xref: /qemu/hw/i386/pc.c (revision e2ec3f97)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 
56 /* debug PC/ISA interrupts */
57 //#define DEBUG_IRQ
58 
59 #ifdef DEBUG_IRQ
60 #define DPRINTF(fmt, ...)                                       \
61     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...)
64 #endif
65 
66 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
67 #define ACPI_DATA_SIZE       0x10000
68 #define BIOS_CFG_IOPORT 0x510
69 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
70 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
71 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
72 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
73 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
74 
75 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
76 
77 #define E820_NR_ENTRIES		16
78 
79 struct e820_entry {
80     uint64_t address;
81     uint64_t length;
82     uint32_t type;
83 } QEMU_PACKED __attribute((__aligned__(4)));
84 
85 struct e820_table {
86     uint32_t count;
87     struct e820_entry entry[E820_NR_ENTRIES];
88 } QEMU_PACKED __attribute((__aligned__(4)));
89 
90 static struct e820_table e820_table;
91 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
92 
93 void gsi_handler(void *opaque, int n, int level)
94 {
95     GSIState *s = opaque;
96 
97     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
98     if (n < ISA_NUM_IRQS) {
99         qemu_set_irq(s->i8259_irq[n], level);
100     }
101     qemu_set_irq(s->ioapic_irq[n], level);
102 }
103 
104 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
105                            unsigned size)
106 {
107 }
108 
109 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
110 {
111     return 0xffffffffffffffffULL;
112 }
113 
114 /* MSDOS compatibility mode FPU exception support */
115 static qemu_irq ferr_irq;
116 
117 void pc_register_ferr_irq(qemu_irq irq)
118 {
119     ferr_irq = irq;
120 }
121 
122 /* XXX: add IGNNE support */
123 void cpu_set_ferr(CPUX86State *s)
124 {
125     qemu_irq_raise(ferr_irq);
126 }
127 
128 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
129                            unsigned size)
130 {
131     qemu_irq_lower(ferr_irq);
132 }
133 
134 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
135 {
136     return 0xffffffffffffffffULL;
137 }
138 
139 /* TSC handling */
140 uint64_t cpu_get_tsc(CPUX86State *env)
141 {
142     return cpu_get_ticks();
143 }
144 
145 /* SMM support */
146 
147 static cpu_set_smm_t smm_set;
148 static void *smm_arg;
149 
150 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
151 {
152     assert(smm_set == NULL);
153     assert(smm_arg == NULL);
154     smm_set = callback;
155     smm_arg = arg;
156 }
157 
158 void cpu_smm_update(CPUX86State *env)
159 {
160     if (smm_set && smm_arg && env == first_cpu)
161         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
162 }
163 
164 
165 /* IRQ handling */
166 int cpu_get_pic_interrupt(CPUX86State *env)
167 {
168     int intno;
169 
170     intno = apic_get_interrupt(env->apic_state);
171     if (intno >= 0) {
172         return intno;
173     }
174     /* read the irq from the PIC */
175     if (!apic_accept_pic_intr(env->apic_state)) {
176         return -1;
177     }
178 
179     intno = pic_read_irq(isa_pic);
180     return intno;
181 }
182 
183 static void pic_irq_request(void *opaque, int irq, int level)
184 {
185     CPUX86State *env = first_cpu;
186 
187     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
188     if (env->apic_state) {
189         while (env) {
190             if (apic_accept_pic_intr(env->apic_state)) {
191                 apic_deliver_pic_intr(env->apic_state, level);
192             }
193             env = env->next_cpu;
194         }
195     } else {
196         CPUState *cs = CPU(x86_env_get_cpu(env));
197         if (level) {
198             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
199         } else {
200             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
201         }
202     }
203 }
204 
205 /* PC cmos mappings */
206 
207 #define REG_EQUIPMENT_BYTE          0x14
208 
209 static int cmos_get_fd_drive_type(FDriveType fd0)
210 {
211     int val;
212 
213     switch (fd0) {
214     case FDRIVE_DRV_144:
215         /* 1.44 Mb 3"5 drive */
216         val = 4;
217         break;
218     case FDRIVE_DRV_288:
219         /* 2.88 Mb 3"5 drive */
220         val = 5;
221         break;
222     case FDRIVE_DRV_120:
223         /* 1.2 Mb 5"5 drive */
224         val = 2;
225         break;
226     case FDRIVE_DRV_NONE:
227     default:
228         val = 0;
229         break;
230     }
231     return val;
232 }
233 
234 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
235                          int16_t cylinders, int8_t heads, int8_t sectors)
236 {
237     rtc_set_memory(s, type_ofs, 47);
238     rtc_set_memory(s, info_ofs, cylinders);
239     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
240     rtc_set_memory(s, info_ofs + 2, heads);
241     rtc_set_memory(s, info_ofs + 3, 0xff);
242     rtc_set_memory(s, info_ofs + 4, 0xff);
243     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
244     rtc_set_memory(s, info_ofs + 6, cylinders);
245     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
246     rtc_set_memory(s, info_ofs + 8, sectors);
247 }
248 
249 /* convert boot_device letter to something recognizable by the bios */
250 static int boot_device2nibble(char boot_device)
251 {
252     switch(boot_device) {
253     case 'a':
254     case 'b':
255         return 0x01; /* floppy boot */
256     case 'c':
257         return 0x02; /* hard drive boot */
258     case 'd':
259         return 0x03; /* CD-ROM boot */
260     case 'n':
261         return 0x04; /* Network boot */
262     }
263     return 0;
264 }
265 
266 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
267 {
268 #define PC_MAX_BOOT_DEVICES 3
269     int nbds, bds[3] = { 0, };
270     int i;
271 
272     nbds = strlen(boot_device);
273     if (nbds > PC_MAX_BOOT_DEVICES) {
274         error_report("Too many boot devices for PC");
275         return(1);
276     }
277     for (i = 0; i < nbds; i++) {
278         bds[i] = boot_device2nibble(boot_device[i]);
279         if (bds[i] == 0) {
280             error_report("Invalid boot device for PC: '%c'",
281                          boot_device[i]);
282             return(1);
283         }
284     }
285     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
286     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
287     return(0);
288 }
289 
290 static int pc_boot_set(void *opaque, const char *boot_device)
291 {
292     return set_boot_dev(opaque, boot_device, 0);
293 }
294 
295 typedef struct pc_cmos_init_late_arg {
296     ISADevice *rtc_state;
297     BusState *idebus[2];
298 } pc_cmos_init_late_arg;
299 
300 static void pc_cmos_init_late(void *opaque)
301 {
302     pc_cmos_init_late_arg *arg = opaque;
303     ISADevice *s = arg->rtc_state;
304     int16_t cylinders;
305     int8_t heads, sectors;
306     int val;
307     int i, trans;
308 
309     val = 0;
310     if (ide_get_geometry(arg->idebus[0], 0,
311                          &cylinders, &heads, &sectors) >= 0) {
312         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
313         val |= 0xf0;
314     }
315     if (ide_get_geometry(arg->idebus[0], 1,
316                          &cylinders, &heads, &sectors) >= 0) {
317         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
318         val |= 0x0f;
319     }
320     rtc_set_memory(s, 0x12, val);
321 
322     val = 0;
323     for (i = 0; i < 4; i++) {
324         /* NOTE: ide_get_geometry() returns the physical
325            geometry.  It is always such that: 1 <= sects <= 63, 1
326            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
327            geometry can be different if a translation is done. */
328         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
329                              &cylinders, &heads, &sectors) >= 0) {
330             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
331             assert((trans & ~3) == 0);
332             val |= trans << (i * 2);
333         }
334     }
335     rtc_set_memory(s, 0x39, val);
336 
337     qemu_unregister_reset(pc_cmos_init_late, opaque);
338 }
339 
340 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
341                   const char *boot_device,
342                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
343                   ISADevice *s)
344 {
345     int val, nb, i;
346     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
347     static pc_cmos_init_late_arg arg;
348 
349     /* various important CMOS locations needed by PC/Bochs bios */
350 
351     /* memory size */
352     /* base memory (first MiB) */
353     val = MIN(ram_size / 1024, 640);
354     rtc_set_memory(s, 0x15, val);
355     rtc_set_memory(s, 0x16, val >> 8);
356     /* extended memory (next 64MiB) */
357     if (ram_size > 1024 * 1024) {
358         val = (ram_size - 1024 * 1024) / 1024;
359     } else {
360         val = 0;
361     }
362     if (val > 65535)
363         val = 65535;
364     rtc_set_memory(s, 0x17, val);
365     rtc_set_memory(s, 0x18, val >> 8);
366     rtc_set_memory(s, 0x30, val);
367     rtc_set_memory(s, 0x31, val >> 8);
368     /* memory between 16MiB and 4GiB */
369     if (ram_size > 16 * 1024 * 1024) {
370         val = (ram_size - 16 * 1024 * 1024) / 65536;
371     } else {
372         val = 0;
373     }
374     if (val > 65535)
375         val = 65535;
376     rtc_set_memory(s, 0x34, val);
377     rtc_set_memory(s, 0x35, val >> 8);
378     /* memory above 4GiB */
379     val = above_4g_mem_size / 65536;
380     rtc_set_memory(s, 0x5b, val);
381     rtc_set_memory(s, 0x5c, val >> 8);
382     rtc_set_memory(s, 0x5d, val >> 16);
383 
384     /* set the number of CPU */
385     rtc_set_memory(s, 0x5f, smp_cpus - 1);
386 
387     /* set boot devices, and disable floppy signature check if requested */
388     if (set_boot_dev(s, boot_device, fd_bootchk)) {
389         exit(1);
390     }
391 
392     /* floppy type */
393     if (floppy) {
394         for (i = 0; i < 2; i++) {
395             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
396         }
397     }
398     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
399         cmos_get_fd_drive_type(fd_type[1]);
400     rtc_set_memory(s, 0x10, val);
401 
402     val = 0;
403     nb = 0;
404     if (fd_type[0] < FDRIVE_DRV_NONE) {
405         nb++;
406     }
407     if (fd_type[1] < FDRIVE_DRV_NONE) {
408         nb++;
409     }
410     switch (nb) {
411     case 0:
412         break;
413     case 1:
414         val |= 0x01; /* 1 drive, ready for boot */
415         break;
416     case 2:
417         val |= 0x41; /* 2 drives, ready for boot */
418         break;
419     }
420     val |= 0x02; /* FPU is there */
421     val |= 0x04; /* PS/2 mouse installed */
422     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
423 
424     /* hard drives */
425     arg.rtc_state = s;
426     arg.idebus[0] = idebus0;
427     arg.idebus[1] = idebus1;
428     qemu_register_reset(pc_cmos_init_late, &arg);
429 }
430 
431 /* port 92 stuff: could be split off */
432 typedef struct Port92State {
433     ISADevice dev;
434     MemoryRegion io;
435     uint8_t outport;
436     qemu_irq *a20_out;
437 } Port92State;
438 
439 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
440                          unsigned size)
441 {
442     Port92State *s = opaque;
443 
444     DPRINTF("port92: write 0x%02x\n", val);
445     s->outport = val;
446     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
447     if (val & 1) {
448         qemu_system_reset_request();
449     }
450 }
451 
452 static uint64_t port92_read(void *opaque, hwaddr addr,
453                             unsigned size)
454 {
455     Port92State *s = opaque;
456     uint32_t ret;
457 
458     ret = s->outport;
459     DPRINTF("port92: read 0x%02x\n", ret);
460     return ret;
461 }
462 
463 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
464 {
465     Port92State *s = DO_UPCAST(Port92State, dev, dev);
466 
467     s->a20_out = a20_out;
468 }
469 
470 static const VMStateDescription vmstate_port92_isa = {
471     .name = "port92",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .minimum_version_id_old = 1,
475     .fields      = (VMStateField []) {
476         VMSTATE_UINT8(outport, Port92State),
477         VMSTATE_END_OF_LIST()
478     }
479 };
480 
481 static void port92_reset(DeviceState *d)
482 {
483     Port92State *s = container_of(d, Port92State, dev.qdev);
484 
485     s->outport &= ~1;
486 }
487 
488 static const MemoryRegionOps port92_ops = {
489     .read = port92_read,
490     .write = port92_write,
491     .impl = {
492         .min_access_size = 1,
493         .max_access_size = 1,
494     },
495     .endianness = DEVICE_LITTLE_ENDIAN,
496 };
497 
498 static int port92_initfn(ISADevice *dev)
499 {
500     Port92State *s = DO_UPCAST(Port92State, dev, dev);
501 
502     memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
503     isa_register_ioport(dev, &s->io, 0x92);
504 
505     s->outport = 0;
506     return 0;
507 }
508 
509 static void port92_class_initfn(ObjectClass *klass, void *data)
510 {
511     DeviceClass *dc = DEVICE_CLASS(klass);
512     ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
513     ic->init = port92_initfn;
514     dc->no_user = 1;
515     dc->reset = port92_reset;
516     dc->vmsd = &vmstate_port92_isa;
517 }
518 
519 static const TypeInfo port92_info = {
520     .name          = "port92",
521     .parent        = TYPE_ISA_DEVICE,
522     .instance_size = sizeof(Port92State),
523     .class_init    = port92_class_initfn,
524 };
525 
526 static void port92_register_types(void)
527 {
528     type_register_static(&port92_info);
529 }
530 
531 type_init(port92_register_types)
532 
533 static void handle_a20_line_change(void *opaque, int irq, int level)
534 {
535     X86CPU *cpu = opaque;
536 
537     /* XXX: send to all CPUs ? */
538     /* XXX: add logic to handle multiple A20 line sources */
539     x86_cpu_set_a20(cpu, level);
540 }
541 
542 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
543 {
544     int index = le32_to_cpu(e820_table.count);
545     struct e820_entry *entry;
546 
547     if (index >= E820_NR_ENTRIES)
548         return -EBUSY;
549     entry = &e820_table.entry[index++];
550 
551     entry->address = cpu_to_le64(address);
552     entry->length = cpu_to_le64(length);
553     entry->type = cpu_to_le32(type);
554 
555     e820_table.count = cpu_to_le32(index);
556     return index;
557 }
558 
559 /* Calculates the limit to CPU APIC ID values
560  *
561  * This function returns the limit for the APIC ID value, so that all
562  * CPU APIC IDs are < pc_apic_id_limit().
563  *
564  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
565  */
566 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
567 {
568     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
569 }
570 
571 static void *bochs_bios_init(void)
572 {
573     void *fw_cfg;
574     uint8_t *smbios_table;
575     size_t smbios_len;
576     uint64_t *numa_fw_cfg;
577     int i, j;
578     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
579 
580     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
581     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
582      *
583      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
584      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
585      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
586      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
587      * may see".
588      *
589      * So, this means we must not use max_cpus, here, but the maximum possible
590      * APIC ID value, plus one.
591      *
592      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
593      *     the APIC ID, not the "CPU index"
594      */
595     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
596     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
597     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
598     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
599                      acpi_tables, acpi_tables_len);
600     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
601 
602     smbios_table = smbios_get_table(&smbios_len);
603     if (smbios_table)
604         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
605                          smbios_table, smbios_len);
606     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
607                      &e820_table, sizeof(e820_table));
608 
609     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
610     /* allocate memory for the NUMA channel: one (64bit) word for the number
611      * of nodes, one word for each VCPU->node and one word for each node to
612      * hold the amount of memory.
613      */
614     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
615     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
616     for (i = 0; i < max_cpus; i++) {
617         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
618         assert(apic_id < apic_id_limit);
619         for (j = 0; j < nb_numa_nodes; j++) {
620             if (test_bit(i, node_cpumask[j])) {
621                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
622                 break;
623             }
624         }
625     }
626     for (i = 0; i < nb_numa_nodes; i++) {
627         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
628     }
629     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
630                      (1 + apic_id_limit + nb_numa_nodes) *
631                      sizeof(*numa_fw_cfg));
632 
633     return fw_cfg;
634 }
635 
636 static long get_file_size(FILE *f)
637 {
638     long where, size;
639 
640     /* XXX: on Unix systems, using fstat() probably makes more sense */
641 
642     where = ftell(f);
643     fseek(f, 0, SEEK_END);
644     size = ftell(f);
645     fseek(f, where, SEEK_SET);
646 
647     return size;
648 }
649 
650 static void load_linux(void *fw_cfg,
651                        const char *kernel_filename,
652                        const char *initrd_filename,
653                        const char *kernel_cmdline,
654                        hwaddr max_ram_size)
655 {
656     uint16_t protocol;
657     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
658     uint32_t initrd_max;
659     uint8_t header[8192], *setup, *kernel, *initrd_data;
660     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
661     FILE *f;
662     char *vmode;
663 
664     /* Align to 16 bytes as a paranoia measure */
665     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
666 
667     /* load the kernel header */
668     f = fopen(kernel_filename, "rb");
669     if (!f || !(kernel_size = get_file_size(f)) ||
670         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
671         MIN(ARRAY_SIZE(header), kernel_size)) {
672         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
673                 kernel_filename, strerror(errno));
674         exit(1);
675     }
676 
677     /* kernel protocol version */
678 #if 0
679     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
680 #endif
681     if (ldl_p(header+0x202) == 0x53726448) {
682         protocol = lduw_p(header+0x206);
683     } else {
684         /* This looks like a multiboot kernel. If it is, let's stop
685            treating it like a Linux kernel. */
686         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
687                            kernel_cmdline, kernel_size, header)) {
688             return;
689         }
690         protocol = 0;
691     }
692 
693     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
694         /* Low kernel */
695         real_addr    = 0x90000;
696         cmdline_addr = 0x9a000 - cmdline_size;
697         prot_addr    = 0x10000;
698     } else if (protocol < 0x202) {
699         /* High but ancient kernel */
700         real_addr    = 0x90000;
701         cmdline_addr = 0x9a000 - cmdline_size;
702         prot_addr    = 0x100000;
703     } else {
704         /* High and recent kernel */
705         real_addr    = 0x10000;
706         cmdline_addr = 0x20000;
707         prot_addr    = 0x100000;
708     }
709 
710 #if 0
711     fprintf(stderr,
712             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
713             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
714             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
715             real_addr,
716             cmdline_addr,
717             prot_addr);
718 #endif
719 
720     /* highest address for loading the initrd */
721     if (protocol >= 0x203) {
722         initrd_max = ldl_p(header+0x22c);
723     } else {
724         initrd_max = 0x37ffffff;
725     }
726 
727     if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
728     	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
729 
730     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
731     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
732     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
733 
734     if (protocol >= 0x202) {
735         stl_p(header+0x228, cmdline_addr);
736     } else {
737         stw_p(header+0x20, 0xA33F);
738         stw_p(header+0x22, cmdline_addr-real_addr);
739     }
740 
741     /* handle vga= parameter */
742     vmode = strstr(kernel_cmdline, "vga=");
743     if (vmode) {
744         unsigned int video_mode;
745         /* skip "vga=" */
746         vmode += 4;
747         if (!strncmp(vmode, "normal", 6)) {
748             video_mode = 0xffff;
749         } else if (!strncmp(vmode, "ext", 3)) {
750             video_mode = 0xfffe;
751         } else if (!strncmp(vmode, "ask", 3)) {
752             video_mode = 0xfffd;
753         } else {
754             video_mode = strtol(vmode, NULL, 0);
755         }
756         stw_p(header+0x1fa, video_mode);
757     }
758 
759     /* loader type */
760     /* High nybble = B reserved for QEMU; low nybble is revision number.
761        If this code is substantially changed, you may want to consider
762        incrementing the revision. */
763     if (protocol >= 0x200) {
764         header[0x210] = 0xB0;
765     }
766     /* heap */
767     if (protocol >= 0x201) {
768         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
769         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
770     }
771 
772     /* load initrd */
773     if (initrd_filename) {
774         if (protocol < 0x200) {
775             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
776             exit(1);
777         }
778 
779         initrd_size = get_image_size(initrd_filename);
780         if (initrd_size < 0) {
781             fprintf(stderr, "qemu: error reading initrd %s\n",
782                     initrd_filename);
783             exit(1);
784         }
785 
786         initrd_addr = (initrd_max-initrd_size) & ~4095;
787 
788         initrd_data = g_malloc(initrd_size);
789         load_image(initrd_filename, initrd_data);
790 
791         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
792         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
793         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
794 
795         stl_p(header+0x218, initrd_addr);
796         stl_p(header+0x21c, initrd_size);
797     }
798 
799     /* load kernel and setup */
800     setup_size = header[0x1f1];
801     if (setup_size == 0) {
802         setup_size = 4;
803     }
804     setup_size = (setup_size+1)*512;
805     kernel_size -= setup_size;
806 
807     setup  = g_malloc(setup_size);
808     kernel = g_malloc(kernel_size);
809     fseek(f, 0, SEEK_SET);
810     if (fread(setup, 1, setup_size, f) != setup_size) {
811         fprintf(stderr, "fread() failed\n");
812         exit(1);
813     }
814     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
815         fprintf(stderr, "fread() failed\n");
816         exit(1);
817     }
818     fclose(f);
819     memcpy(setup, header, MIN(sizeof(header), setup_size));
820 
821     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
822     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
823     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
824 
825     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
826     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
827     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
828 
829     option_rom[nb_option_roms].name = "linuxboot.bin";
830     option_rom[nb_option_roms].bootindex = 0;
831     nb_option_roms++;
832 }
833 
834 #define NE2000_NB_MAX 6
835 
836 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
837                                               0x280, 0x380 };
838 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
839 
840 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
841 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
842 
843 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
844 {
845     static int nb_ne2k = 0;
846 
847     if (nb_ne2k == NE2000_NB_MAX)
848         return;
849     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
850                     ne2000_irq[nb_ne2k], nd);
851     nb_ne2k++;
852 }
853 
854 DeviceState *cpu_get_current_apic(void)
855 {
856     if (cpu_single_env) {
857         return cpu_single_env->apic_state;
858     } else {
859         return NULL;
860     }
861 }
862 
863 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
864 {
865     X86CPU *cpu = opaque;
866 
867     if (level) {
868         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
869     }
870 }
871 
872 void pc_cpus_init(const char *cpu_model)
873 {
874     int i;
875 
876     /* init CPUs */
877     if (cpu_model == NULL) {
878 #ifdef TARGET_X86_64
879         cpu_model = "qemu64";
880 #else
881         cpu_model = "qemu32";
882 #endif
883     }
884 
885     for (i = 0; i < smp_cpus; i++) {
886         if (!cpu_x86_init(cpu_model)) {
887             exit(1);
888         }
889     }
890 }
891 
892 void pc_acpi_init(const char *default_dsdt)
893 {
894     char *filename;
895 
896     if (acpi_tables != NULL) {
897         /* manually set via -acpitable, leave it alone */
898         return;
899     }
900 
901     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
902     if (filename == NULL) {
903         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
904     } else {
905         char *arg;
906         QemuOpts *opts;
907         Error *err = NULL;
908 
909         arg = g_strdup_printf("file=%s", filename);
910 
911         /* creates a deep copy of "arg" */
912         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
913         g_assert(opts != NULL);
914 
915         acpi_table_add(opts, &err);
916         if (err) {
917             fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
918                     error_get_pretty(err));
919             error_free(err);
920         }
921         g_free(arg);
922         g_free(filename);
923     }
924 }
925 
926 void *pc_memory_init(MemoryRegion *system_memory,
927                     const char *kernel_filename,
928                     const char *kernel_cmdline,
929                     const char *initrd_filename,
930                     ram_addr_t below_4g_mem_size,
931                     ram_addr_t above_4g_mem_size,
932                     MemoryRegion *rom_memory,
933                     MemoryRegion **ram_memory)
934 {
935     int linux_boot, i;
936     MemoryRegion *ram, *option_rom_mr;
937     MemoryRegion *ram_below_4g, *ram_above_4g;
938     void *fw_cfg;
939 
940     linux_boot = (kernel_filename != NULL);
941 
942     /* Allocate RAM.  We allocate it as a single memory region and use
943      * aliases to address portions of it, mostly for backwards compatibility
944      * with older qemus that used qemu_ram_alloc().
945      */
946     ram = g_malloc(sizeof(*ram));
947     memory_region_init_ram(ram, "pc.ram",
948                            below_4g_mem_size + above_4g_mem_size);
949     vmstate_register_ram_global(ram);
950     *ram_memory = ram;
951     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
952     memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
953                              0, below_4g_mem_size);
954     memory_region_add_subregion(system_memory, 0, ram_below_4g);
955     if (above_4g_mem_size > 0) {
956         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
957         memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
958                                  below_4g_mem_size, above_4g_mem_size);
959         memory_region_add_subregion(system_memory, 0x100000000ULL,
960                                     ram_above_4g);
961     }
962 
963 
964     /* Initialize PC system firmware */
965     pc_system_firmware_init(rom_memory);
966 
967     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
968     memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
969     vmstate_register_ram_global(option_rom_mr);
970     memory_region_add_subregion_overlap(rom_memory,
971                                         PC_ROM_MIN_VGA,
972                                         option_rom_mr,
973                                         1);
974 
975     fw_cfg = bochs_bios_init();
976     rom_set_fw(fw_cfg);
977 
978     if (linux_boot) {
979         load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
980     }
981 
982     for (i = 0; i < nb_option_roms; i++) {
983         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
984     }
985     return fw_cfg;
986 }
987 
988 qemu_irq *pc_allocate_cpu_irq(void)
989 {
990     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
991 }
992 
993 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
994 {
995     DeviceState *dev = NULL;
996 
997     if (pci_bus) {
998         PCIDevice *pcidev = pci_vga_init(pci_bus);
999         dev = pcidev ? &pcidev->qdev : NULL;
1000     } else if (isa_bus) {
1001         ISADevice *isadev = isa_vga_init(isa_bus);
1002         dev = isadev ? &isadev->qdev : NULL;
1003     }
1004     return dev;
1005 }
1006 
1007 static void cpu_request_exit(void *opaque, int irq, int level)
1008 {
1009     CPUX86State *env = cpu_single_env;
1010 
1011     if (env && level) {
1012         cpu_exit(env);
1013     }
1014 }
1015 
1016 static const MemoryRegionOps ioport80_io_ops = {
1017     .write = ioport80_write,
1018     .read = ioport80_read,
1019     .endianness = DEVICE_NATIVE_ENDIAN,
1020     .impl = {
1021         .min_access_size = 1,
1022         .max_access_size = 1,
1023     },
1024 };
1025 
1026 static const MemoryRegionOps ioportF0_io_ops = {
1027     .write = ioportF0_write,
1028     .read = ioportF0_read,
1029     .endianness = DEVICE_NATIVE_ENDIAN,
1030     .impl = {
1031         .min_access_size = 1,
1032         .max_access_size = 1,
1033     },
1034 };
1035 
1036 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1037                           ISADevice **rtc_state,
1038                           ISADevice **floppy,
1039                           bool no_vmport)
1040 {
1041     int i;
1042     DriveInfo *fd[MAX_FD];
1043     DeviceState *hpet = NULL;
1044     int pit_isa_irq = 0;
1045     qemu_irq pit_alt_irq = NULL;
1046     qemu_irq rtc_irq = NULL;
1047     qemu_irq *a20_line;
1048     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1049     qemu_irq *cpu_exit_irq;
1050     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1051     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1052 
1053     memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1054     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1055 
1056     memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1057     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1058 
1059     /*
1060      * Check if an HPET shall be created.
1061      *
1062      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1063      * when the HPET wants to take over. Thus we have to disable the latter.
1064      */
1065     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1066         hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1067 
1068         if (hpet) {
1069             for (i = 0; i < GSI_NUM_PINS; i++) {
1070                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1071             }
1072             pit_isa_irq = -1;
1073             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1074             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1075         }
1076     }
1077     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1078 
1079     qemu_register_boot_set(pc_boot_set, *rtc_state);
1080 
1081     if (!xen_enabled()) {
1082         if (kvm_irqchip_in_kernel()) {
1083             pit = kvm_pit_init(isa_bus, 0x40);
1084         } else {
1085             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1086         }
1087         if (hpet) {
1088             /* connect PIT to output control line of the HPET */
1089             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1090         }
1091         pcspk_init(isa_bus, pit);
1092     }
1093 
1094     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1095         if (serial_hds[i]) {
1096             serial_isa_init(isa_bus, i, serial_hds[i]);
1097         }
1098     }
1099 
1100     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1101         if (parallel_hds[i]) {
1102             parallel_init(isa_bus, i, parallel_hds[i]);
1103         }
1104     }
1105 
1106     a20_line = qemu_allocate_irqs(handle_a20_line_change,
1107                                   x86_env_get_cpu(first_cpu), 2);
1108     i8042 = isa_create_simple(isa_bus, "i8042");
1109     i8042_setup_a20_line(i8042, &a20_line[0]);
1110     if (!no_vmport) {
1111         vmport_init(isa_bus);
1112         vmmouse = isa_try_create(isa_bus, "vmmouse");
1113     } else {
1114         vmmouse = NULL;
1115     }
1116     if (vmmouse) {
1117         qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1118         qdev_init_nofail(&vmmouse->qdev);
1119     }
1120     port92 = isa_create_simple(isa_bus, "port92");
1121     port92_init(port92, &a20_line[1]);
1122 
1123     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1124     DMA_init(0, cpu_exit_irq);
1125 
1126     for(i = 0; i < MAX_FD; i++) {
1127         fd[i] = drive_get(IF_FLOPPY, 0, i);
1128     }
1129     *floppy = fdctrl_init_isa(isa_bus, fd);
1130 }
1131 
1132 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1133 {
1134     int i;
1135 
1136     for (i = 0; i < nb_nics; i++) {
1137         NICInfo *nd = &nd_table[i];
1138 
1139         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1140             pc_init_ne2k_isa(isa_bus, nd);
1141         } else {
1142             pci_nic_init_nofail(nd, "e1000", NULL);
1143         }
1144     }
1145 }
1146 
1147 void pc_pci_device_init(PCIBus *pci_bus)
1148 {
1149     int max_bus;
1150     int bus;
1151 
1152     max_bus = drive_get_max_bus(IF_SCSI);
1153     for (bus = 0; bus <= max_bus; bus++) {
1154         pci_create_simple(pci_bus, -1, "lsi53c895a");
1155     }
1156 }
1157 
1158 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1159 {
1160     DeviceState *dev;
1161     SysBusDevice *d;
1162     unsigned int i;
1163 
1164     if (kvm_irqchip_in_kernel()) {
1165         dev = qdev_create(NULL, "kvm-ioapic");
1166     } else {
1167         dev = qdev_create(NULL, "ioapic");
1168     }
1169     if (parent_name) {
1170         object_property_add_child(object_resolve_path(parent_name, NULL),
1171                                   "ioapic", OBJECT(dev), NULL);
1172     }
1173     qdev_init_nofail(dev);
1174     d = SYS_BUS_DEVICE(dev);
1175     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1176 
1177     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1178         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1179     }
1180 }
1181