xref: /qemu/hw/i386/pc.c (revision f9735fd5)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 
71 /* debug PC/ISA interrupts */
72 //#define DEBUG_IRQ
73 
74 #ifdef DEBUG_IRQ
75 #define DPRINTF(fmt, ...)                                       \
76     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...)
79 #endif
80 
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86 
87 #define E820_NR_ENTRIES		16
88 
89 struct e820_entry {
90     uint64_t address;
91     uint64_t length;
92     uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94 
95 struct e820_table {
96     uint32_t count;
97     struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99 
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104 
105 void gsi_handler(void *opaque, int n, int level)
106 {
107     GSIState *s = opaque;
108 
109     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110     if (n < ISA_NUM_IRQS) {
111         qemu_set_irq(s->i8259_irq[n], level);
112     }
113     qemu_set_irq(s->ioapic_irq[n], level);
114 }
115 
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117                            unsigned size)
118 {
119 }
120 
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123     return 0xffffffffffffffffULL;
124 }
125 
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128 
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131     ferr_irq = irq;
132 }
133 
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137     qemu_irq_raise(ferr_irq);
138 }
139 
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141                            unsigned size)
142 {
143     qemu_irq_lower(ferr_irq);
144 }
145 
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148     return 0xffffffffffffffffULL;
149 }
150 
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154     return cpu_get_ticks();
155 }
156 
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160     X86CPU *cpu = x86_env_get_cpu(env);
161     int intno;
162 
163     intno = apic_get_interrupt(cpu->apic_state);
164     if (intno >= 0) {
165         return intno;
166     }
167     /* read the irq from the PIC */
168     if (!apic_accept_pic_intr(cpu->apic_state)) {
169         return -1;
170     }
171 
172     intno = pic_read_irq(isa_pic);
173     return intno;
174 }
175 
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178     CPUState *cs = first_cpu;
179     X86CPU *cpu = X86_CPU(cs);
180 
181     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182     if (cpu->apic_state) {
183         CPU_FOREACH(cs) {
184             cpu = X86_CPU(cs);
185             if (apic_accept_pic_intr(cpu->apic_state)) {
186                 apic_deliver_pic_intr(cpu->apic_state, level);
187             }
188         }
189     } else {
190         if (level) {
191             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192         } else {
193             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194         }
195     }
196 }
197 
198 /* PC cmos mappings */
199 
200 #define REG_EQUIPMENT_BYTE          0x14
201 
202 int cmos_get_fd_drive_type(FloppyDriveType fd0)
203 {
204     int val;
205 
206     switch (fd0) {
207     case FLOPPY_DRIVE_TYPE_144:
208         /* 1.44 Mb 3"5 drive */
209         val = 4;
210         break;
211     case FLOPPY_DRIVE_TYPE_288:
212         /* 2.88 Mb 3"5 drive */
213         val = 5;
214         break;
215     case FLOPPY_DRIVE_TYPE_120:
216         /* 1.2 Mb 5"5 drive */
217         val = 2;
218         break;
219     case FLOPPY_DRIVE_TYPE_NONE:
220     default:
221         val = 0;
222         break;
223     }
224     return val;
225 }
226 
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228                          int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230     rtc_set_memory(s, type_ofs, 47);
231     rtc_set_memory(s, info_ofs, cylinders);
232     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233     rtc_set_memory(s, info_ofs + 2, heads);
234     rtc_set_memory(s, info_ofs + 3, 0xff);
235     rtc_set_memory(s, info_ofs + 4, 0xff);
236     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237     rtc_set_memory(s, info_ofs + 6, cylinders);
238     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239     rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241 
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245     switch(boot_device) {
246     case 'a':
247     case 'b':
248         return 0x01; /* floppy boot */
249     case 'c':
250         return 0x02; /* hard drive boot */
251     case 'd':
252         return 0x03; /* CD-ROM boot */
253     case 'n':
254         return 0x04; /* Network boot */
255     }
256     return 0;
257 }
258 
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262     int nbds, bds[3] = { 0, };
263     int i;
264 
265     nbds = strlen(boot_device);
266     if (nbds > PC_MAX_BOOT_DEVICES) {
267         error_setg(errp, "Too many boot devices for PC");
268         return;
269     }
270     for (i = 0; i < nbds; i++) {
271         bds[i] = boot_device2nibble(boot_device[i]);
272         if (bds[i] == 0) {
273             error_setg(errp, "Invalid boot device for PC: '%c'",
274                        boot_device[i]);
275             return;
276         }
277     }
278     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281 
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284     set_boot_dev(opaque, boot_device, errp);
285 }
286 
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289     int val, nb, i;
290     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
291                                    FLOPPY_DRIVE_TYPE_NONE };
292 
293     /* floppy type */
294     if (floppy) {
295         for (i = 0; i < 2; i++) {
296             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
297         }
298     }
299     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
300         cmos_get_fd_drive_type(fd_type[1]);
301     rtc_set_memory(rtc_state, 0x10, val);
302 
303     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
304     nb = 0;
305     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
306         nb++;
307     }
308     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
309         nb++;
310     }
311     switch (nb) {
312     case 0:
313         break;
314     case 1:
315         val |= 0x01; /* 1 drive, ready for boot */
316         break;
317     case 2:
318         val |= 0x41; /* 2 drives, ready for boot */
319         break;
320     }
321     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
322 }
323 
324 typedef struct pc_cmos_init_late_arg {
325     ISADevice *rtc_state;
326     BusState *idebus[2];
327 } pc_cmos_init_late_arg;
328 
329 typedef struct check_fdc_state {
330     ISADevice *floppy;
331     bool multiple;
332 } CheckFdcState;
333 
334 static int check_fdc(Object *obj, void *opaque)
335 {
336     CheckFdcState *state = opaque;
337     Object *fdc;
338     uint32_t iobase;
339     Error *local_err = NULL;
340 
341     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
342     if (!fdc) {
343         return 0;
344     }
345 
346     iobase = object_property_get_int(obj, "iobase", &local_err);
347     if (local_err || iobase != 0x3f0) {
348         error_free(local_err);
349         return 0;
350     }
351 
352     if (state->floppy) {
353         state->multiple = true;
354     } else {
355         state->floppy = ISA_DEVICE(obj);
356     }
357     return 0;
358 }
359 
360 static const char * const fdc_container_path[] = {
361     "/unattached", "/peripheral", "/peripheral-anon"
362 };
363 
364 /*
365  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
366  * and ACPI objects.
367  */
368 ISADevice *pc_find_fdc0(void)
369 {
370     int i;
371     Object *container;
372     CheckFdcState state = { 0 };
373 
374     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
375         container = container_get(qdev_get_machine(), fdc_container_path[i]);
376         object_child_foreach(container, check_fdc, &state);
377     }
378 
379     if (state.multiple) {
380         error_report("warning: multiple floppy disk controllers with "
381                      "iobase=0x3f0 have been found");
382         error_printf("the one being picked for CMOS setup might not reflect "
383                      "your intent");
384     }
385 
386     return state.floppy;
387 }
388 
389 static void pc_cmos_init_late(void *opaque)
390 {
391     pc_cmos_init_late_arg *arg = opaque;
392     ISADevice *s = arg->rtc_state;
393     int16_t cylinders;
394     int8_t heads, sectors;
395     int val;
396     int i, trans;
397 
398     val = 0;
399     if (ide_get_geometry(arg->idebus[0], 0,
400                          &cylinders, &heads, &sectors) >= 0) {
401         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
402         val |= 0xf0;
403     }
404     if (ide_get_geometry(arg->idebus[0], 1,
405                          &cylinders, &heads, &sectors) >= 0) {
406         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
407         val |= 0x0f;
408     }
409     rtc_set_memory(s, 0x12, val);
410 
411     val = 0;
412     for (i = 0; i < 4; i++) {
413         /* NOTE: ide_get_geometry() returns the physical
414            geometry.  It is always such that: 1 <= sects <= 63, 1
415            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
416            geometry can be different if a translation is done. */
417         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
418                              &cylinders, &heads, &sectors) >= 0) {
419             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
420             assert((trans & ~3) == 0);
421             val |= trans << (i * 2);
422         }
423     }
424     rtc_set_memory(s, 0x39, val);
425 
426     pc_cmos_init_floppy(s, pc_find_fdc0());
427 
428     qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430 
431 void pc_cmos_init(PCMachineState *pcms,
432                   BusState *idebus0, BusState *idebus1,
433                   ISADevice *s)
434 {
435     int val;
436     static pc_cmos_init_late_arg arg;
437 
438     /* various important CMOS locations needed by PC/Bochs bios */
439 
440     /* memory size */
441     /* base memory (first MiB) */
442     val = MIN(pcms->below_4g_mem_size / 1024, 640);
443     rtc_set_memory(s, 0x15, val);
444     rtc_set_memory(s, 0x16, val >> 8);
445     /* extended memory (next 64MiB) */
446     if (pcms->below_4g_mem_size > 1024 * 1024) {
447         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
448     } else {
449         val = 0;
450     }
451     if (val > 65535)
452         val = 65535;
453     rtc_set_memory(s, 0x17, val);
454     rtc_set_memory(s, 0x18, val >> 8);
455     rtc_set_memory(s, 0x30, val);
456     rtc_set_memory(s, 0x31, val >> 8);
457     /* memory between 16MiB and 4GiB */
458     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
459         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
460     } else {
461         val = 0;
462     }
463     if (val > 65535)
464         val = 65535;
465     rtc_set_memory(s, 0x34, val);
466     rtc_set_memory(s, 0x35, val >> 8);
467     /* memory above 4GiB */
468     val = pcms->above_4g_mem_size / 65536;
469     rtc_set_memory(s, 0x5b, val);
470     rtc_set_memory(s, 0x5c, val >> 8);
471     rtc_set_memory(s, 0x5d, val >> 16);
472 
473     /* set the number of CPU */
474     rtc_set_memory(s, 0x5f, smp_cpus - 1);
475 
476     object_property_add_link(OBJECT(pcms), "rtc_state",
477                              TYPE_ISA_DEVICE,
478                              (Object **)&pcms->rtc,
479                              object_property_allow_set_link,
480                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481     object_property_set_link(OBJECT(pcms), OBJECT(s),
482                              "rtc_state", &error_abort);
483 
484     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
485 
486     val = 0;
487     val |= 0x02; /* FPU is there */
488     val |= 0x04; /* PS/2 mouse installed */
489     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
490 
491     /* hard drives and FDC */
492     arg.rtc_state = s;
493     arg.idebus[0] = idebus0;
494     arg.idebus[1] = idebus1;
495     qemu_register_reset(pc_cmos_init_late, &arg);
496 }
497 
498 #define TYPE_PORT92 "port92"
499 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
500 
501 /* port 92 stuff: could be split off */
502 typedef struct Port92State {
503     ISADevice parent_obj;
504 
505     MemoryRegion io;
506     uint8_t outport;
507     qemu_irq *a20_out;
508 } Port92State;
509 
510 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
511                          unsigned size)
512 {
513     Port92State *s = opaque;
514     int oldval = s->outport;
515 
516     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
517     s->outport = val;
518     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
519     if ((val & 1) && !(oldval & 1)) {
520         qemu_system_reset_request();
521     }
522 }
523 
524 static uint64_t port92_read(void *opaque, hwaddr addr,
525                             unsigned size)
526 {
527     Port92State *s = opaque;
528     uint32_t ret;
529 
530     ret = s->outport;
531     DPRINTF("port92: read 0x%02x\n", ret);
532     return ret;
533 }
534 
535 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
536 {
537     Port92State *s = PORT92(dev);
538 
539     s->a20_out = a20_out;
540 }
541 
542 static const VMStateDescription vmstate_port92_isa = {
543     .name = "port92",
544     .version_id = 1,
545     .minimum_version_id = 1,
546     .fields = (VMStateField[]) {
547         VMSTATE_UINT8(outport, Port92State),
548         VMSTATE_END_OF_LIST()
549     }
550 };
551 
552 static void port92_reset(DeviceState *d)
553 {
554     Port92State *s = PORT92(d);
555 
556     s->outport &= ~1;
557 }
558 
559 static const MemoryRegionOps port92_ops = {
560     .read = port92_read,
561     .write = port92_write,
562     .impl = {
563         .min_access_size = 1,
564         .max_access_size = 1,
565     },
566     .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568 
569 static void port92_initfn(Object *obj)
570 {
571     Port92State *s = PORT92(obj);
572 
573     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574 
575     s->outport = 0;
576 }
577 
578 static void port92_realizefn(DeviceState *dev, Error **errp)
579 {
580     ISADevice *isadev = ISA_DEVICE(dev);
581     Port92State *s = PORT92(dev);
582 
583     isa_register_ioport(isadev, &s->io, 0x92);
584 }
585 
586 static void port92_class_initfn(ObjectClass *klass, void *data)
587 {
588     DeviceClass *dc = DEVICE_CLASS(klass);
589 
590     dc->realize = port92_realizefn;
591     dc->reset = port92_reset;
592     dc->vmsd = &vmstate_port92_isa;
593     /*
594      * Reason: unlike ordinary ISA devices, this one needs additional
595      * wiring: its A20 output line needs to be wired up by
596      * port92_init().
597      */
598     dc->cannot_instantiate_with_device_add_yet = true;
599 }
600 
601 static const TypeInfo port92_info = {
602     .name          = TYPE_PORT92,
603     .parent        = TYPE_ISA_DEVICE,
604     .instance_size = sizeof(Port92State),
605     .instance_init = port92_initfn,
606     .class_init    = port92_class_initfn,
607 };
608 
609 static void port92_register_types(void)
610 {
611     type_register_static(&port92_info);
612 }
613 
614 type_init(port92_register_types)
615 
616 static void handle_a20_line_change(void *opaque, int irq, int level)
617 {
618     X86CPU *cpu = opaque;
619 
620     /* XXX: send to all CPUs ? */
621     /* XXX: add logic to handle multiple A20 line sources */
622     x86_cpu_set_a20(cpu, level);
623 }
624 
625 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
626 {
627     int index = le32_to_cpu(e820_reserve.count);
628     struct e820_entry *entry;
629 
630     if (type != E820_RAM) {
631         /* old FW_CFG_E820_TABLE entry -- reservations only */
632         if (index >= E820_NR_ENTRIES) {
633             return -EBUSY;
634         }
635         entry = &e820_reserve.entry[index++];
636 
637         entry->address = cpu_to_le64(address);
638         entry->length = cpu_to_le64(length);
639         entry->type = cpu_to_le32(type);
640 
641         e820_reserve.count = cpu_to_le32(index);
642     }
643 
644     /* new "etc/e820" file -- include ram too */
645     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
646     e820_table[e820_entries].address = cpu_to_le64(address);
647     e820_table[e820_entries].length = cpu_to_le64(length);
648     e820_table[e820_entries].type = cpu_to_le32(type);
649     e820_entries++;
650 
651     return e820_entries;
652 }
653 
654 int e820_get_num_entries(void)
655 {
656     return e820_entries;
657 }
658 
659 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
660 {
661     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
662         *address = le64_to_cpu(e820_table[idx].address);
663         *length = le64_to_cpu(e820_table[idx].length);
664         return true;
665     }
666     return false;
667 }
668 
669 /* Enables contiguous-apic-ID mode, for compatibility */
670 static bool compat_apic_id_mode;
671 
672 void enable_compat_apic_id_mode(void)
673 {
674     compat_apic_id_mode = true;
675 }
676 
677 /* Calculates initial APIC ID for a specific CPU index
678  *
679  * Currently we need to be able to calculate the APIC ID from the CPU index
680  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
681  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
682  * all CPUs up to max_cpus.
683  */
684 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
685 {
686     uint32_t correct_id;
687     static bool warned;
688 
689     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
690     if (compat_apic_id_mode) {
691         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
692             error_report("APIC IDs set in compatibility mode, "
693                          "CPU topology won't match the configuration");
694             warned = true;
695         }
696         return cpu_index;
697     } else {
698         return correct_id;
699     }
700 }
701 
702 /* Calculates the limit to CPU APIC ID values
703  *
704  * This function returns the limit for the APIC ID value, so that all
705  * CPU APIC IDs are < pc_apic_id_limit().
706  *
707  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
708  */
709 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
710 {
711     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
712 }
713 
714 static void pc_build_smbios(FWCfgState *fw_cfg)
715 {
716     uint8_t *smbios_tables, *smbios_anchor;
717     size_t smbios_tables_len, smbios_anchor_len;
718     struct smbios_phys_mem_area *mem_array;
719     unsigned i, array_count;
720 
721     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
722     if (smbios_tables) {
723         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
724                          smbios_tables, smbios_tables_len);
725     }
726 
727     /* build the array of physical mem area from e820 table */
728     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
729     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
730         uint64_t addr, len;
731 
732         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
733             mem_array[array_count].address = addr;
734             mem_array[array_count].length = len;
735             array_count++;
736         }
737     }
738     smbios_get_tables(mem_array, array_count,
739                       &smbios_tables, &smbios_tables_len,
740                       &smbios_anchor, &smbios_anchor_len);
741     g_free(mem_array);
742 
743     if (smbios_anchor) {
744         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
745                         smbios_tables, smbios_tables_len);
746         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
747                         smbios_anchor, smbios_anchor_len);
748     }
749 }
750 
751 static FWCfgState *bochs_bios_init(AddressSpace *as)
752 {
753     FWCfgState *fw_cfg;
754     uint64_t *numa_fw_cfg;
755     int i, j;
756     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
757 
758     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
759 
760     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
761      *
762      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
763      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
764      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
765      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
766      * may see".
767      *
768      * So, this means we must not use max_cpus, here, but the maximum possible
769      * APIC ID value, plus one.
770      *
771      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
772      *     the APIC ID, not the "CPU index"
773      */
774     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
775     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
776     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
777                      acpi_tables, acpi_tables_len);
778     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
779 
780     pc_build_smbios(fw_cfg);
781 
782     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
783                      &e820_reserve, sizeof(e820_reserve));
784     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
785                     sizeof(struct e820_entry) * e820_entries);
786 
787     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
788     /* allocate memory for the NUMA channel: one (64bit) word for the number
789      * of nodes, one word for each VCPU->node and one word for each node to
790      * hold the amount of memory.
791      */
792     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
793     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
794     for (i = 0; i < max_cpus; i++) {
795         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
796         assert(apic_id < apic_id_limit);
797         for (j = 0; j < nb_numa_nodes; j++) {
798             if (test_bit(i, numa_info[j].node_cpu)) {
799                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
800                 break;
801             }
802         }
803     }
804     for (i = 0; i < nb_numa_nodes; i++) {
805         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
806     }
807     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
808                      (1 + apic_id_limit + nb_numa_nodes) *
809                      sizeof(*numa_fw_cfg));
810 
811     return fw_cfg;
812 }
813 
814 static long get_file_size(FILE *f)
815 {
816     long where, size;
817 
818     /* XXX: on Unix systems, using fstat() probably makes more sense */
819 
820     where = ftell(f);
821     fseek(f, 0, SEEK_END);
822     size = ftell(f);
823     fseek(f, where, SEEK_SET);
824 
825     return size;
826 }
827 
828 static void load_linux(PCMachineState *pcms,
829                        FWCfgState *fw_cfg)
830 {
831     uint16_t protocol;
832     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
833     uint32_t initrd_max;
834     uint8_t header[8192], *setup, *kernel, *initrd_data;
835     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
836     FILE *f;
837     char *vmode;
838     MachineState *machine = MACHINE(pcms);
839     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
840     const char *kernel_filename = machine->kernel_filename;
841     const char *initrd_filename = machine->initrd_filename;
842     const char *kernel_cmdline = machine->kernel_cmdline;
843 
844     /* Align to 16 bytes as a paranoia measure */
845     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
846 
847     /* load the kernel header */
848     f = fopen(kernel_filename, "rb");
849     if (!f || !(kernel_size = get_file_size(f)) ||
850         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
851         MIN(ARRAY_SIZE(header), kernel_size)) {
852         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
853                 kernel_filename, strerror(errno));
854         exit(1);
855     }
856 
857     /* kernel protocol version */
858 #if 0
859     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
860 #endif
861     if (ldl_p(header+0x202) == 0x53726448) {
862         protocol = lduw_p(header+0x206);
863     } else {
864         /* This looks like a multiboot kernel. If it is, let's stop
865            treating it like a Linux kernel. */
866         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
867                            kernel_cmdline, kernel_size, header)) {
868             return;
869         }
870         protocol = 0;
871     }
872 
873     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
874         /* Low kernel */
875         real_addr    = 0x90000;
876         cmdline_addr = 0x9a000 - cmdline_size;
877         prot_addr    = 0x10000;
878     } else if (protocol < 0x202) {
879         /* High but ancient kernel */
880         real_addr    = 0x90000;
881         cmdline_addr = 0x9a000 - cmdline_size;
882         prot_addr    = 0x100000;
883     } else {
884         /* High and recent kernel */
885         real_addr    = 0x10000;
886         cmdline_addr = 0x20000;
887         prot_addr    = 0x100000;
888     }
889 
890 #if 0
891     fprintf(stderr,
892             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
893             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
894             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
895             real_addr,
896             cmdline_addr,
897             prot_addr);
898 #endif
899 
900     /* highest address for loading the initrd */
901     if (protocol >= 0x203) {
902         initrd_max = ldl_p(header+0x22c);
903     } else {
904         initrd_max = 0x37ffffff;
905     }
906 
907     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
908         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
909     }
910 
911     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
912     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
913     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
914 
915     if (protocol >= 0x202) {
916         stl_p(header+0x228, cmdline_addr);
917     } else {
918         stw_p(header+0x20, 0xA33F);
919         stw_p(header+0x22, cmdline_addr-real_addr);
920     }
921 
922     /* handle vga= parameter */
923     vmode = strstr(kernel_cmdline, "vga=");
924     if (vmode) {
925         unsigned int video_mode;
926         /* skip "vga=" */
927         vmode += 4;
928         if (!strncmp(vmode, "normal", 6)) {
929             video_mode = 0xffff;
930         } else if (!strncmp(vmode, "ext", 3)) {
931             video_mode = 0xfffe;
932         } else if (!strncmp(vmode, "ask", 3)) {
933             video_mode = 0xfffd;
934         } else {
935             video_mode = strtol(vmode, NULL, 0);
936         }
937         stw_p(header+0x1fa, video_mode);
938     }
939 
940     /* loader type */
941     /* High nybble = B reserved for QEMU; low nybble is revision number.
942        If this code is substantially changed, you may want to consider
943        incrementing the revision. */
944     if (protocol >= 0x200) {
945         header[0x210] = 0xB0;
946     }
947     /* heap */
948     if (protocol >= 0x201) {
949         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
950         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
951     }
952 
953     /* load initrd */
954     if (initrd_filename) {
955         if (protocol < 0x200) {
956             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
957             exit(1);
958         }
959 
960         initrd_size = get_image_size(initrd_filename);
961         if (initrd_size < 0) {
962             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
963                     initrd_filename, strerror(errno));
964             exit(1);
965         }
966 
967         initrd_addr = (initrd_max-initrd_size) & ~4095;
968 
969         initrd_data = g_malloc(initrd_size);
970         load_image(initrd_filename, initrd_data);
971 
972         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
973         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
974         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
975 
976         stl_p(header+0x218, initrd_addr);
977         stl_p(header+0x21c, initrd_size);
978     }
979 
980     /* load kernel and setup */
981     setup_size = header[0x1f1];
982     if (setup_size == 0) {
983         setup_size = 4;
984     }
985     setup_size = (setup_size+1)*512;
986     if (setup_size > kernel_size) {
987         fprintf(stderr, "qemu: invalid kernel header\n");
988         exit(1);
989     }
990     kernel_size -= setup_size;
991 
992     setup  = g_malloc(setup_size);
993     kernel = g_malloc(kernel_size);
994     fseek(f, 0, SEEK_SET);
995     if (fread(setup, 1, setup_size, f) != setup_size) {
996         fprintf(stderr, "fread() failed\n");
997         exit(1);
998     }
999     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1000         fprintf(stderr, "fread() failed\n");
1001         exit(1);
1002     }
1003     fclose(f);
1004     memcpy(setup, header, MIN(sizeof(header), setup_size));
1005 
1006     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1007     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1008     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1009 
1010     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1011     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1012     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1013 
1014     option_rom[nb_option_roms].name = "linuxboot.bin";
1015     option_rom[nb_option_roms].bootindex = 0;
1016     nb_option_roms++;
1017 }
1018 
1019 #define NE2000_NB_MAX 6
1020 
1021 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1022                                               0x280, 0x380 };
1023 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1024 
1025 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1026 {
1027     static int nb_ne2k = 0;
1028 
1029     if (nb_ne2k == NE2000_NB_MAX)
1030         return;
1031     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1032                     ne2000_irq[nb_ne2k], nd);
1033     nb_ne2k++;
1034 }
1035 
1036 DeviceState *cpu_get_current_apic(void)
1037 {
1038     if (current_cpu) {
1039         X86CPU *cpu = X86_CPU(current_cpu);
1040         return cpu->apic_state;
1041     } else {
1042         return NULL;
1043     }
1044 }
1045 
1046 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1047 {
1048     X86CPU *cpu = opaque;
1049 
1050     if (level) {
1051         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1052     }
1053 }
1054 
1055 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1056                           Error **errp)
1057 {
1058     X86CPU *cpu = NULL;
1059     Error *local_err = NULL;
1060 
1061     cpu = cpu_x86_create(cpu_model, &local_err);
1062     if (local_err != NULL) {
1063         goto out;
1064     }
1065 
1066     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1067     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1068 
1069 out:
1070     if (local_err) {
1071         error_propagate(errp, local_err);
1072         object_unref(OBJECT(cpu));
1073         cpu = NULL;
1074     }
1075     return cpu;
1076 }
1077 
1078 void pc_hot_add_cpu(const int64_t id, Error **errp)
1079 {
1080     X86CPU *cpu;
1081     MachineState *machine = MACHINE(qdev_get_machine());
1082     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1083     Error *local_err = NULL;
1084 
1085     if (id < 0) {
1086         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1087         return;
1088     }
1089 
1090     if (cpu_exists(apic_id)) {
1091         error_setg(errp, "Unable to add CPU: %" PRIi64
1092                    ", it already exists", id);
1093         return;
1094     }
1095 
1096     if (id >= max_cpus) {
1097         error_setg(errp, "Unable to add CPU: %" PRIi64
1098                    ", max allowed: %d", id, max_cpus - 1);
1099         return;
1100     }
1101 
1102     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1103         error_setg(errp, "Unable to add CPU: %" PRIi64
1104                    ", resulting APIC ID (%" PRIi64 ") is too large",
1105                    id, apic_id);
1106         return;
1107     }
1108 
1109     cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1110     if (local_err) {
1111         error_propagate(errp, local_err);
1112         return;
1113     }
1114     object_unref(OBJECT(cpu));
1115 }
1116 
1117 void pc_cpus_init(PCMachineState *pcms)
1118 {
1119     int i;
1120     X86CPU *cpu = NULL;
1121     MachineState *machine = MACHINE(pcms);
1122     unsigned long apic_id_limit;
1123 
1124     /* init CPUs */
1125     if (machine->cpu_model == NULL) {
1126 #ifdef TARGET_X86_64
1127         machine->cpu_model = "qemu64";
1128 #else
1129         machine->cpu_model = "qemu32";
1130 #endif
1131     }
1132 
1133     apic_id_limit = pc_apic_id_limit(max_cpus);
1134     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1135         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1136                      apic_id_limit - 1);
1137         exit(1);
1138     }
1139 
1140     for (i = 0; i < smp_cpus; i++) {
1141         cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1142                          &error_fatal);
1143         object_unref(OBJECT(cpu));
1144     }
1145 
1146     /* tell smbios about cpuid version and features */
1147     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1148 }
1149 
1150 /* pci-info ROM file. Little endian format */
1151 typedef struct PcRomPciInfo {
1152     uint64_t w32_min;
1153     uint64_t w32_max;
1154     uint64_t w64_min;
1155     uint64_t w64_max;
1156 } PcRomPciInfo;
1157 
1158 static
1159 void pc_machine_done(Notifier *notifier, void *data)
1160 {
1161     PCMachineState *pcms = container_of(notifier,
1162                                         PCMachineState, machine_done);
1163     PCIBus *bus = pcms->bus;
1164 
1165     if (bus) {
1166         int extra_hosts = 0;
1167 
1168         QLIST_FOREACH(bus, &bus->child, sibling) {
1169             /* look for expander root buses */
1170             if (pci_bus_is_root(bus)) {
1171                 extra_hosts++;
1172             }
1173         }
1174         if (extra_hosts && pcms->fw_cfg) {
1175             uint64_t *val = g_malloc(sizeof(*val));
1176             *val = cpu_to_le64(extra_hosts);
1177             fw_cfg_add_file(pcms->fw_cfg,
1178                     "etc/extra-pci-roots", val, sizeof(*val));
1179         }
1180     }
1181 
1182     acpi_setup();
1183 }
1184 
1185 void pc_guest_info_init(PCMachineState *pcms)
1186 {
1187     int i, j;
1188 
1189     pcms->apic_id_limit = pc_apic_id_limit(max_cpus);
1190     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1191     pcms->numa_nodes = nb_numa_nodes;
1192     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1193                                     sizeof *pcms->node_mem);
1194     for (i = 0; i < nb_numa_nodes; i++) {
1195         pcms->node_mem[i] = numa_info[i].node_mem;
1196     }
1197 
1198     pcms->node_cpu = g_malloc0(pcms->apic_id_limit *
1199                                      sizeof *pcms->node_cpu);
1200 
1201     for (i = 0; i < max_cpus; i++) {
1202         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1203         assert(apic_id < pcms->apic_id_limit);
1204         for (j = 0; j < nb_numa_nodes; j++) {
1205             if (test_bit(i, numa_info[j].node_cpu)) {
1206                 pcms->node_cpu[apic_id] = j;
1207                 break;
1208             }
1209         }
1210     }
1211 
1212     pcms->machine_done.notify = pc_machine_done;
1213     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1214 }
1215 
1216 /* setup pci memory address space mapping into system address space */
1217 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1218                             MemoryRegion *pci_address_space)
1219 {
1220     /* Set to lower priority than RAM */
1221     memory_region_add_subregion_overlap(system_memory, 0x0,
1222                                         pci_address_space, -1);
1223 }
1224 
1225 void pc_acpi_init(const char *default_dsdt)
1226 {
1227     char *filename;
1228 
1229     if (acpi_tables != NULL) {
1230         /* manually set via -acpitable, leave it alone */
1231         return;
1232     }
1233 
1234     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1235     if (filename == NULL) {
1236         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1237     } else {
1238         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1239                                           &error_abort);
1240         Error *err = NULL;
1241 
1242         qemu_opt_set(opts, "file", filename, &error_abort);
1243 
1244         acpi_table_add_builtin(opts, &err);
1245         if (err) {
1246             error_reportf_err(err, "WARNING: failed to load %s: ",
1247                               filename);
1248         }
1249         g_free(filename);
1250     }
1251 }
1252 
1253 void xen_load_linux(PCMachineState *pcms)
1254 {
1255     int i;
1256     FWCfgState *fw_cfg;
1257 
1258     assert(MACHINE(pcms)->kernel_filename != NULL);
1259 
1260     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1261     rom_set_fw(fw_cfg);
1262 
1263     load_linux(pcms, fw_cfg);
1264     for (i = 0; i < nb_option_roms; i++) {
1265         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1266                !strcmp(option_rom[i].name, "multiboot.bin"));
1267         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1268     }
1269     pcms->fw_cfg = fw_cfg;
1270 }
1271 
1272 void pc_memory_init(PCMachineState *pcms,
1273                     MemoryRegion *system_memory,
1274                     MemoryRegion *rom_memory,
1275                     MemoryRegion **ram_memory)
1276 {
1277     int linux_boot, i;
1278     MemoryRegion *ram, *option_rom_mr;
1279     MemoryRegion *ram_below_4g, *ram_above_4g;
1280     FWCfgState *fw_cfg;
1281     MachineState *machine = MACHINE(pcms);
1282     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1283 
1284     assert(machine->ram_size == pcms->below_4g_mem_size +
1285                                 pcms->above_4g_mem_size);
1286 
1287     linux_boot = (machine->kernel_filename != NULL);
1288 
1289     /* Allocate RAM.  We allocate it as a single memory region and use
1290      * aliases to address portions of it, mostly for backwards compatibility
1291      * with older qemus that used qemu_ram_alloc().
1292      */
1293     ram = g_malloc(sizeof(*ram));
1294     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1295                                          machine->ram_size);
1296     *ram_memory = ram;
1297     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1298     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1299                              0, pcms->below_4g_mem_size);
1300     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1301     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1302     if (pcms->above_4g_mem_size > 0) {
1303         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1304         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1305                                  pcms->below_4g_mem_size,
1306                                  pcms->above_4g_mem_size);
1307         memory_region_add_subregion(system_memory, 0x100000000ULL,
1308                                     ram_above_4g);
1309         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1310     }
1311 
1312     if (!pcmc->has_reserved_memory &&
1313         (machine->ram_slots ||
1314          (machine->maxram_size > machine->ram_size))) {
1315         MachineClass *mc = MACHINE_GET_CLASS(machine);
1316 
1317         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1318                      mc->name);
1319         exit(EXIT_FAILURE);
1320     }
1321 
1322     /* initialize hotplug memory address space */
1323     if (pcmc->has_reserved_memory &&
1324         (machine->ram_size < machine->maxram_size)) {
1325         ram_addr_t hotplug_mem_size =
1326             machine->maxram_size - machine->ram_size;
1327 
1328         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1329             error_report("unsupported amount of memory slots: %"PRIu64,
1330                          machine->ram_slots);
1331             exit(EXIT_FAILURE);
1332         }
1333 
1334         if (QEMU_ALIGN_UP(machine->maxram_size,
1335                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1336             error_report("maximum memory size must by aligned to multiple of "
1337                          "%d bytes", TARGET_PAGE_SIZE);
1338             exit(EXIT_FAILURE);
1339         }
1340 
1341         pcms->hotplug_memory.base =
1342             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1343 
1344         if (pcmc->enforce_aligned_dimm) {
1345             /* size hotplug region assuming 1G page max alignment per slot */
1346             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1347         }
1348 
1349         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1350             hotplug_mem_size) {
1351             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1352                          machine->maxram_size);
1353             exit(EXIT_FAILURE);
1354         }
1355 
1356         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1357                            "hotplug-memory", hotplug_mem_size);
1358         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1359                                     &pcms->hotplug_memory.mr);
1360     }
1361 
1362     /* Initialize PC system firmware */
1363     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1364 
1365     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1366     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1367                            &error_fatal);
1368     vmstate_register_ram_global(option_rom_mr);
1369     memory_region_add_subregion_overlap(rom_memory,
1370                                         PC_ROM_MIN_VGA,
1371                                         option_rom_mr,
1372                                         1);
1373 
1374     fw_cfg = bochs_bios_init(&address_space_memory);
1375 
1376     rom_set_fw(fw_cfg);
1377 
1378     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1379         uint64_t *val = g_malloc(sizeof(*val));
1380         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1381         uint64_t res_mem_end = pcms->hotplug_memory.base;
1382 
1383         if (!pcmc->broken_reserved_end) {
1384             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1385         }
1386         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1387         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1388     }
1389 
1390     if (linux_boot) {
1391         load_linux(pcms, fw_cfg);
1392     }
1393 
1394     for (i = 0; i < nb_option_roms; i++) {
1395         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1396     }
1397     pcms->fw_cfg = fw_cfg;
1398 }
1399 
1400 qemu_irq pc_allocate_cpu_irq(void)
1401 {
1402     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1403 }
1404 
1405 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1406 {
1407     DeviceState *dev = NULL;
1408 
1409     if (pci_bus) {
1410         PCIDevice *pcidev = pci_vga_init(pci_bus);
1411         dev = pcidev ? &pcidev->qdev : NULL;
1412     } else if (isa_bus) {
1413         ISADevice *isadev = isa_vga_init(isa_bus);
1414         dev = isadev ? DEVICE(isadev) : NULL;
1415     }
1416     return dev;
1417 }
1418 
1419 static const MemoryRegionOps ioport80_io_ops = {
1420     .write = ioport80_write,
1421     .read = ioport80_read,
1422     .endianness = DEVICE_NATIVE_ENDIAN,
1423     .impl = {
1424         .min_access_size = 1,
1425         .max_access_size = 1,
1426     },
1427 };
1428 
1429 static const MemoryRegionOps ioportF0_io_ops = {
1430     .write = ioportF0_write,
1431     .read = ioportF0_read,
1432     .endianness = DEVICE_NATIVE_ENDIAN,
1433     .impl = {
1434         .min_access_size = 1,
1435         .max_access_size = 1,
1436     },
1437 };
1438 
1439 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1440                           ISADevice **rtc_state,
1441                           bool create_fdctrl,
1442                           bool no_vmport,
1443                           uint32_t hpet_irqs)
1444 {
1445     int i;
1446     DriveInfo *fd[MAX_FD];
1447     DeviceState *hpet = NULL;
1448     int pit_isa_irq = 0;
1449     qemu_irq pit_alt_irq = NULL;
1450     qemu_irq rtc_irq = NULL;
1451     qemu_irq *a20_line;
1452     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1453     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1454     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1455 
1456     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1457     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1458 
1459     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1460     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1461 
1462     /*
1463      * Check if an HPET shall be created.
1464      *
1465      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1466      * when the HPET wants to take over. Thus we have to disable the latter.
1467      */
1468     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1469         /* In order to set property, here not using sysbus_try_create_simple */
1470         hpet = qdev_try_create(NULL, TYPE_HPET);
1471         if (hpet) {
1472             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1473              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1474              * IRQ8 and IRQ2.
1475              */
1476             uint8_t compat = object_property_get_int(OBJECT(hpet),
1477                     HPET_INTCAP, NULL);
1478             if (!compat) {
1479                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1480             }
1481             qdev_init_nofail(hpet);
1482             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1483 
1484             for (i = 0; i < GSI_NUM_PINS; i++) {
1485                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1486             }
1487             pit_isa_irq = -1;
1488             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1489             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1490         }
1491     }
1492     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1493 
1494     qemu_register_boot_set(pc_boot_set, *rtc_state);
1495 
1496     if (!xen_enabled()) {
1497         if (kvm_pit_in_kernel()) {
1498             pit = kvm_pit_init(isa_bus, 0x40);
1499         } else {
1500             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1501         }
1502         if (hpet) {
1503             /* connect PIT to output control line of the HPET */
1504             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1505         }
1506         pcspk_init(isa_bus, pit);
1507     }
1508 
1509     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1510     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1511 
1512     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1513     i8042 = isa_create_simple(isa_bus, "i8042");
1514     i8042_setup_a20_line(i8042, &a20_line[0]);
1515     if (!no_vmport) {
1516         vmport_init(isa_bus);
1517         vmmouse = isa_try_create(isa_bus, "vmmouse");
1518     } else {
1519         vmmouse = NULL;
1520     }
1521     if (vmmouse) {
1522         DeviceState *dev = DEVICE(vmmouse);
1523         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1524         qdev_init_nofail(dev);
1525     }
1526     port92 = isa_create_simple(isa_bus, "port92");
1527     port92_init(port92, &a20_line[1]);
1528 
1529     DMA_init(isa_bus, 0);
1530 
1531     for(i = 0; i < MAX_FD; i++) {
1532         fd[i] = drive_get(IF_FLOPPY, 0, i);
1533         create_fdctrl |= !!fd[i];
1534     }
1535     if (create_fdctrl) {
1536         fdctrl_init_isa(isa_bus, fd);
1537     }
1538 }
1539 
1540 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1541 {
1542     int i;
1543 
1544     for (i = 0; i < nb_nics; i++) {
1545         NICInfo *nd = &nd_table[i];
1546 
1547         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1548             pc_init_ne2k_isa(isa_bus, nd);
1549         } else {
1550             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1551         }
1552     }
1553 }
1554 
1555 void pc_pci_device_init(PCIBus *pci_bus)
1556 {
1557     int max_bus;
1558     int bus;
1559 
1560     max_bus = drive_get_max_bus(IF_SCSI);
1561     for (bus = 0; bus <= max_bus; bus++) {
1562         pci_create_simple(pci_bus, -1, "lsi53c895a");
1563     }
1564 }
1565 
1566 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1567 {
1568     DeviceState *dev;
1569     SysBusDevice *d;
1570     unsigned int i;
1571 
1572     if (kvm_ioapic_in_kernel()) {
1573         dev = qdev_create(NULL, "kvm-ioapic");
1574     } else {
1575         dev = qdev_create(NULL, "ioapic");
1576     }
1577     if (parent_name) {
1578         object_property_add_child(object_resolve_path(parent_name, NULL),
1579                                   "ioapic", OBJECT(dev), NULL);
1580     }
1581     qdev_init_nofail(dev);
1582     d = SYS_BUS_DEVICE(dev);
1583     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1584 
1585     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1586         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1587     }
1588 }
1589 
1590 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1591                          DeviceState *dev, Error **errp)
1592 {
1593     HotplugHandlerClass *hhc;
1594     Error *local_err = NULL;
1595     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1596     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1597     PCDIMMDevice *dimm = PC_DIMM(dev);
1598     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1599     MemoryRegion *mr = ddc->get_memory_region(dimm);
1600     uint64_t align = TARGET_PAGE_SIZE;
1601 
1602     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1603         align = memory_region_get_alignment(mr);
1604     }
1605 
1606     if (!pcms->acpi_dev) {
1607         error_setg(&local_err,
1608                    "memory hotplug is not enabled: missing acpi device");
1609         goto out;
1610     }
1611 
1612     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1613     if (local_err) {
1614         goto out;
1615     }
1616 
1617     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1618     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1619 out:
1620     error_propagate(errp, local_err);
1621 }
1622 
1623 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1624                                    DeviceState *dev, Error **errp)
1625 {
1626     HotplugHandlerClass *hhc;
1627     Error *local_err = NULL;
1628     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1629 
1630     if (!pcms->acpi_dev) {
1631         error_setg(&local_err,
1632                    "memory hotplug is not enabled: missing acpi device");
1633         goto out;
1634     }
1635 
1636     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1637     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1638 
1639 out:
1640     error_propagate(errp, local_err);
1641 }
1642 
1643 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1644                            DeviceState *dev, Error **errp)
1645 {
1646     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1647     PCDIMMDevice *dimm = PC_DIMM(dev);
1648     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1649     MemoryRegion *mr = ddc->get_memory_region(dimm);
1650     HotplugHandlerClass *hhc;
1651     Error *local_err = NULL;
1652 
1653     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1654     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1655 
1656     if (local_err) {
1657         goto out;
1658     }
1659 
1660     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1661     object_unparent(OBJECT(dev));
1662 
1663  out:
1664     error_propagate(errp, local_err);
1665 }
1666 
1667 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1668                         DeviceState *dev, Error **errp)
1669 {
1670     HotplugHandlerClass *hhc;
1671     Error *local_err = NULL;
1672     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1673 
1674     if (!dev->hotplugged) {
1675         goto out;
1676     }
1677 
1678     if (!pcms->acpi_dev) {
1679         error_setg(&local_err,
1680                    "cpu hotplug is not enabled: missing acpi device");
1681         goto out;
1682     }
1683 
1684     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1685     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1686     if (local_err) {
1687         goto out;
1688     }
1689 
1690     /* increment the number of CPUs */
1691     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1692 out:
1693     error_propagate(errp, local_err);
1694 }
1695 
1696 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1697                                       DeviceState *dev, Error **errp)
1698 {
1699     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1700         pc_dimm_plug(hotplug_dev, dev, errp);
1701     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1702         pc_cpu_plug(hotplug_dev, dev, errp);
1703     }
1704 }
1705 
1706 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1707                                                 DeviceState *dev, Error **errp)
1708 {
1709     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1710         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1711     } else {
1712         error_setg(errp, "acpi: device unplug request for not supported device"
1713                    " type: %s", object_get_typename(OBJECT(dev)));
1714     }
1715 }
1716 
1717 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1718                                         DeviceState *dev, Error **errp)
1719 {
1720     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1721         pc_dimm_unplug(hotplug_dev, dev, errp);
1722     } else {
1723         error_setg(errp, "acpi: device unplug for not supported device"
1724                    " type: %s", object_get_typename(OBJECT(dev)));
1725     }
1726 }
1727 
1728 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1729                                              DeviceState *dev)
1730 {
1731     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1732 
1733     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1734         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1735         return HOTPLUG_HANDLER(machine);
1736     }
1737 
1738     return pcmc->get_hotplug_handler ?
1739         pcmc->get_hotplug_handler(machine, dev) : NULL;
1740 }
1741 
1742 static void
1743 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1744                                           const char *name, void *opaque,
1745                                           Error **errp)
1746 {
1747     PCMachineState *pcms = PC_MACHINE(obj);
1748     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1749 
1750     visit_type_int(v, name, &value, errp);
1751 }
1752 
1753 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1754                                             const char *name, void *opaque,
1755                                             Error **errp)
1756 {
1757     PCMachineState *pcms = PC_MACHINE(obj);
1758     uint64_t value = pcms->max_ram_below_4g;
1759 
1760     visit_type_size(v, name, &value, errp);
1761 }
1762 
1763 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1764                                             const char *name, void *opaque,
1765                                             Error **errp)
1766 {
1767     PCMachineState *pcms = PC_MACHINE(obj);
1768     Error *error = NULL;
1769     uint64_t value;
1770 
1771     visit_type_size(v, name, &value, &error);
1772     if (error) {
1773         error_propagate(errp, error);
1774         return;
1775     }
1776     if (value > (1ULL << 32)) {
1777         error_setg(&error,
1778                    "Machine option 'max-ram-below-4g=%"PRIu64
1779                    "' expects size less than or equal to 4G", value);
1780         error_propagate(errp, error);
1781         return;
1782     }
1783 
1784     if (value < (1ULL << 20)) {
1785         error_report("Warning: small max_ram_below_4g(%"PRIu64
1786                      ") less than 1M.  BIOS may not work..",
1787                      value);
1788     }
1789 
1790     pcms->max_ram_below_4g = value;
1791 }
1792 
1793 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1794                                   void *opaque, Error **errp)
1795 {
1796     PCMachineState *pcms = PC_MACHINE(obj);
1797     OnOffAuto vmport = pcms->vmport;
1798 
1799     visit_type_OnOffAuto(v, name, &vmport, errp);
1800 }
1801 
1802 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1803                                   void *opaque, Error **errp)
1804 {
1805     PCMachineState *pcms = PC_MACHINE(obj);
1806 
1807     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1808 }
1809 
1810 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1811 {
1812     bool smm_available = false;
1813 
1814     if (pcms->smm == ON_OFF_AUTO_OFF) {
1815         return false;
1816     }
1817 
1818     if (tcg_enabled() || qtest_enabled()) {
1819         smm_available = true;
1820     } else if (kvm_enabled()) {
1821         smm_available = kvm_has_smm();
1822     }
1823 
1824     if (smm_available) {
1825         return true;
1826     }
1827 
1828     if (pcms->smm == ON_OFF_AUTO_ON) {
1829         error_report("System Management Mode not supported by this hypervisor.");
1830         exit(1);
1831     }
1832     return false;
1833 }
1834 
1835 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1836                                void *opaque, Error **errp)
1837 {
1838     PCMachineState *pcms = PC_MACHINE(obj);
1839     OnOffAuto smm = pcms->smm;
1840 
1841     visit_type_OnOffAuto(v, name, &smm, errp);
1842 }
1843 
1844 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1845                                void *opaque, Error **errp)
1846 {
1847     PCMachineState *pcms = PC_MACHINE(obj);
1848 
1849     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
1850 }
1851 
1852 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1853 {
1854     PCMachineState *pcms = PC_MACHINE(obj);
1855 
1856     return pcms->acpi_nvdimm_state.is_enabled;
1857 }
1858 
1859 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1860 {
1861     PCMachineState *pcms = PC_MACHINE(obj);
1862 
1863     pcms->acpi_nvdimm_state.is_enabled = value;
1864 }
1865 
1866 static void pc_machine_initfn(Object *obj)
1867 {
1868     PCMachineState *pcms = PC_MACHINE(obj);
1869 
1870     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1871                         pc_machine_get_hotplug_memory_region_size,
1872                         NULL, NULL, NULL, &error_abort);
1873 
1874     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1875     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1876                         pc_machine_get_max_ram_below_4g,
1877                         pc_machine_set_max_ram_below_4g,
1878                         NULL, NULL, &error_abort);
1879     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1880                                     "Maximum ram below the 4G boundary (32bit boundary)",
1881                                     &error_abort);
1882 
1883     pcms->smm = ON_OFF_AUTO_AUTO;
1884     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1885                         pc_machine_get_smm,
1886                         pc_machine_set_smm,
1887                         NULL, NULL, &error_abort);
1888     object_property_set_description(obj, PC_MACHINE_SMM,
1889                                     "Enable SMM (pc & q35)",
1890                                     &error_abort);
1891 
1892     pcms->vmport = ON_OFF_AUTO_AUTO;
1893     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1894                         pc_machine_get_vmport,
1895                         pc_machine_set_vmport,
1896                         NULL, NULL, &error_abort);
1897     object_property_set_description(obj, PC_MACHINE_VMPORT,
1898                                     "Enable vmport (pc & q35)",
1899                                     &error_abort);
1900 
1901     /* nvdimm is disabled on default. */
1902     pcms->acpi_nvdimm_state.is_enabled = false;
1903     object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1904                              pc_machine_set_nvdimm, &error_abort);
1905 }
1906 
1907 static void pc_machine_reset(void)
1908 {
1909     CPUState *cs;
1910     X86CPU *cpu;
1911 
1912     qemu_devices_reset();
1913 
1914     /* Reset APIC after devices have been reset to cancel
1915      * any changes that qemu_devices_reset() might have done.
1916      */
1917     CPU_FOREACH(cs) {
1918         cpu = X86_CPU(cs);
1919 
1920         if (cpu->apic_state) {
1921             device_reset(cpu->apic_state);
1922         }
1923     }
1924 }
1925 
1926 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1927 {
1928     X86CPUTopoInfo topo;
1929     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1930                           &topo);
1931     return topo.pkg_id;
1932 }
1933 
1934 static void pc_machine_class_init(ObjectClass *oc, void *data)
1935 {
1936     MachineClass *mc = MACHINE_CLASS(oc);
1937     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1938     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1939 
1940     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1941     pcmc->pci_enabled = true;
1942     pcmc->has_acpi_build = true;
1943     pcmc->rsdp_in_ram = true;
1944     pcmc->smbios_defaults = true;
1945     pcmc->smbios_uuid_encoded = true;
1946     pcmc->gigabyte_align = true;
1947     pcmc->has_reserved_memory = true;
1948     pcmc->kvmclock_enabled = true;
1949     pcmc->enforce_aligned_dimm = true;
1950     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1951      * to be used at the moment, 32K should be enough for a while.  */
1952     pcmc->acpi_data_size = 0x20000 + 0x8000;
1953     pcmc->save_tsc_khz = true;
1954     mc->get_hotplug_handler = pc_get_hotpug_handler;
1955     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1956     mc->default_boot_order = "cad";
1957     mc->hot_add_cpu = pc_hot_add_cpu;
1958     mc->max_cpus = 255;
1959     mc->reset = pc_machine_reset;
1960     hc->plug = pc_machine_device_plug_cb;
1961     hc->unplug_request = pc_machine_device_unplug_request_cb;
1962     hc->unplug = pc_machine_device_unplug_cb;
1963 }
1964 
1965 static const TypeInfo pc_machine_info = {
1966     .name = TYPE_PC_MACHINE,
1967     .parent = TYPE_MACHINE,
1968     .abstract = true,
1969     .instance_size = sizeof(PCMachineState),
1970     .instance_init = pc_machine_initfn,
1971     .class_size = sizeof(PCMachineClass),
1972     .class_init = pc_machine_class_init,
1973     .interfaces = (InterfaceInfo[]) {
1974          { TYPE_HOTPLUG_HANDLER },
1975          { }
1976     },
1977 };
1978 
1979 static void pc_machine_register_types(void)
1980 {
1981     type_register_static(&pc_machine_info);
1982 }
1983 
1984 type_init(pc_machine_register_types)
1985