     if (sid != X86_IOMMU_SID_INVALID) {
2149         /* Validate IRTE SID */
2150         source_id = le32_to_cpu(entry->irte.source_id);
2151         switch (entry->irte.sid_vtype) {
2152         case VTD_SVT_NONE:
2153             VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2154             break;
2155 
2156         case VTD_SVT_ALL:
2157             mask = vtd_svt_mask[entry->irte.sid_q];
2158             if ((source_id & mask) != (sid & mask)) {
2159                 VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2160                             "%d failed (reqid 0x%04x sid 0x%04x)", index,
2161                             sid, source_id);
2162                 return -VTD_FR_IR_SID_ERR;
2163             }
2164             break;
2165 
2166         case VTD_SVT_BUS:
2167             bus_max = source_id >> 8;
2168             bus_min = source_id & 0xff;
2169             bus = sid >> 8;
2170             if (bus > bus_max || bus < bus_min) {
2171                 VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2172                             "failed (bus %d outside %d-%d)", index, bus,
2173                             bus_min, bus_max);
2174                 return -VTD_FR_IR_SID_ERR;
2175             }
2176             break;
2177 
2178         default:
2179             VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2180                         "%d", entry->irte.sid_vtype, index);
2181             /* Take this as verification failure. */
2182             return -VTD_FR_IR_SID_ERR;
2183             break;
2184         }
2185     }
2186 
2187     return 0;
2188 }
2189 
2190 /* Fetch IRQ information of specific IR index */
2191 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2192                              VTDIrq *irq, uint16_t sid)
2193 {
2194     VTD_IR_TableEntry irte = {};
2195     int ret = 0;
2196 
2197     ret = vtd_irte_get(iommu, index, &irte, sid);
2198     if (ret) {
2199         return ret;
2200     }
2201 
2202     irq->trigger_mode = irte.irte.trigger_mode;
2203     irq->vector = irte.irte.vector;
2204     irq->delivery_mode = irte.irte.delivery_mode;
2205     irq->dest = le32_to_cpu(irte.irte.dest_id);
2206     if (!iommu->intr_eime) {
2207 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2208 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2209         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2210             VTD_IR_APIC_DEST_SHIFT;
2211     }
2212     irq->dest_mode = irte.irte.dest_mode;
2213     irq->redir_hint = irte.irte.redir_hint;
2214 
2215     VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2216                 "deliver:%u,dest:%u,dest_mode:%u", index,
2217                 irq->trigger_mode, irq->vector, irq->delivery_mode,
2218                 irq->dest, irq->dest_mode);
2219 
2220     return 0;
2221 }
2222 
2223 /* Generate one MSI message from VTDIrq info */
2224 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2225 {
2226     VTD_MSIMessage msg = {};
2227 
2228     /* Generate address bits */
2229     msg.dest_mode = irq->dest_mode;
2230     msg.redir_hint = irq->redir_hint;
2231     msg.dest = irq->dest;
2232     msg.__addr_hi = irq->dest & 0xffffff00;
2233     msg.__addr_head = cpu_to_le32(0xfee);
2234     /* Keep this from original MSI address bits */
2235     msg.__not_used = irq->msi_addr_last_bits;
2236 
2237     /* Generate data bits */
2238     msg.vector = irq->vector;
2239     msg.delivery_mode = irq->delivery_mode;
2240     msg.level = 1;
2241     msg.trigger_mode = irq->trigger_mode;
2242 
2243     msg_out->address = msg.msi_addr;
2244     msg_out->data = msg.msi_data;
2245 }
2246 
2247 /* Interrupt remapping for MSI/MSI-X entry */
2248 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2249                                    MSIMessage *origin,
2250                                    MSIMessage *translated,
2251                                    uint16_t sid)
2252 {
2253     int ret = 0;
2254     VTD_IR_MSIAddress addr;
2255     uint16_t index;
2256     VTDIrq irq = {};
2257 
2258     assert(origin && translated);
2259 
2260     if (!iommu || !iommu->intr_enabled) {
2261         goto do_not_translate;
2262     }
2263 
2264     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2265         VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2266                     " during interrupt remapping: 0x%"PRIx32,
2267                     (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2268                     VTD_MSI_ADDR_HI_SHIFT));
2269         return -VTD_FR_IR_REQ_RSVD;
2270     }
2271 
2272     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2273     if (addr.addr.__head != 0xfee) {
2274         VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2275                     "0x%"PRIx32, addr.data);
2276         return -VTD_FR_IR_REQ_RSVD;
2277     }
2278 
2279     /* This is compatible mode. */
2280     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2281         goto do_not_translate;
2282     }
2283 
2284     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2285 
2286 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2287 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2288 
2289     if (addr.addr.sub_valid) {
2290         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2291         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2292     }
2293 
2294     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2295     if (ret) {
2296         return ret;
2297     }
2298 
2299     if (addr.addr.sub_valid) {
2300         VTD_DPRINTF(IR, "received MSI interrupt");
2301         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2302             VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2303                         "interrupt remappable entry: 0x%"PRIx32,
2304                         origin->data);
2305             return -VTD_FR_IR_REQ_RSVD;
2306         }
2307     } else {
2308         uint8_t vector = origin->data & 0xff;
2309         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2310 
2311         VTD_DPRINTF(IR, "received IOAPIC interrupt");
2312         /* IOAPIC entry vector should be aligned with IRTE vector
2313          * (see vt-d spec 5.1.5.1). */
2314         if (vector != irq.vector) {
2315             VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2316                         "entry: %d, IRTE: %d, index: %d",
2317                         vector, irq.vector, index);
2318         }
2319 
2320         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2321          * (see vt-d spec 5.1.5.1). */
2322         if (trigger_mode != irq.trigger_mode) {
2323             VTD_DPRINTF(GENERAL, "IOAPIC trigger mode inconsistent: "
2324                         "entry: %u, IRTE: %u, index: %d",
2325                         trigger_mode, irq.trigger_mode, index);
2326         }
2327 
2328     }
2329 
2330     /*
2331      * We'd better keep the last two bits, assuming that guest OS
2332      * might modify it. Keep it does not hurt after all.
2333      */
2334     irq.msi_addr_last_bits = addr.addr.__not_care;
2335 
2336     /* Translate VTDIrq to MSI message */
2337     vtd_generate_msi_message(&irq, translated);
2338 
2339     VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2340                 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2341                 translated->address, translated->data);
2342     return 0;
2343 
2344 do_not_translate:
2345     memcpy(translated, origin, sizeof(*origin));
2346     return 0;
2347 }
2348 
2349 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2350                          MSIMessage *dst, uint16_t sid)
2351 {
2352     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2353                                    src, dst, sid);
2354 }
2355 
2356 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2357                                    uint64_t *data, unsigned size,
2358                                    MemTxAttrs attrs)
2359 {
2360     return MEMTX_OK;
2361 }
2362 
2363 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2364                                     uint64_t value, unsigned size,
2365                                     MemTxAttrs attrs)
2366 {
2367     int ret = 0;
2368     MSIMessage from = {}, to = {};
2369     uint16_t sid = X86_IOMMU_SID_INVALID;
2370 
2371     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2372     from.data = (uint32_t) value;
2373 
2374     if (!attrs.unspecified) {
2375         /* We have explicit Source ID */
2376         sid = attrs.requester_id;
2377     }
2378 
2379     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2380     if (ret) {
2381         /* TODO: report error */
2382         VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2383                     " data 0x%"PRIx32, from.address, from.data);
2384         /* Drop this interrupt */
2385         return MEMTX_ERROR;
2386     }
2387 
2388     VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2389                 " for device sid 0x%04x",
2390                 to.address, to.data, sid);
2391 
2392     apic_get_class()->send_msi(&to);
2393 
2394     return MEMTX_OK;
2395 }
2396 
2397 static const MemoryRegionOps vtd_mem_ir_ops = {
2398     .read_with_attrs = vtd_mem_ir_read,
2399     .write_with_attrs = vtd_mem_ir_write,
2400     .endianness = DEVICE_LITTLE_ENDIAN,
2401     .impl = {
2402         .min_access_size = 4,
2403         .max_access_size = 4,
2404     },
2405     .valid = {
2406         .min_access_size = 4,
2407         .max_access_size = 4,
2408     },
2409 };
2410 
2411 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2412 {
2413     uintptr_t key = (uintptr_t)bus;
2414     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2415     VTDAddressSpace *vtd_dev_as;
2416     char name[128];
2417 
2418     if (!vtd_bus) {
2419         uintptr_t *new_key = g_malloc(sizeof(*new_key));
2420         *new_key = (uintptr_t)bus;
2421         /* No corresponding free() */
2422         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2423                             X86_IOMMU_PCI_DEVFN_MAX);
2424         vtd_bus->bus = bus;
2425         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2426     }
2427 
2428     vtd_dev_as = vtd_bus->dev_as[devfn];
2429 
2430     if (!vtd_dev_as) {
2431         snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2432         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2433 
2434         vtd_dev_as->bus = bus;
2435         vtd_dev_as->devfn = (uint8_t)devfn;
2436         vtd_dev_as->iommu_state = s;
2437         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2438         memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2439                                  &s->iommu_ops, "intel_iommu", UINT64_MAX);
2440         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2441                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2442                               VTD_INTERRUPT_ADDR_SIZE);
2443         memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2444                                     &vtd_dev_as->iommu_ir);
2445         address_space_init(&vtd_dev_as->as,
2446                            &vtd_dev_as->iommu, name);
2447     }
2448     return vtd_dev_as;
2449 }
2450 
2451 /* Do the initialization. It will also be called when reset, so pay
2452  * attention when adding new initialization stuff.
2453  */
2454 static void vtd_init(IntelIOMMUState *s)
2455 {
2456     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2457 
2458     memset(s->csr, 0, DMAR_REG_SIZE);
2459     memset(s->wmask, 0, DMAR_REG_SIZE);
2460     memset(s->w1cmask, 0, DMAR_REG_SIZE);
2461     memset(s->womask, 0, DMAR_REG_SIZE);
2462 
2463     s->iommu_ops.translate = vtd_iommu_translate;
2464     s->iommu_ops.notify_flag_changed = vtd_iommu_notify_flag_changed;
2465     s->root = 0;
2466     s->root_extended = false;
2467     s->dmar_enabled = false;
2468     s->iq_head = 0;
2469     s->iq_tail = 0;
2470     s->iq = 0;
2471     s->iq_size = 0;
2472     s->qi_enabled = false;
2473     s->iq_last_desc_type = VTD_INV_DESC_NONE;
2474     s->next_frcd_reg = 0;
2475     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2476              VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2477     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2478 
2479     if (x86_iommu->intr_supported) {
2480         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2481         if (s->intr_eim == ON_OFF_AUTO_ON) {
2482             s->ecap |= VTD_ECAP_EIM;
2483         }
2484         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2485     }
2486 
2487     if (x86_iommu->dt_supported) {
2488         s->ecap |= VTD_ECAP_DT;
2489     }
2490 
2491     vtd_reset_context_cache(s);
2492     vtd_reset_iotlb(s);
2493 
2494     /* Define registers with default values and bit semantics */
2495     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2496     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2497     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2498     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2499     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2500     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2501     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2502     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2503     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2504 
2505     /* Advanced Fault Logging not supported */
2506     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2507     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2508     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2509     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2510 
2511     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2512      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2513      */
2514     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2515 
2516     /* Treated as RO for implementations that PLMR and PHMR fields reported
2517      * as Clear in the CAP_REG.
2518      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2519      */
2520     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2521 
2522     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2523     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2524     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2525     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2526     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2527     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2528     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2529     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2530     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2531 
2532     /* IOTLB registers */
2533     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2534     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2535     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2536 
2537     /* Fault Recording Registers, 128-bit */
2538     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2539     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2540 
2541     /*
2542      * Interrupt remapping registers.
2543      */
2544     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2545 }
2546 
2547 /* Should not reset address_spaces when reset because devices will still use
2548  * the address space they got at first (won't ask the bus again).
2549  */
2550 static void vtd_reset(DeviceState *dev)
2551 {
2552     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2553 
2554     VTD_DPRINTF(GENERAL, "");
2555     vtd_init(s);
2556 }
2557 
2558 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2559 {
2560     IntelIOMMUState *s = opaque;
2561     VTDAddressSpace *vtd_as;
2562 
2563     assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2564 
2565     vtd_as = vtd_find_add_as(s, bus, devfn);
2566     return &vtd_as->as;
2567 }
2568 
2569 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2570 {
2571     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2572 
2573     /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2574     if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2575         !kvm_irqchip_is_split()) {
2576         error_setg(errp, "Intel Interrupt Remapping cannot work with "
2577                          "kernel-irqchip=on, please use 'split|off'.");
2578         return false;
2579     }
2580     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2581         error_setg(errp, "eim=on cannot be selected without intremap=on");
2582         return false;
2583     }
2584 
2585     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2586         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2587                       && x86_iommu->intr_supported ?
2588                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2589     }
2590     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2591         if (!kvm_irqchip_in_kernel()) {
2592             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
2593             return false;
2594         }
2595         if (!kvm_enable_x2apic()) {
2596             error_setg(errp, "eim=on requires support on the KVM side"
2597                              "(X2APIC_API, first shipped in v4.7)");
2598             return false;
2599         }
2600     }
2601 
2602     return true;
2603 }
2604 
2605 static void vtd_realize(DeviceState *dev, Error **errp)
2606 {
2607     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2608     PCIBus *bus = pcms->bus;
2609     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2610     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2611 
2612     VTD_DPRINTF(GENERAL, "");
2613     x86_iommu->type = TYPE_INTEL;
2614 
2615     if (!vtd_decide_config(s, errp)) {
2616         return;
2617     }
2618 
2619     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2620     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2621                           "intel_iommu", DMAR_REG_SIZE);
2622     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2623     /* No corresponding destroy */
2624     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2625                                      g_free, g_free);
2626     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2627                                               g_free, g_free);
2628     vtd_init(s);
2629     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2630     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2631     /* Pseudo address space under root PCI bus. */
2632     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2633 }
2634 
2635 static void vtd_class_init(ObjectClass *klass, void *data)
2636 {
2637     DeviceClass *dc = DEVICE_CLASS(klass);
2638     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2639 
2640     dc->reset = vtd_reset;
2641     dc->vmsd = &vtd_vmstate;
2642     dc->props = vtd_properties;
2643     dc->hotpluggable = false;
2644     x86_class->realize = vtd_realize;
2645     x86_class->int_remap = vtd_int_remap;
2646 }
2647 
2648 static const TypeInfo vtd_info = {
2649     .name          = TYPE_INTEL_IOMMU_DEVICE,
2650     .parent        = TYPE_X86_IOMMU_DEVICE,
2651     .instance_size = sizeof(IntelIOMMUState),
2652     .class_init    = vtd_class_init,
2653 };
2654 
2655 static void vtd_register_types(void)
2656 {
2657     VTD_DPRINTF(GENERAL, "");
2658     type_register_static(&vtd_info);
2659 }
2660 
2661 type_init(vtd_register_types)
2662