xref: /qemu/hw/i386/pc.c (revision 6f061ea1)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 
71 /* debug PC/ISA interrupts */
72 //#define DEBUG_IRQ
73 
74 #ifdef DEBUG_IRQ
75 #define DPRINTF(fmt, ...)                                       \
76     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...)
79 #endif
80 
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86 
87 #define E820_NR_ENTRIES		16
88 
89 struct e820_entry {
90     uint64_t address;
91     uint64_t length;
92     uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94 
95 struct e820_table {
96     uint32_t count;
97     struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99 
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104 
105 void gsi_handler(void *opaque, int n, int level)
106 {
107     GSIState *s = opaque;
108 
109     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110     if (n < ISA_NUM_IRQS) {
111         qemu_set_irq(s->i8259_irq[n], level);
112     }
113     qemu_set_irq(s->ioapic_irq[n], level);
114 }
115 
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117                            unsigned size)
118 {
119 }
120 
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123     return 0xffffffffffffffffULL;
124 }
125 
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128 
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131     ferr_irq = irq;
132 }
133 
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137     qemu_irq_raise(ferr_irq);
138 }
139 
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141                            unsigned size)
142 {
143     qemu_irq_lower(ferr_irq);
144 }
145 
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148     return 0xffffffffffffffffULL;
149 }
150 
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154     return cpu_get_ticks();
155 }
156 
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160     X86CPU *cpu = x86_env_get_cpu(env);
161     int intno;
162 
163     intno = apic_get_interrupt(cpu->apic_state);
164     if (intno >= 0) {
165         return intno;
166     }
167     /* read the irq from the PIC */
168     if (!apic_accept_pic_intr(cpu->apic_state)) {
169         return -1;
170     }
171 
172     intno = pic_read_irq(isa_pic);
173     return intno;
174 }
175 
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178     CPUState *cs = first_cpu;
179     X86CPU *cpu = X86_CPU(cs);
180 
181     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182     if (cpu->apic_state) {
183         CPU_FOREACH(cs) {
184             cpu = X86_CPU(cs);
185             if (apic_accept_pic_intr(cpu->apic_state)) {
186                 apic_deliver_pic_intr(cpu->apic_state, level);
187             }
188         }
189     } else {
190         if (level) {
191             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192         } else {
193             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194         }
195     }
196 }
197 
198 /* PC cmos mappings */
199 
200 #define REG_EQUIPMENT_BYTE          0x14
201 
202 int cmos_get_fd_drive_type(FloppyDriveType fd0)
203 {
204     int val;
205 
206     switch (fd0) {
207     case FLOPPY_DRIVE_TYPE_144:
208         /* 1.44 Mb 3"5 drive */
209         val = 4;
210         break;
211     case FLOPPY_DRIVE_TYPE_288:
212         /* 2.88 Mb 3"5 drive */
213         val = 5;
214         break;
215     case FLOPPY_DRIVE_TYPE_120:
216         /* 1.2 Mb 5"5 drive */
217         val = 2;
218         break;
219     case FLOPPY_DRIVE_TYPE_NONE:
220     default:
221         val = 0;
222         break;
223     }
224     return val;
225 }
226 
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228                          int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230     rtc_set_memory(s, type_ofs, 47);
231     rtc_set_memory(s, info_ofs, cylinders);
232     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233     rtc_set_memory(s, info_ofs + 2, heads);
234     rtc_set_memory(s, info_ofs + 3, 0xff);
235     rtc_set_memory(s, info_ofs + 4, 0xff);
236     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237     rtc_set_memory(s, info_ofs + 6, cylinders);
238     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239     rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241 
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245     switch(boot_device) {
246     case 'a':
247     case 'b':
248         return 0x01; /* floppy boot */
249     case 'c':
250         return 0x02; /* hard drive boot */
251     case 'd':
252         return 0x03; /* CD-ROM boot */
253     case 'n':
254         return 0x04; /* Network boot */
255     }
256     return 0;
257 }
258 
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262     int nbds, bds[3] = { 0, };
263     int i;
264 
265     nbds = strlen(boot_device);
266     if (nbds > PC_MAX_BOOT_DEVICES) {
267         error_setg(errp, "Too many boot devices for PC");
268         return;
269     }
270     for (i = 0; i < nbds; i++) {
271         bds[i] = boot_device2nibble(boot_device[i]);
272         if (bds[i] == 0) {
273             error_setg(errp, "Invalid boot device for PC: '%c'",
274                        boot_device[i]);
275             return;
276         }
277     }
278     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281 
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284     set_boot_dev(opaque, boot_device, errp);
285 }
286 
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289     int val, nb, i;
290     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
291                                    FLOPPY_DRIVE_TYPE_NONE };
292 
293     /* floppy type */
294     if (floppy) {
295         for (i = 0; i < 2; i++) {
296             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
297         }
298     }
299     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
300         cmos_get_fd_drive_type(fd_type[1]);
301     rtc_set_memory(rtc_state, 0x10, val);
302 
303     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
304     nb = 0;
305     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
306         nb++;
307     }
308     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
309         nb++;
310     }
311     switch (nb) {
312     case 0:
313         break;
314     case 1:
315         val |= 0x01; /* 1 drive, ready for boot */
316         break;
317     case 2:
318         val |= 0x41; /* 2 drives, ready for boot */
319         break;
320     }
321     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
322 }
323 
324 typedef struct pc_cmos_init_late_arg {
325     ISADevice *rtc_state;
326     BusState *idebus[2];
327 } pc_cmos_init_late_arg;
328 
329 typedef struct check_fdc_state {
330     ISADevice *floppy;
331     bool multiple;
332 } CheckFdcState;
333 
334 static int check_fdc(Object *obj, void *opaque)
335 {
336     CheckFdcState *state = opaque;
337     Object *fdc;
338     uint32_t iobase;
339     Error *local_err = NULL;
340 
341     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
342     if (!fdc) {
343         return 0;
344     }
345 
346     iobase = object_property_get_int(obj, "iobase", &local_err);
347     if (local_err || iobase != 0x3f0) {
348         error_free(local_err);
349         return 0;
350     }
351 
352     if (state->floppy) {
353         state->multiple = true;
354     } else {
355         state->floppy = ISA_DEVICE(obj);
356     }
357     return 0;
358 }
359 
360 static const char * const fdc_container_path[] = {
361     "/unattached", "/peripheral", "/peripheral-anon"
362 };
363 
364 /*
365  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
366  * and ACPI objects.
367  */
368 ISADevice *pc_find_fdc0(void)
369 {
370     int i;
371     Object *container;
372     CheckFdcState state = { 0 };
373 
374     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
375         container = container_get(qdev_get_machine(), fdc_container_path[i]);
376         object_child_foreach(container, check_fdc, &state);
377     }
378 
379     if (state.multiple) {
380         error_report("warning: multiple floppy disk controllers with "
381                      "iobase=0x3f0 have been found");
382         error_printf("the one being picked for CMOS setup might not reflect "
383                      "your intent");
384     }
385 
386     return state.floppy;
387 }
388 
389 static void pc_cmos_init_late(void *opaque)
390 {
391     pc_cmos_init_late_arg *arg = opaque;
392     ISADevice *s = arg->rtc_state;
393     int16_t cylinders;
394     int8_t heads, sectors;
395     int val;
396     int i, trans;
397 
398     val = 0;
399     if (ide_get_geometry(arg->idebus[0], 0,
400                          &cylinders, &heads, &sectors) >= 0) {
401         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
402         val |= 0xf0;
403     }
404     if (ide_get_geometry(arg->idebus[0], 1,
405                          &cylinders, &heads, &sectors) >= 0) {
406         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
407         val |= 0x0f;
408     }
409     rtc_set_memory(s, 0x12, val);
410 
411     val = 0;
412     for (i = 0; i < 4; i++) {
413         /* NOTE: ide_get_geometry() returns the physical
414            geometry.  It is always such that: 1 <= sects <= 63, 1
415            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
416            geometry can be different if a translation is done. */
417         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
418                              &cylinders, &heads, &sectors) >= 0) {
419             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
420             assert((trans & ~3) == 0);
421             val |= trans << (i * 2);
422         }
423     }
424     rtc_set_memory(s, 0x39, val);
425 
426     pc_cmos_init_floppy(s, pc_find_fdc0());
427 
428     qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430 
431 void pc_cmos_init(PCMachineState *pcms,
432                   BusState *idebus0, BusState *idebus1,
433                   ISADevice *s)
434 {
435     int val;
436     static pc_cmos_init_late_arg arg;
437 
438     /* various important CMOS locations needed by PC/Bochs bios */
439 
440     /* memory size */
441     /* base memory (first MiB) */
442     val = MIN(pcms->below_4g_mem_size / 1024, 640);
443     rtc_set_memory(s, 0x15, val);
444     rtc_set_memory(s, 0x16, val >> 8);
445     /* extended memory (next 64MiB) */
446     if (pcms->below_4g_mem_size > 1024 * 1024) {
447         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
448     } else {
449         val = 0;
450     }
451     if (val > 65535)
452         val = 65535;
453     rtc_set_memory(s, 0x17, val);
454     rtc_set_memory(s, 0x18, val >> 8);
455     rtc_set_memory(s, 0x30, val);
456     rtc_set_memory(s, 0x31, val >> 8);
457     /* memory between 16MiB and 4GiB */
458     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
459         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
460     } else {
461         val = 0;
462     }
463     if (val > 65535)
464         val = 65535;
465     rtc_set_memory(s, 0x34, val);
466     rtc_set_memory(s, 0x35, val >> 8);
467     /* memory above 4GiB */
468     val = pcms->above_4g_mem_size / 65536;
469     rtc_set_memory(s, 0x5b, val);
470     rtc_set_memory(s, 0x5c, val >> 8);
471     rtc_set_memory(s, 0x5d, val >> 16);
472 
473     /* set the number of CPU */
474     rtc_set_memory(s, 0x5f, smp_cpus - 1);
475 
476     object_property_add_link(OBJECT(pcms), "rtc_state",
477                              TYPE_ISA_DEVICE,
478                              (Object **)&pcms->rtc,
479                              object_property_allow_set_link,
480                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481     object_property_set_link(OBJECT(pcms), OBJECT(s),
482                              "rtc_state", &error_abort);
483 
484     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
485 
486     val = 0;
487     val |= 0x02; /* FPU is there */
488     val |= 0x04; /* PS/2 mouse installed */
489     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
490 
491     /* hard drives and FDC */
492     arg.rtc_state = s;
493     arg.idebus[0] = idebus0;
494     arg.idebus[1] = idebus1;
495     qemu_register_reset(pc_cmos_init_late, &arg);
496 }
497 
498 #define TYPE_PORT92 "port92"
499 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
500 
501 /* port 92 stuff: could be split off */
502 typedef struct Port92State {
503     ISADevice parent_obj;
504 
505     MemoryRegion io;
506     uint8_t outport;
507     qemu_irq *a20_out;
508 } Port92State;
509 
510 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
511                          unsigned size)
512 {
513     Port92State *s = opaque;
514     int oldval = s->outport;
515 
516     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
517     s->outport = val;
518     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
519     if ((val & 1) && !(oldval & 1)) {
520         qemu_system_reset_request();
521     }
522 }
523 
524 static uint64_t port92_read(void *opaque, hwaddr addr,
525                             unsigned size)
526 {
527     Port92State *s = opaque;
528     uint32_t ret;
529 
530     ret = s->outport;
531     DPRINTF("port92: read 0x%02x\n", ret);
532     return ret;
533 }
534 
535 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
536 {
537     Port92State *s = PORT92(dev);
538 
539     s->a20_out = a20_out;
540 }
541 
542 static const VMStateDescription vmstate_port92_isa = {
543     .name = "port92",
544     .version_id = 1,
545     .minimum_version_id = 1,
546     .fields = (VMStateField[]) {
547         VMSTATE_UINT8(outport, Port92State),
548         VMSTATE_END_OF_LIST()
549     }
550 };
551 
552 static void port92_reset(DeviceState *d)
553 {
554     Port92State *s = PORT92(d);
555 
556     s->outport &= ~1;
557 }
558 
559 static const MemoryRegionOps port92_ops = {
560     .read = port92_read,
561     .write = port92_write,
562     .impl = {
563         .min_access_size = 1,
564         .max_access_size = 1,
565     },
566     .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568 
569 static void port92_initfn(Object *obj)
570 {
571     Port92State *s = PORT92(obj);
572 
573     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574 
575     s->outport = 0;
576 }
577 
578 static void port92_realizefn(DeviceState *dev, Error **errp)
579 {
580     ISADevice *isadev = ISA_DEVICE(dev);
581     Port92State *s = PORT92(dev);
582 
583     isa_register_ioport(isadev, &s->io, 0x92);
584 }
585 
586 static void port92_class_initfn(ObjectClass *klass, void *data)
587 {
588     DeviceClass *dc = DEVICE_CLASS(klass);
589 
590     dc->realize = port92_realizefn;
591     dc->reset = port92_reset;
592     dc->vmsd = &vmstate_port92_isa;
593     /*
594      * Reason: unlike ordinary ISA devices, this one needs additional
595      * wiring: its A20 output line needs to be wired up by
596      * port92_init().
597      */
598     dc->cannot_instantiate_with_device_add_yet = true;
599 }
600 
601 static const TypeInfo port92_info = {
602     .name          = TYPE_PORT92,
603     .parent        = TYPE_ISA_DEVICE,
604     .instance_size = sizeof(Port92State),
605     .instance_init = port92_initfn,
606     .class_init    = port92_class_initfn,
607 };
608 
609 static void port92_register_types(void)
610 {
611     type_register_static(&port92_info);
612 }
613 
614 type_init(port92_register_types)
615 
616 static void handle_a20_line_change(void *opaque, int irq, int level)
617 {
618     X86CPU *cpu = opaque;
619 
620     /* XXX: send to all CPUs ? */
621     /* XXX: add logic to handle multiple A20 line sources */
622     x86_cpu_set_a20(cpu, level);
623 }
624 
625 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
626 {
627     int index = le32_to_cpu(e820_reserve.count);
628     struct e820_entry *entry;
629 
630     if (type != E820_RAM) {
631         /* old FW_CFG_E820_TABLE entry -- reservations only */
632         if (index >= E820_NR_ENTRIES) {
633             return -EBUSY;
634         }
635         entry = &e820_reserve.entry[index++];
636 
637         entry->address = cpu_to_le64(address);
638         entry->length = cpu_to_le64(length);
639         entry->type = cpu_to_le32(type);
640 
641         e820_reserve.count = cpu_to_le32(index);
642     }
643 
644     /* new "etc/e820" file -- include ram too */
645     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
646     e820_table[e820_entries].address = cpu_to_le64(address);
647     e820_table[e820_entries].length = cpu_to_le64(length);
648     e820_table[e820_entries].type = cpu_to_le32(type);
649     e820_entries++;
650 
651     return e820_entries;
652 }
653 
654 int e820_get_num_entries(void)
655 {
656     return e820_entries;
657 }
658 
659 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
660 {
661     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
662         *address = le64_to_cpu(e820_table[idx].address);
663         *length = le64_to_cpu(e820_table[idx].length);
664         return true;
665     }
666     return false;
667 }
668 
669 /* Enables contiguous-apic-ID mode, for compatibility */
670 static bool compat_apic_id_mode;
671 
672 void enable_compat_apic_id_mode(void)
673 {
674     compat_apic_id_mode = true;
675 }
676 
677 /* Calculates initial APIC ID for a specific CPU index
678  *
679  * Currently we need to be able to calculate the APIC ID from the CPU index
680  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
681  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
682  * all CPUs up to max_cpus.
683  */
684 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
685 {
686     uint32_t correct_id;
687     static bool warned;
688 
689     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
690     if (compat_apic_id_mode) {
691         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
692             error_report("APIC IDs set in compatibility mode, "
693                          "CPU topology won't match the configuration");
694             warned = true;
695         }
696         return cpu_index;
697     } else {
698         return correct_id;
699     }
700 }
701 
702 static void pc_build_smbios(FWCfgState *fw_cfg)
703 {
704     uint8_t *smbios_tables, *smbios_anchor;
705     size_t smbios_tables_len, smbios_anchor_len;
706     struct smbios_phys_mem_area *mem_array;
707     unsigned i, array_count;
708 
709     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
710     if (smbios_tables) {
711         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
712                          smbios_tables, smbios_tables_len);
713     }
714 
715     /* build the array of physical mem area from e820 table */
716     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
717     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
718         uint64_t addr, len;
719 
720         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
721             mem_array[array_count].address = addr;
722             mem_array[array_count].length = len;
723             array_count++;
724         }
725     }
726     smbios_get_tables(mem_array, array_count,
727                       &smbios_tables, &smbios_tables_len,
728                       &smbios_anchor, &smbios_anchor_len);
729     g_free(mem_array);
730 
731     if (smbios_anchor) {
732         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
733                         smbios_tables, smbios_tables_len);
734         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
735                         smbios_anchor, smbios_anchor_len);
736     }
737 }
738 
739 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
740 {
741     FWCfgState *fw_cfg;
742     uint64_t *numa_fw_cfg;
743     int i, j;
744 
745     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
746 
747     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
748      *
749      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
750      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
751      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
752      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
753      * may see".
754      *
755      * So, this means we must not use max_cpus, here, but the maximum possible
756      * APIC ID value, plus one.
757      *
758      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
759      *     the APIC ID, not the "CPU index"
760      */
761     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
762     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
763     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
764                      acpi_tables, acpi_tables_len);
765     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
766 
767     pc_build_smbios(fw_cfg);
768 
769     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
770                      &e820_reserve, sizeof(e820_reserve));
771     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
772                     sizeof(struct e820_entry) * e820_entries);
773 
774     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
775     /* allocate memory for the NUMA channel: one (64bit) word for the number
776      * of nodes, one word for each VCPU->node and one word for each node to
777      * hold the amount of memory.
778      */
779     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
780     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
781     for (i = 0; i < max_cpus; i++) {
782         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
783         assert(apic_id < pcms->apic_id_limit);
784         for (j = 0; j < nb_numa_nodes; j++) {
785             if (test_bit(i, numa_info[j].node_cpu)) {
786                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
787                 break;
788             }
789         }
790     }
791     for (i = 0; i < nb_numa_nodes; i++) {
792         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
793             cpu_to_le64(numa_info[i].node_mem);
794     }
795     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
796                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
797                      sizeof(*numa_fw_cfg));
798 
799     return fw_cfg;
800 }
801 
802 static long get_file_size(FILE *f)
803 {
804     long where, size;
805 
806     /* XXX: on Unix systems, using fstat() probably makes more sense */
807 
808     where = ftell(f);
809     fseek(f, 0, SEEK_END);
810     size = ftell(f);
811     fseek(f, where, SEEK_SET);
812 
813     return size;
814 }
815 
816 static void load_linux(PCMachineState *pcms,
817                        FWCfgState *fw_cfg)
818 {
819     uint16_t protocol;
820     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
821     uint32_t initrd_max;
822     uint8_t header[8192], *setup, *kernel, *initrd_data;
823     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
824     FILE *f;
825     char *vmode;
826     MachineState *machine = MACHINE(pcms);
827     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
828     const char *kernel_filename = machine->kernel_filename;
829     const char *initrd_filename = machine->initrd_filename;
830     const char *kernel_cmdline = machine->kernel_cmdline;
831 
832     /* Align to 16 bytes as a paranoia measure */
833     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
834 
835     /* load the kernel header */
836     f = fopen(kernel_filename, "rb");
837     if (!f || !(kernel_size = get_file_size(f)) ||
838         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
839         MIN(ARRAY_SIZE(header), kernel_size)) {
840         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
841                 kernel_filename, strerror(errno));
842         exit(1);
843     }
844 
845     /* kernel protocol version */
846 #if 0
847     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
848 #endif
849     if (ldl_p(header+0x202) == 0x53726448) {
850         protocol = lduw_p(header+0x206);
851     } else {
852         /* This looks like a multiboot kernel. If it is, let's stop
853            treating it like a Linux kernel. */
854         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
855                            kernel_cmdline, kernel_size, header)) {
856             return;
857         }
858         protocol = 0;
859     }
860 
861     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
862         /* Low kernel */
863         real_addr    = 0x90000;
864         cmdline_addr = 0x9a000 - cmdline_size;
865         prot_addr    = 0x10000;
866     } else if (protocol < 0x202) {
867         /* High but ancient kernel */
868         real_addr    = 0x90000;
869         cmdline_addr = 0x9a000 - cmdline_size;
870         prot_addr    = 0x100000;
871     } else {
872         /* High and recent kernel */
873         real_addr    = 0x10000;
874         cmdline_addr = 0x20000;
875         prot_addr    = 0x100000;
876     }
877 
878 #if 0
879     fprintf(stderr,
880             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
881             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
882             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
883             real_addr,
884             cmdline_addr,
885             prot_addr);
886 #endif
887 
888     /* highest address for loading the initrd */
889     if (protocol >= 0x203) {
890         initrd_max = ldl_p(header+0x22c);
891     } else {
892         initrd_max = 0x37ffffff;
893     }
894 
895     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
896         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
897     }
898 
899     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
900     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
901     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
902 
903     if (protocol >= 0x202) {
904         stl_p(header+0x228, cmdline_addr);
905     } else {
906         stw_p(header+0x20, 0xA33F);
907         stw_p(header+0x22, cmdline_addr-real_addr);
908     }
909 
910     /* handle vga= parameter */
911     vmode = strstr(kernel_cmdline, "vga=");
912     if (vmode) {
913         unsigned int video_mode;
914         /* skip "vga=" */
915         vmode += 4;
916         if (!strncmp(vmode, "normal", 6)) {
917             video_mode = 0xffff;
918         } else if (!strncmp(vmode, "ext", 3)) {
919             video_mode = 0xfffe;
920         } else if (!strncmp(vmode, "ask", 3)) {
921             video_mode = 0xfffd;
922         } else {
923             video_mode = strtol(vmode, NULL, 0);
924         }
925         stw_p(header+0x1fa, video_mode);
926     }
927 
928     /* loader type */
929     /* High nybble = B reserved for QEMU; low nybble is revision number.
930        If this code is substantially changed, you may want to consider
931        incrementing the revision. */
932     if (protocol >= 0x200) {
933         header[0x210] = 0xB0;
934     }
935     /* heap */
936     if (protocol >= 0x201) {
937         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
938         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
939     }
940 
941     /* load initrd */
942     if (initrd_filename) {
943         if (protocol < 0x200) {
944             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
945             exit(1);
946         }
947 
948         initrd_size = get_image_size(initrd_filename);
949         if (initrd_size < 0) {
950             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
951                     initrd_filename, strerror(errno));
952             exit(1);
953         }
954 
955         initrd_addr = (initrd_max-initrd_size) & ~4095;
956 
957         initrd_data = g_malloc(initrd_size);
958         load_image(initrd_filename, initrd_data);
959 
960         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
961         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
962         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
963 
964         stl_p(header+0x218, initrd_addr);
965         stl_p(header+0x21c, initrd_size);
966     }
967 
968     /* load kernel and setup */
969     setup_size = header[0x1f1];
970     if (setup_size == 0) {
971         setup_size = 4;
972     }
973     setup_size = (setup_size+1)*512;
974     if (setup_size > kernel_size) {
975         fprintf(stderr, "qemu: invalid kernel header\n");
976         exit(1);
977     }
978     kernel_size -= setup_size;
979 
980     setup  = g_malloc(setup_size);
981     kernel = g_malloc(kernel_size);
982     fseek(f, 0, SEEK_SET);
983     if (fread(setup, 1, setup_size, f) != setup_size) {
984         fprintf(stderr, "fread() failed\n");
985         exit(1);
986     }
987     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
988         fprintf(stderr, "fread() failed\n");
989         exit(1);
990     }
991     fclose(f);
992     memcpy(setup, header, MIN(sizeof(header), setup_size));
993 
994     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
995     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
996     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
997 
998     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
999     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1000     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1001 
1002     option_rom[nb_option_roms].name = "linuxboot.bin";
1003     option_rom[nb_option_roms].bootindex = 0;
1004     nb_option_roms++;
1005 }
1006 
1007 #define NE2000_NB_MAX 6
1008 
1009 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1010                                               0x280, 0x380 };
1011 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1012 
1013 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1014 {
1015     static int nb_ne2k = 0;
1016 
1017     if (nb_ne2k == NE2000_NB_MAX)
1018         return;
1019     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1020                     ne2000_irq[nb_ne2k], nd);
1021     nb_ne2k++;
1022 }
1023 
1024 DeviceState *cpu_get_current_apic(void)
1025 {
1026     if (current_cpu) {
1027         X86CPU *cpu = X86_CPU(current_cpu);
1028         return cpu->apic_state;
1029     } else {
1030         return NULL;
1031     }
1032 }
1033 
1034 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1035 {
1036     X86CPU *cpu = opaque;
1037 
1038     if (level) {
1039         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1040     }
1041 }
1042 
1043 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1044                           Error **errp)
1045 {
1046     X86CPU *cpu = NULL;
1047     Error *local_err = NULL;
1048 
1049     cpu = cpu_x86_create(cpu_model, &local_err);
1050     if (local_err != NULL) {
1051         goto out;
1052     }
1053 
1054     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1055     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1056 
1057 out:
1058     if (local_err) {
1059         error_propagate(errp, local_err);
1060         object_unref(OBJECT(cpu));
1061         cpu = NULL;
1062     }
1063     return cpu;
1064 }
1065 
1066 void pc_hot_add_cpu(const int64_t id, Error **errp)
1067 {
1068     X86CPU *cpu;
1069     MachineState *machine = MACHINE(qdev_get_machine());
1070     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1071     Error *local_err = NULL;
1072 
1073     if (id < 0) {
1074         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1075         return;
1076     }
1077 
1078     if (cpu_exists(apic_id)) {
1079         error_setg(errp, "Unable to add CPU: %" PRIi64
1080                    ", it already exists", id);
1081         return;
1082     }
1083 
1084     if (id >= max_cpus) {
1085         error_setg(errp, "Unable to add CPU: %" PRIi64
1086                    ", max allowed: %d", id, max_cpus - 1);
1087         return;
1088     }
1089 
1090     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1091         error_setg(errp, "Unable to add CPU: %" PRIi64
1092                    ", resulting APIC ID (%" PRIi64 ") is too large",
1093                    id, apic_id);
1094         return;
1095     }
1096 
1097     cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1098     if (local_err) {
1099         error_propagate(errp, local_err);
1100         return;
1101     }
1102     object_unref(OBJECT(cpu));
1103 }
1104 
1105 void pc_cpus_init(PCMachineState *pcms)
1106 {
1107     int i;
1108     X86CPU *cpu = NULL;
1109     MachineState *machine = MACHINE(pcms);
1110 
1111     /* init CPUs */
1112     if (machine->cpu_model == NULL) {
1113 #ifdef TARGET_X86_64
1114         machine->cpu_model = "qemu64";
1115 #else
1116         machine->cpu_model = "qemu32";
1117 #endif
1118     }
1119 
1120     /* Calculates the limit to CPU APIC ID values
1121      *
1122      * Limit for the APIC ID value, so that all
1123      * CPU APIC IDs are < pcms->apic_id_limit.
1124      *
1125      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1126      */
1127     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1128     if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1129         error_report("max_cpus is too large. APIC ID of last CPU is %u",
1130                      pcms->apic_id_limit - 1);
1131         exit(1);
1132     }
1133 
1134     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1135                                     sizeof(CPUArchId) * max_cpus);
1136     for (i = 0; i < max_cpus; i++) {
1137         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1138         pcms->possible_cpus->len++;
1139         if (i < smp_cpus) {
1140             cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1141                              &error_fatal);
1142             pcms->possible_cpus->cpus[i].cpu = CPU(cpu);
1143             object_unref(OBJECT(cpu));
1144         }
1145     }
1146 
1147     /* tell smbios about cpuid version and features */
1148     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1149 }
1150 
1151 /* pci-info ROM file. Little endian format */
1152 typedef struct PcRomPciInfo {
1153     uint64_t w32_min;
1154     uint64_t w32_max;
1155     uint64_t w64_min;
1156     uint64_t w64_max;
1157 } PcRomPciInfo;
1158 
1159 static
1160 void pc_machine_done(Notifier *notifier, void *data)
1161 {
1162     PCMachineState *pcms = container_of(notifier,
1163                                         PCMachineState, machine_done);
1164     PCIBus *bus = pcms->bus;
1165 
1166     if (bus) {
1167         int extra_hosts = 0;
1168 
1169         QLIST_FOREACH(bus, &bus->child, sibling) {
1170             /* look for expander root buses */
1171             if (pci_bus_is_root(bus)) {
1172                 extra_hosts++;
1173             }
1174         }
1175         if (extra_hosts && pcms->fw_cfg) {
1176             uint64_t *val = g_malloc(sizeof(*val));
1177             *val = cpu_to_le64(extra_hosts);
1178             fw_cfg_add_file(pcms->fw_cfg,
1179                     "etc/extra-pci-roots", val, sizeof(*val));
1180         }
1181     }
1182 
1183     acpi_setup();
1184 }
1185 
1186 void pc_guest_info_init(PCMachineState *pcms)
1187 {
1188     int i, j;
1189 
1190     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1191     pcms->numa_nodes = nb_numa_nodes;
1192     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1193                                     sizeof *pcms->node_mem);
1194     for (i = 0; i < nb_numa_nodes; i++) {
1195         pcms->node_mem[i] = numa_info[i].node_mem;
1196     }
1197 
1198     pcms->node_cpu = g_malloc0(pcms->apic_id_limit *
1199                                      sizeof *pcms->node_cpu);
1200 
1201     for (i = 0; i < max_cpus; i++) {
1202         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1203         assert(apic_id < pcms->apic_id_limit);
1204         for (j = 0; j < nb_numa_nodes; j++) {
1205             if (test_bit(i, numa_info[j].node_cpu)) {
1206                 pcms->node_cpu[apic_id] = j;
1207                 break;
1208             }
1209         }
1210     }
1211 
1212     pcms->machine_done.notify = pc_machine_done;
1213     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1214 }
1215 
1216 /* setup pci memory address space mapping into system address space */
1217 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1218                             MemoryRegion *pci_address_space)
1219 {
1220     /* Set to lower priority than RAM */
1221     memory_region_add_subregion_overlap(system_memory, 0x0,
1222                                         pci_address_space, -1);
1223 }
1224 
1225 void pc_acpi_init(const char *default_dsdt)
1226 {
1227     char *filename;
1228 
1229     if (acpi_tables != NULL) {
1230         /* manually set via -acpitable, leave it alone */
1231         return;
1232     }
1233 
1234     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1235     if (filename == NULL) {
1236         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1237     } else {
1238         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1239                                           &error_abort);
1240         Error *err = NULL;
1241 
1242         qemu_opt_set(opts, "file", filename, &error_abort);
1243 
1244         acpi_table_add_builtin(opts, &err);
1245         if (err) {
1246             error_reportf_err(err, "WARNING: failed to load %s: ",
1247                               filename);
1248         }
1249         g_free(filename);
1250     }
1251 }
1252 
1253 void xen_load_linux(PCMachineState *pcms)
1254 {
1255     int i;
1256     FWCfgState *fw_cfg;
1257 
1258     assert(MACHINE(pcms)->kernel_filename != NULL);
1259 
1260     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1261     rom_set_fw(fw_cfg);
1262 
1263     load_linux(pcms, fw_cfg);
1264     for (i = 0; i < nb_option_roms; i++) {
1265         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1266                !strcmp(option_rom[i].name, "multiboot.bin"));
1267         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1268     }
1269     pcms->fw_cfg = fw_cfg;
1270 }
1271 
1272 void pc_memory_init(PCMachineState *pcms,
1273                     MemoryRegion *system_memory,
1274                     MemoryRegion *rom_memory,
1275                     MemoryRegion **ram_memory)
1276 {
1277     int linux_boot, i;
1278     MemoryRegion *ram, *option_rom_mr;
1279     MemoryRegion *ram_below_4g, *ram_above_4g;
1280     FWCfgState *fw_cfg;
1281     MachineState *machine = MACHINE(pcms);
1282     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1283 
1284     assert(machine->ram_size == pcms->below_4g_mem_size +
1285                                 pcms->above_4g_mem_size);
1286 
1287     linux_boot = (machine->kernel_filename != NULL);
1288 
1289     /* Allocate RAM.  We allocate it as a single memory region and use
1290      * aliases to address portions of it, mostly for backwards compatibility
1291      * with older qemus that used qemu_ram_alloc().
1292      */
1293     ram = g_malloc(sizeof(*ram));
1294     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1295                                          machine->ram_size);
1296     *ram_memory = ram;
1297     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1298     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1299                              0, pcms->below_4g_mem_size);
1300     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1301     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1302     if (pcms->above_4g_mem_size > 0) {
1303         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1304         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1305                                  pcms->below_4g_mem_size,
1306                                  pcms->above_4g_mem_size);
1307         memory_region_add_subregion(system_memory, 0x100000000ULL,
1308                                     ram_above_4g);
1309         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1310     }
1311 
1312     if (!pcmc->has_reserved_memory &&
1313         (machine->ram_slots ||
1314          (machine->maxram_size > machine->ram_size))) {
1315         MachineClass *mc = MACHINE_GET_CLASS(machine);
1316 
1317         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1318                      mc->name);
1319         exit(EXIT_FAILURE);
1320     }
1321 
1322     /* initialize hotplug memory address space */
1323     if (pcmc->has_reserved_memory &&
1324         (machine->ram_size < machine->maxram_size)) {
1325         ram_addr_t hotplug_mem_size =
1326             machine->maxram_size - machine->ram_size;
1327 
1328         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1329             error_report("unsupported amount of memory slots: %"PRIu64,
1330                          machine->ram_slots);
1331             exit(EXIT_FAILURE);
1332         }
1333 
1334         if (QEMU_ALIGN_UP(machine->maxram_size,
1335                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1336             error_report("maximum memory size must by aligned to multiple of "
1337                          "%d bytes", TARGET_PAGE_SIZE);
1338             exit(EXIT_FAILURE);
1339         }
1340 
1341         pcms->hotplug_memory.base =
1342             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1343 
1344         if (pcmc->enforce_aligned_dimm) {
1345             /* size hotplug region assuming 1G page max alignment per slot */
1346             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1347         }
1348 
1349         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1350             hotplug_mem_size) {
1351             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1352                          machine->maxram_size);
1353             exit(EXIT_FAILURE);
1354         }
1355 
1356         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1357                            "hotplug-memory", hotplug_mem_size);
1358         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1359                                     &pcms->hotplug_memory.mr);
1360     }
1361 
1362     /* Initialize PC system firmware */
1363     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1364 
1365     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1366     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1367                            &error_fatal);
1368     vmstate_register_ram_global(option_rom_mr);
1369     memory_region_add_subregion_overlap(rom_memory,
1370                                         PC_ROM_MIN_VGA,
1371                                         option_rom_mr,
1372                                         1);
1373 
1374     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1375 
1376     rom_set_fw(fw_cfg);
1377 
1378     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1379         uint64_t *val = g_malloc(sizeof(*val));
1380         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1381         uint64_t res_mem_end = pcms->hotplug_memory.base;
1382 
1383         if (!pcmc->broken_reserved_end) {
1384             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1385         }
1386         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1387         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1388     }
1389 
1390     if (linux_boot) {
1391         load_linux(pcms, fw_cfg);
1392     }
1393 
1394     for (i = 0; i < nb_option_roms; i++) {
1395         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1396     }
1397     pcms->fw_cfg = fw_cfg;
1398 }
1399 
1400 qemu_irq pc_allocate_cpu_irq(void)
1401 {
1402     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1403 }
1404 
1405 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1406 {
1407     DeviceState *dev = NULL;
1408 
1409     if (pci_bus) {
1410         PCIDevice *pcidev = pci_vga_init(pci_bus);
1411         dev = pcidev ? &pcidev->qdev : NULL;
1412     } else if (isa_bus) {
1413         ISADevice *isadev = isa_vga_init(isa_bus);
1414         dev = isadev ? DEVICE(isadev) : NULL;
1415     }
1416     return dev;
1417 }
1418 
1419 static const MemoryRegionOps ioport80_io_ops = {
1420     .write = ioport80_write,
1421     .read = ioport80_read,
1422     .endianness = DEVICE_NATIVE_ENDIAN,
1423     .impl = {
1424         .min_access_size = 1,
1425         .max_access_size = 1,
1426     },
1427 };
1428 
1429 static const MemoryRegionOps ioportF0_io_ops = {
1430     .write = ioportF0_write,
1431     .read = ioportF0_read,
1432     .endianness = DEVICE_NATIVE_ENDIAN,
1433     .impl = {
1434         .min_access_size = 1,
1435         .max_access_size = 1,
1436     },
1437 };
1438 
1439 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1440                           ISADevice **rtc_state,
1441                           bool create_fdctrl,
1442                           bool no_vmport,
1443                           uint32_t hpet_irqs)
1444 {
1445     int i;
1446     DriveInfo *fd[MAX_FD];
1447     DeviceState *hpet = NULL;
1448     int pit_isa_irq = 0;
1449     qemu_irq pit_alt_irq = NULL;
1450     qemu_irq rtc_irq = NULL;
1451     qemu_irq *a20_line;
1452     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1453     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1454     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1455 
1456     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1457     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1458 
1459     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1460     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1461 
1462     /*
1463      * Check if an HPET shall be created.
1464      *
1465      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1466      * when the HPET wants to take over. Thus we have to disable the latter.
1467      */
1468     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1469         /* In order to set property, here not using sysbus_try_create_simple */
1470         hpet = qdev_try_create(NULL, TYPE_HPET);
1471         if (hpet) {
1472             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1473              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1474              * IRQ8 and IRQ2.
1475              */
1476             uint8_t compat = object_property_get_int(OBJECT(hpet),
1477                     HPET_INTCAP, NULL);
1478             if (!compat) {
1479                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1480             }
1481             qdev_init_nofail(hpet);
1482             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1483 
1484             for (i = 0; i < GSI_NUM_PINS; i++) {
1485                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1486             }
1487             pit_isa_irq = -1;
1488             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1489             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1490         }
1491     }
1492     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1493 
1494     qemu_register_boot_set(pc_boot_set, *rtc_state);
1495 
1496     if (!xen_enabled()) {
1497         if (kvm_pit_in_kernel()) {
1498             pit = kvm_pit_init(isa_bus, 0x40);
1499         } else {
1500             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1501         }
1502         if (hpet) {
1503             /* connect PIT to output control line of the HPET */
1504             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1505         }
1506         pcspk_init(isa_bus, pit);
1507     }
1508 
1509     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1510     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1511 
1512     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1513     i8042 = isa_create_simple(isa_bus, "i8042");
1514     i8042_setup_a20_line(i8042, &a20_line[0]);
1515     if (!no_vmport) {
1516         vmport_init(isa_bus);
1517         vmmouse = isa_try_create(isa_bus, "vmmouse");
1518     } else {
1519         vmmouse = NULL;
1520     }
1521     if (vmmouse) {
1522         DeviceState *dev = DEVICE(vmmouse);
1523         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1524         qdev_init_nofail(dev);
1525     }
1526     port92 = isa_create_simple(isa_bus, "port92");
1527     port92_init(port92, &a20_line[1]);
1528 
1529     DMA_init(isa_bus, 0);
1530 
1531     for(i = 0; i < MAX_FD; i++) {
1532         fd[i] = drive_get(IF_FLOPPY, 0, i);
1533         create_fdctrl |= !!fd[i];
1534     }
1535     if (create_fdctrl) {
1536         fdctrl_init_isa(isa_bus, fd);
1537     }
1538 }
1539 
1540 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1541 {
1542     int i;
1543 
1544     for (i = 0; i < nb_nics; i++) {
1545         NICInfo *nd = &nd_table[i];
1546 
1547         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1548             pc_init_ne2k_isa(isa_bus, nd);
1549         } else {
1550             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1551         }
1552     }
1553 }
1554 
1555 void pc_pci_device_init(PCIBus *pci_bus)
1556 {
1557     int max_bus;
1558     int bus;
1559 
1560     max_bus = drive_get_max_bus(IF_SCSI);
1561     for (bus = 0; bus <= max_bus; bus++) {
1562         pci_create_simple(pci_bus, -1, "lsi53c895a");
1563     }
1564 }
1565 
1566 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1567 {
1568     DeviceState *dev;
1569     SysBusDevice *d;
1570     unsigned int i;
1571 
1572     if (kvm_ioapic_in_kernel()) {
1573         dev = qdev_create(NULL, "kvm-ioapic");
1574     } else {
1575         dev = qdev_create(NULL, "ioapic");
1576     }
1577     if (parent_name) {
1578         object_property_add_child(object_resolve_path(parent_name, NULL),
1579                                   "ioapic", OBJECT(dev), NULL);
1580     }
1581     qdev_init_nofail(dev);
1582     d = SYS_BUS_DEVICE(dev);
1583     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1584 
1585     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1586         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1587     }
1588 }
1589 
1590 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1591                          DeviceState *dev, Error **errp)
1592 {
1593     HotplugHandlerClass *hhc;
1594     Error *local_err = NULL;
1595     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1596     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1597     PCDIMMDevice *dimm = PC_DIMM(dev);
1598     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1599     MemoryRegion *mr = ddc->get_memory_region(dimm);
1600     uint64_t align = TARGET_PAGE_SIZE;
1601 
1602     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1603         align = memory_region_get_alignment(mr);
1604     }
1605 
1606     if (!pcms->acpi_dev) {
1607         error_setg(&local_err,
1608                    "memory hotplug is not enabled: missing acpi device");
1609         goto out;
1610     }
1611 
1612     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1613     if (local_err) {
1614         goto out;
1615     }
1616 
1617     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1618     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1619 out:
1620     error_propagate(errp, local_err);
1621 }
1622 
1623 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1624                                    DeviceState *dev, Error **errp)
1625 {
1626     HotplugHandlerClass *hhc;
1627     Error *local_err = NULL;
1628     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1629 
1630     if (!pcms->acpi_dev) {
1631         error_setg(&local_err,
1632                    "memory hotplug is not enabled: missing acpi device");
1633         goto out;
1634     }
1635 
1636     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1637     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1638 
1639 out:
1640     error_propagate(errp, local_err);
1641 }
1642 
1643 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1644                            DeviceState *dev, Error **errp)
1645 {
1646     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1647     PCDIMMDevice *dimm = PC_DIMM(dev);
1648     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1649     MemoryRegion *mr = ddc->get_memory_region(dimm);
1650     HotplugHandlerClass *hhc;
1651     Error *local_err = NULL;
1652 
1653     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1654     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1655 
1656     if (local_err) {
1657         goto out;
1658     }
1659 
1660     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1661     object_unparent(OBJECT(dev));
1662 
1663  out:
1664     error_propagate(errp, local_err);
1665 }
1666 
1667 static int pc_apic_cmp(const void *a, const void *b)
1668 {
1669    CPUArchId *apic_a = (CPUArchId *)a;
1670    CPUArchId *apic_b = (CPUArchId *)b;
1671 
1672    return apic_a->arch_id - apic_b->arch_id;
1673 }
1674 
1675 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1676                         DeviceState *dev, Error **errp)
1677 {
1678     CPUClass *cc = CPU_GET_CLASS(dev);
1679     CPUArchId apic_id, *found_cpu;
1680     HotplugHandlerClass *hhc;
1681     Error *local_err = NULL;
1682     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1683 
1684     if (!dev->hotplugged) {
1685         goto out;
1686     }
1687 
1688     if (!pcms->acpi_dev) {
1689         error_setg(&local_err,
1690                    "cpu hotplug is not enabled: missing acpi device");
1691         goto out;
1692     }
1693 
1694     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1695     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1696     if (local_err) {
1697         goto out;
1698     }
1699 
1700     /* increment the number of CPUs */
1701     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1702 
1703     apic_id.arch_id = cc->get_arch_id(CPU(dev));
1704     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1705         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1706         pc_apic_cmp);
1707     assert(found_cpu);
1708     found_cpu->cpu = CPU(dev);
1709 out:
1710     error_propagate(errp, local_err);
1711 }
1712 
1713 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1714                                       DeviceState *dev, Error **errp)
1715 {
1716     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1717         pc_dimm_plug(hotplug_dev, dev, errp);
1718     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1719         pc_cpu_plug(hotplug_dev, dev, errp);
1720     }
1721 }
1722 
1723 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1724                                                 DeviceState *dev, Error **errp)
1725 {
1726     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1727         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1728     } else {
1729         error_setg(errp, "acpi: device unplug request for not supported device"
1730                    " type: %s", object_get_typename(OBJECT(dev)));
1731     }
1732 }
1733 
1734 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1735                                         DeviceState *dev, Error **errp)
1736 {
1737     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1738         pc_dimm_unplug(hotplug_dev, dev, errp);
1739     } else {
1740         error_setg(errp, "acpi: device unplug for not supported device"
1741                    " type: %s", object_get_typename(OBJECT(dev)));
1742     }
1743 }
1744 
1745 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1746                                              DeviceState *dev)
1747 {
1748     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1749 
1750     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1751         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1752         return HOTPLUG_HANDLER(machine);
1753     }
1754 
1755     return pcmc->get_hotplug_handler ?
1756         pcmc->get_hotplug_handler(machine, dev) : NULL;
1757 }
1758 
1759 static void
1760 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1761                                           const char *name, void *opaque,
1762                                           Error **errp)
1763 {
1764     PCMachineState *pcms = PC_MACHINE(obj);
1765     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1766 
1767     visit_type_int(v, name, &value, errp);
1768 }
1769 
1770 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1771                                             const char *name, void *opaque,
1772                                             Error **errp)
1773 {
1774     PCMachineState *pcms = PC_MACHINE(obj);
1775     uint64_t value = pcms->max_ram_below_4g;
1776 
1777     visit_type_size(v, name, &value, errp);
1778 }
1779 
1780 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1781                                             const char *name, void *opaque,
1782                                             Error **errp)
1783 {
1784     PCMachineState *pcms = PC_MACHINE(obj);
1785     Error *error = NULL;
1786     uint64_t value;
1787 
1788     visit_type_size(v, name, &value, &error);
1789     if (error) {
1790         error_propagate(errp, error);
1791         return;
1792     }
1793     if (value > (1ULL << 32)) {
1794         error_setg(&error,
1795                    "Machine option 'max-ram-below-4g=%"PRIu64
1796                    "' expects size less than or equal to 4G", value);
1797         error_propagate(errp, error);
1798         return;
1799     }
1800 
1801     if (value < (1ULL << 20)) {
1802         error_report("Warning: small max_ram_below_4g(%"PRIu64
1803                      ") less than 1M.  BIOS may not work..",
1804                      value);
1805     }
1806 
1807     pcms->max_ram_below_4g = value;
1808 }
1809 
1810 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1811                                   void *opaque, Error **errp)
1812 {
1813     PCMachineState *pcms = PC_MACHINE(obj);
1814     OnOffAuto vmport = pcms->vmport;
1815 
1816     visit_type_OnOffAuto(v, name, &vmport, errp);
1817 }
1818 
1819 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1820                                   void *opaque, Error **errp)
1821 {
1822     PCMachineState *pcms = PC_MACHINE(obj);
1823 
1824     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1825 }
1826 
1827 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1828 {
1829     bool smm_available = false;
1830 
1831     if (pcms->smm == ON_OFF_AUTO_OFF) {
1832         return false;
1833     }
1834 
1835     if (tcg_enabled() || qtest_enabled()) {
1836         smm_available = true;
1837     } else if (kvm_enabled()) {
1838         smm_available = kvm_has_smm();
1839     }
1840 
1841     if (smm_available) {
1842         return true;
1843     }
1844 
1845     if (pcms->smm == ON_OFF_AUTO_ON) {
1846         error_report("System Management Mode not supported by this hypervisor.");
1847         exit(1);
1848     }
1849     return false;
1850 }
1851 
1852 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1853                                void *opaque, Error **errp)
1854 {
1855     PCMachineState *pcms = PC_MACHINE(obj);
1856     OnOffAuto smm = pcms->smm;
1857 
1858     visit_type_OnOffAuto(v, name, &smm, errp);
1859 }
1860 
1861 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1862                                void *opaque, Error **errp)
1863 {
1864     PCMachineState *pcms = PC_MACHINE(obj);
1865 
1866     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
1867 }
1868 
1869 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1870 {
1871     PCMachineState *pcms = PC_MACHINE(obj);
1872 
1873     return pcms->acpi_nvdimm_state.is_enabled;
1874 }
1875 
1876 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1877 {
1878     PCMachineState *pcms = PC_MACHINE(obj);
1879 
1880     pcms->acpi_nvdimm_state.is_enabled = value;
1881 }
1882 
1883 static void pc_machine_initfn(Object *obj)
1884 {
1885     PCMachineState *pcms = PC_MACHINE(obj);
1886 
1887     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1888                         pc_machine_get_hotplug_memory_region_size,
1889                         NULL, NULL, NULL, &error_abort);
1890 
1891     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1892     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1893                         pc_machine_get_max_ram_below_4g,
1894                         pc_machine_set_max_ram_below_4g,
1895                         NULL, NULL, &error_abort);
1896     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1897                                     "Maximum ram below the 4G boundary (32bit boundary)",
1898                                     &error_abort);
1899 
1900     pcms->smm = ON_OFF_AUTO_AUTO;
1901     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1902                         pc_machine_get_smm,
1903                         pc_machine_set_smm,
1904                         NULL, NULL, &error_abort);
1905     object_property_set_description(obj, PC_MACHINE_SMM,
1906                                     "Enable SMM (pc & q35)",
1907                                     &error_abort);
1908 
1909     pcms->vmport = ON_OFF_AUTO_AUTO;
1910     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1911                         pc_machine_get_vmport,
1912                         pc_machine_set_vmport,
1913                         NULL, NULL, &error_abort);
1914     object_property_set_description(obj, PC_MACHINE_VMPORT,
1915                                     "Enable vmport (pc & q35)",
1916                                     &error_abort);
1917 
1918     /* nvdimm is disabled on default. */
1919     pcms->acpi_nvdimm_state.is_enabled = false;
1920     object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1921                              pc_machine_set_nvdimm, &error_abort);
1922 }
1923 
1924 static void pc_machine_reset(void)
1925 {
1926     CPUState *cs;
1927     X86CPU *cpu;
1928 
1929     qemu_devices_reset();
1930 
1931     /* Reset APIC after devices have been reset to cancel
1932      * any changes that qemu_devices_reset() might have done.
1933      */
1934     CPU_FOREACH(cs) {
1935         cpu = X86_CPU(cs);
1936 
1937         if (cpu->apic_state) {
1938             device_reset(cpu->apic_state);
1939         }
1940     }
1941 }
1942 
1943 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1944 {
1945     X86CPUTopoInfo topo;
1946     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1947                           &topo);
1948     return topo.pkg_id;
1949 }
1950 
1951 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
1952 {
1953     PCMachineState *pcms = PC_MACHINE(machine);
1954     int len = sizeof(CPUArchIdList) +
1955               sizeof(CPUArchId) * (pcms->possible_cpus->len);
1956     CPUArchIdList *list = g_malloc(len);
1957 
1958     memcpy(list, pcms->possible_cpus, len);
1959     return list;
1960 }
1961 
1962 static void pc_machine_class_init(ObjectClass *oc, void *data)
1963 {
1964     MachineClass *mc = MACHINE_CLASS(oc);
1965     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1966     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1967 
1968     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1969     pcmc->pci_enabled = true;
1970     pcmc->has_acpi_build = true;
1971     pcmc->rsdp_in_ram = true;
1972     pcmc->smbios_defaults = true;
1973     pcmc->smbios_uuid_encoded = true;
1974     pcmc->gigabyte_align = true;
1975     pcmc->has_reserved_memory = true;
1976     pcmc->kvmclock_enabled = true;
1977     pcmc->enforce_aligned_dimm = true;
1978     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1979      * to be used at the moment, 32K should be enough for a while.  */
1980     pcmc->acpi_data_size = 0x20000 + 0x8000;
1981     pcmc->save_tsc_khz = true;
1982     mc->get_hotplug_handler = pc_get_hotpug_handler;
1983     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1984     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
1985     mc->default_boot_order = "cad";
1986     mc->hot_add_cpu = pc_hot_add_cpu;
1987     mc->max_cpus = 255;
1988     mc->reset = pc_machine_reset;
1989     hc->plug = pc_machine_device_plug_cb;
1990     hc->unplug_request = pc_machine_device_unplug_request_cb;
1991     hc->unplug = pc_machine_device_unplug_cb;
1992 }
1993 
1994 static const TypeInfo pc_machine_info = {
1995     .name = TYPE_PC_MACHINE,
1996     .parent = TYPE_MACHINE,
1997     .abstract = true,
1998     .instance_size = sizeof(PCMachineState),
1999     .instance_init = pc_machine_initfn,
2000     .class_size = sizeof(PCMachineClass),
2001     .class_init = pc_machine_class_init,
2002     .interfaces = (InterfaceInfo[]) {
2003          { TYPE_HOTPLUG_HANDLER },
2004          { }
2005     },
2006 };
2007 
2008 static void pc_machine_register_types(void)
2009 {
2010     type_register_static(&pc_machine_info);
2011 }
2012 
2013 type_init(pc_machine_register_types)
2014