xref: /qemu/hw/i386/pc.c (revision fc50ff06)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
63 #include "qapi/visitor.h"
64 
65 /* debug PC/ISA interrupts */
66 //#define DEBUG_IRQ
67 
68 #ifdef DEBUG_IRQ
69 #define DPRINTF(fmt, ...)                                       \
70     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...)
73 #endif
74 
75 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
76  * (128K) and other BIOS datastructures (less than 4K reported to be used at
77  * the moment, 32K should be enough for a while).  */
78 static unsigned acpi_data_size = 0x20000 + 0x8000;
79 void pc_set_legacy_acpi_data_size(void)
80 {
81     acpi_data_size = 0x10000;
82 }
83 
84 #define BIOS_CFG_IOPORT 0x510
85 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
86 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
87 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
88 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
89 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
90 
91 #define E820_NR_ENTRIES		16
92 
93 struct e820_entry {
94     uint64_t address;
95     uint64_t length;
96     uint32_t type;
97 } QEMU_PACKED __attribute((__aligned__(4)));
98 
99 struct e820_table {
100     uint32_t count;
101     struct e820_entry entry[E820_NR_ENTRIES];
102 } QEMU_PACKED __attribute((__aligned__(4)));
103 
104 static struct e820_table e820_reserve;
105 static struct e820_entry *e820_table;
106 static unsigned e820_entries;
107 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
108 
109 void gsi_handler(void *opaque, int n, int level)
110 {
111     GSIState *s = opaque;
112 
113     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
114     if (n < ISA_NUM_IRQS) {
115         qemu_set_irq(s->i8259_irq[n], level);
116     }
117     qemu_set_irq(s->ioapic_irq[n], level);
118 }
119 
120 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
121                            unsigned size)
122 {
123 }
124 
125 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
126 {
127     return 0xffffffffffffffffULL;
128 }
129 
130 /* MSDOS compatibility mode FPU exception support */
131 static qemu_irq ferr_irq;
132 
133 void pc_register_ferr_irq(qemu_irq irq)
134 {
135     ferr_irq = irq;
136 }
137 
138 /* XXX: add IGNNE support */
139 void cpu_set_ferr(CPUX86State *s)
140 {
141     qemu_irq_raise(ferr_irq);
142 }
143 
144 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
145                            unsigned size)
146 {
147     qemu_irq_lower(ferr_irq);
148 }
149 
150 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
151 {
152     return 0xffffffffffffffffULL;
153 }
154 
155 /* TSC handling */
156 uint64_t cpu_get_tsc(CPUX86State *env)
157 {
158     return cpu_get_ticks();
159 }
160 
161 /* SMM support */
162 
163 static cpu_set_smm_t smm_set;
164 static void *smm_arg;
165 
166 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
167 {
168     assert(smm_set == NULL);
169     assert(smm_arg == NULL);
170     smm_set = callback;
171     smm_arg = arg;
172 }
173 
174 void cpu_smm_update(CPUX86State *env)
175 {
176     if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
177         smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
178     }
179 }
180 
181 
182 /* IRQ handling */
183 int cpu_get_pic_interrupt(CPUX86State *env)
184 {
185     X86CPU *cpu = x86_env_get_cpu(env);
186     int intno;
187 
188     intno = apic_get_interrupt(cpu->apic_state);
189     if (intno >= 0) {
190         return intno;
191     }
192     /* read the irq from the PIC */
193     if (!apic_accept_pic_intr(cpu->apic_state)) {
194         return -1;
195     }
196 
197     intno = pic_read_irq(isa_pic);
198     return intno;
199 }
200 
201 static void pic_irq_request(void *opaque, int irq, int level)
202 {
203     CPUState *cs = first_cpu;
204     X86CPU *cpu = X86_CPU(cs);
205 
206     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
207     if (cpu->apic_state) {
208         CPU_FOREACH(cs) {
209             cpu = X86_CPU(cs);
210             if (apic_accept_pic_intr(cpu->apic_state)) {
211                 apic_deliver_pic_intr(cpu->apic_state, level);
212             }
213         }
214     } else {
215         if (level) {
216             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
217         } else {
218             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
219         }
220     }
221 }
222 
223 /* PC cmos mappings */
224 
225 #define REG_EQUIPMENT_BYTE          0x14
226 
227 static int cmos_get_fd_drive_type(FDriveType fd0)
228 {
229     int val;
230 
231     switch (fd0) {
232     case FDRIVE_DRV_144:
233         /* 1.44 Mb 3"5 drive */
234         val = 4;
235         break;
236     case FDRIVE_DRV_288:
237         /* 2.88 Mb 3"5 drive */
238         val = 5;
239         break;
240     case FDRIVE_DRV_120:
241         /* 1.2 Mb 5"5 drive */
242         val = 2;
243         break;
244     case FDRIVE_DRV_NONE:
245     default:
246         val = 0;
247         break;
248     }
249     return val;
250 }
251 
252 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
253                          int16_t cylinders, int8_t heads, int8_t sectors)
254 {
255     rtc_set_memory(s, type_ofs, 47);
256     rtc_set_memory(s, info_ofs, cylinders);
257     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
258     rtc_set_memory(s, info_ofs + 2, heads);
259     rtc_set_memory(s, info_ofs + 3, 0xff);
260     rtc_set_memory(s, info_ofs + 4, 0xff);
261     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
262     rtc_set_memory(s, info_ofs + 6, cylinders);
263     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
264     rtc_set_memory(s, info_ofs + 8, sectors);
265 }
266 
267 /* convert boot_device letter to something recognizable by the bios */
268 static int boot_device2nibble(char boot_device)
269 {
270     switch(boot_device) {
271     case 'a':
272     case 'b':
273         return 0x01; /* floppy boot */
274     case 'c':
275         return 0x02; /* hard drive boot */
276     case 'd':
277         return 0x03; /* CD-ROM boot */
278     case 'n':
279         return 0x04; /* Network boot */
280     }
281     return 0;
282 }
283 
284 static int set_boot_dev(ISADevice *s, const char *boot_device)
285 {
286 #define PC_MAX_BOOT_DEVICES 3
287     int nbds, bds[3] = { 0, };
288     int i;
289 
290     nbds = strlen(boot_device);
291     if (nbds > PC_MAX_BOOT_DEVICES) {
292         error_report("Too many boot devices for PC");
293         return(1);
294     }
295     for (i = 0; i < nbds; i++) {
296         bds[i] = boot_device2nibble(boot_device[i]);
297         if (bds[i] == 0) {
298             error_report("Invalid boot device for PC: '%c'",
299                          boot_device[i]);
300             return(1);
301         }
302     }
303     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
304     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
305     return(0);
306 }
307 
308 static int pc_boot_set(void *opaque, const char *boot_device)
309 {
310     return set_boot_dev(opaque, boot_device);
311 }
312 
313 typedef struct pc_cmos_init_late_arg {
314     ISADevice *rtc_state;
315     BusState *idebus[2];
316 } pc_cmos_init_late_arg;
317 
318 static void pc_cmos_init_late(void *opaque)
319 {
320     pc_cmos_init_late_arg *arg = opaque;
321     ISADevice *s = arg->rtc_state;
322     int16_t cylinders;
323     int8_t heads, sectors;
324     int val;
325     int i, trans;
326 
327     val = 0;
328     if (ide_get_geometry(arg->idebus[0], 0,
329                          &cylinders, &heads, &sectors) >= 0) {
330         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
331         val |= 0xf0;
332     }
333     if (ide_get_geometry(arg->idebus[0], 1,
334                          &cylinders, &heads, &sectors) >= 0) {
335         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
336         val |= 0x0f;
337     }
338     rtc_set_memory(s, 0x12, val);
339 
340     val = 0;
341     for (i = 0; i < 4; i++) {
342         /* NOTE: ide_get_geometry() returns the physical
343            geometry.  It is always such that: 1 <= sects <= 63, 1
344            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
345            geometry can be different if a translation is done. */
346         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
347                              &cylinders, &heads, &sectors) >= 0) {
348             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
349             assert((trans & ~3) == 0);
350             val |= trans << (i * 2);
351         }
352     }
353     rtc_set_memory(s, 0x39, val);
354 
355     qemu_unregister_reset(pc_cmos_init_late, opaque);
356 }
357 
358 typedef struct RTCCPUHotplugArg {
359     Notifier cpu_added_notifier;
360     ISADevice *rtc_state;
361 } RTCCPUHotplugArg;
362 
363 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
364 {
365     RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
366                                          cpu_added_notifier);
367     ISADevice *s = arg->rtc_state;
368 
369     /* increment the number of CPUs */
370     rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
371 }
372 
373 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
374                   const char *boot_device,
375                   ISADevice *floppy, BusState *idebus0, BusState *idebus1,
376                   ISADevice *s)
377 {
378     int val, nb, i;
379     FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
380     static pc_cmos_init_late_arg arg;
381     static RTCCPUHotplugArg cpu_hotplug_cb;
382 
383     /* various important CMOS locations needed by PC/Bochs bios */
384 
385     /* memory size */
386     /* base memory (first MiB) */
387     val = MIN(ram_size / 1024, 640);
388     rtc_set_memory(s, 0x15, val);
389     rtc_set_memory(s, 0x16, val >> 8);
390     /* extended memory (next 64MiB) */
391     if (ram_size > 1024 * 1024) {
392         val = (ram_size - 1024 * 1024) / 1024;
393     } else {
394         val = 0;
395     }
396     if (val > 65535)
397         val = 65535;
398     rtc_set_memory(s, 0x17, val);
399     rtc_set_memory(s, 0x18, val >> 8);
400     rtc_set_memory(s, 0x30, val);
401     rtc_set_memory(s, 0x31, val >> 8);
402     /* memory between 16MiB and 4GiB */
403     if (ram_size > 16 * 1024 * 1024) {
404         val = (ram_size - 16 * 1024 * 1024) / 65536;
405     } else {
406         val = 0;
407     }
408     if (val > 65535)
409         val = 65535;
410     rtc_set_memory(s, 0x34, val);
411     rtc_set_memory(s, 0x35, val >> 8);
412     /* memory above 4GiB */
413     val = above_4g_mem_size / 65536;
414     rtc_set_memory(s, 0x5b, val);
415     rtc_set_memory(s, 0x5c, val >> 8);
416     rtc_set_memory(s, 0x5d, val >> 16);
417 
418     /* set the number of CPU */
419     rtc_set_memory(s, 0x5f, smp_cpus - 1);
420     /* init CPU hotplug notifier */
421     cpu_hotplug_cb.rtc_state = s;
422     cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
423     qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
424 
425     if (set_boot_dev(s, boot_device)) {
426         exit(1);
427     }
428 
429     /* floppy type */
430     if (floppy) {
431         for (i = 0; i < 2; i++) {
432             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
433         }
434     }
435     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
436         cmos_get_fd_drive_type(fd_type[1]);
437     rtc_set_memory(s, 0x10, val);
438 
439     val = 0;
440     nb = 0;
441     if (fd_type[0] < FDRIVE_DRV_NONE) {
442         nb++;
443     }
444     if (fd_type[1] < FDRIVE_DRV_NONE) {
445         nb++;
446     }
447     switch (nb) {
448     case 0:
449         break;
450     case 1:
451         val |= 0x01; /* 1 drive, ready for boot */
452         break;
453     case 2:
454         val |= 0x41; /* 2 drives, ready for boot */
455         break;
456     }
457     val |= 0x02; /* FPU is there */
458     val |= 0x04; /* PS/2 mouse installed */
459     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
460 
461     /* hard drives */
462     arg.rtc_state = s;
463     arg.idebus[0] = idebus0;
464     arg.idebus[1] = idebus1;
465     qemu_register_reset(pc_cmos_init_late, &arg);
466 }
467 
468 #define TYPE_PORT92 "port92"
469 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
470 
471 /* port 92 stuff: could be split off */
472 typedef struct Port92State {
473     ISADevice parent_obj;
474 
475     MemoryRegion io;
476     uint8_t outport;
477     qemu_irq *a20_out;
478 } Port92State;
479 
480 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
481                          unsigned size)
482 {
483     Port92State *s = opaque;
484     int oldval = s->outport;
485 
486     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
487     s->outport = val;
488     qemu_set_irq(*s->a20_out, (val >> 1) & 1);
489     if ((val & 1) && !(oldval & 1)) {
490         qemu_system_reset_request();
491     }
492 }
493 
494 static uint64_t port92_read(void *opaque, hwaddr addr,
495                             unsigned size)
496 {
497     Port92State *s = opaque;
498     uint32_t ret;
499 
500     ret = s->outport;
501     DPRINTF("port92: read 0x%02x\n", ret);
502     return ret;
503 }
504 
505 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
506 {
507     Port92State *s = PORT92(dev);
508 
509     s->a20_out = a20_out;
510 }
511 
512 static const VMStateDescription vmstate_port92_isa = {
513     .name = "port92",
514     .version_id = 1,
515     .minimum_version_id = 1,
516     .fields = (VMStateField[]) {
517         VMSTATE_UINT8(outport, Port92State),
518         VMSTATE_END_OF_LIST()
519     }
520 };
521 
522 static void port92_reset(DeviceState *d)
523 {
524     Port92State *s = PORT92(d);
525 
526     s->outport &= ~1;
527 }
528 
529 static const MemoryRegionOps port92_ops = {
530     .read = port92_read,
531     .write = port92_write,
532     .impl = {
533         .min_access_size = 1,
534         .max_access_size = 1,
535     },
536     .endianness = DEVICE_LITTLE_ENDIAN,
537 };
538 
539 static void port92_initfn(Object *obj)
540 {
541     Port92State *s = PORT92(obj);
542 
543     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
544 
545     s->outport = 0;
546 }
547 
548 static void port92_realizefn(DeviceState *dev, Error **errp)
549 {
550     ISADevice *isadev = ISA_DEVICE(dev);
551     Port92State *s = PORT92(dev);
552 
553     isa_register_ioport(isadev, &s->io, 0x92);
554 }
555 
556 static void port92_class_initfn(ObjectClass *klass, void *data)
557 {
558     DeviceClass *dc = DEVICE_CLASS(klass);
559 
560     dc->realize = port92_realizefn;
561     dc->reset = port92_reset;
562     dc->vmsd = &vmstate_port92_isa;
563     /*
564      * Reason: unlike ordinary ISA devices, this one needs additional
565      * wiring: its A20 output line needs to be wired up by
566      * port92_init().
567      */
568     dc->cannot_instantiate_with_device_add_yet = true;
569 }
570 
571 static const TypeInfo port92_info = {
572     .name          = TYPE_PORT92,
573     .parent        = TYPE_ISA_DEVICE,
574     .instance_size = sizeof(Port92State),
575     .instance_init = port92_initfn,
576     .class_init    = port92_class_initfn,
577 };
578 
579 static void port92_register_types(void)
580 {
581     type_register_static(&port92_info);
582 }
583 
584 type_init(port92_register_types)
585 
586 static void handle_a20_line_change(void *opaque, int irq, int level)
587 {
588     X86CPU *cpu = opaque;
589 
590     /* XXX: send to all CPUs ? */
591     /* XXX: add logic to handle multiple A20 line sources */
592     x86_cpu_set_a20(cpu, level);
593 }
594 
595 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
596 {
597     int index = le32_to_cpu(e820_reserve.count);
598     struct e820_entry *entry;
599 
600     if (type != E820_RAM) {
601         /* old FW_CFG_E820_TABLE entry -- reservations only */
602         if (index >= E820_NR_ENTRIES) {
603             return -EBUSY;
604         }
605         entry = &e820_reserve.entry[index++];
606 
607         entry->address = cpu_to_le64(address);
608         entry->length = cpu_to_le64(length);
609         entry->type = cpu_to_le32(type);
610 
611         e820_reserve.count = cpu_to_le32(index);
612     }
613 
614     /* new "etc/e820" file -- include ram too */
615     e820_table = g_realloc(e820_table,
616                            sizeof(struct e820_entry) * (e820_entries+1));
617     e820_table[e820_entries].address = cpu_to_le64(address);
618     e820_table[e820_entries].length = cpu_to_le64(length);
619     e820_table[e820_entries].type = cpu_to_le32(type);
620     e820_entries++;
621 
622     return e820_entries;
623 }
624 
625 int e820_get_num_entries(void)
626 {
627     return e820_entries;
628 }
629 
630 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
631 {
632     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
633         *address = le64_to_cpu(e820_table[idx].address);
634         *length = le64_to_cpu(e820_table[idx].length);
635         return true;
636     }
637     return false;
638 }
639 
640 /* Calculates the limit to CPU APIC ID values
641  *
642  * This function returns the limit for the APIC ID value, so that all
643  * CPU APIC IDs are < pc_apic_id_limit().
644  *
645  * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
646  */
647 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
648 {
649     return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
650 }
651 
652 static FWCfgState *bochs_bios_init(void)
653 {
654     FWCfgState *fw_cfg;
655     uint8_t *smbios_tables, *smbios_anchor;
656     size_t smbios_tables_len, smbios_anchor_len;
657     uint64_t *numa_fw_cfg;
658     int i, j;
659     unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
660 
661     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
662     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
663      *
664      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
665      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
666      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
667      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
668      * may see".
669      *
670      * So, this means we must not use max_cpus, here, but the maximum possible
671      * APIC ID value, plus one.
672      *
673      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
674      *     the APIC ID, not the "CPU index"
675      */
676     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
677     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
678     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
679     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
680                      acpi_tables, acpi_tables_len);
681     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
682 
683     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
684     if (smbios_tables) {
685         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
686                          smbios_tables, smbios_tables_len);
687     }
688 
689     smbios_get_tables(&smbios_tables, &smbios_tables_len,
690                       &smbios_anchor, &smbios_anchor_len);
691     if (smbios_anchor) {
692         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
693                         smbios_tables, smbios_tables_len);
694         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
695                         smbios_anchor, smbios_anchor_len);
696     }
697 
698     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
699                      &e820_reserve, sizeof(e820_reserve));
700     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
701                     sizeof(struct e820_entry) * e820_entries);
702 
703     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
704     /* allocate memory for the NUMA channel: one (64bit) word for the number
705      * of nodes, one word for each VCPU->node and one word for each node to
706      * hold the amount of memory.
707      */
708     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
709     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
710     for (i = 0; i < max_cpus; i++) {
711         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
712         assert(apic_id < apic_id_limit);
713         for (j = 0; j < nb_numa_nodes; j++) {
714             if (test_bit(i, numa_info[j].node_cpu)) {
715                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
716                 break;
717             }
718         }
719     }
720     for (i = 0; i < nb_numa_nodes; i++) {
721         numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
722     }
723     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
724                      (1 + apic_id_limit + nb_numa_nodes) *
725                      sizeof(*numa_fw_cfg));
726 
727     return fw_cfg;
728 }
729 
730 static long get_file_size(FILE *f)
731 {
732     long where, size;
733 
734     /* XXX: on Unix systems, using fstat() probably makes more sense */
735 
736     where = ftell(f);
737     fseek(f, 0, SEEK_END);
738     size = ftell(f);
739     fseek(f, where, SEEK_SET);
740 
741     return size;
742 }
743 
744 static void load_linux(FWCfgState *fw_cfg,
745                        const char *kernel_filename,
746                        const char *initrd_filename,
747                        const char *kernel_cmdline,
748                        hwaddr max_ram_size)
749 {
750     uint16_t protocol;
751     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
752     uint32_t initrd_max;
753     uint8_t header[8192], *setup, *kernel, *initrd_data;
754     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
755     FILE *f;
756     char *vmode;
757 
758     /* Align to 16 bytes as a paranoia measure */
759     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
760 
761     /* load the kernel header */
762     f = fopen(kernel_filename, "rb");
763     if (!f || !(kernel_size = get_file_size(f)) ||
764         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
765         MIN(ARRAY_SIZE(header), kernel_size)) {
766         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
767                 kernel_filename, strerror(errno));
768         exit(1);
769     }
770 
771     /* kernel protocol version */
772 #if 0
773     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
774 #endif
775     if (ldl_p(header+0x202) == 0x53726448) {
776         protocol = lduw_p(header+0x206);
777     } else {
778         /* This looks like a multiboot kernel. If it is, let's stop
779            treating it like a Linux kernel. */
780         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
781                            kernel_cmdline, kernel_size, header)) {
782             return;
783         }
784         protocol = 0;
785     }
786 
787     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
788         /* Low kernel */
789         real_addr    = 0x90000;
790         cmdline_addr = 0x9a000 - cmdline_size;
791         prot_addr    = 0x10000;
792     } else if (protocol < 0x202) {
793         /* High but ancient kernel */
794         real_addr    = 0x90000;
795         cmdline_addr = 0x9a000 - cmdline_size;
796         prot_addr    = 0x100000;
797     } else {
798         /* High and recent kernel */
799         real_addr    = 0x10000;
800         cmdline_addr = 0x20000;
801         prot_addr    = 0x100000;
802     }
803 
804 #if 0
805     fprintf(stderr,
806             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
807             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
808             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
809             real_addr,
810             cmdline_addr,
811             prot_addr);
812 #endif
813 
814     /* highest address for loading the initrd */
815     if (protocol >= 0x203) {
816         initrd_max = ldl_p(header+0x22c);
817     } else {
818         initrd_max = 0x37ffffff;
819     }
820 
821     if (initrd_max >= max_ram_size - acpi_data_size) {
822         initrd_max = max_ram_size - acpi_data_size - 1;
823     }
824 
825     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
826     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
827     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
828 
829     if (protocol >= 0x202) {
830         stl_p(header+0x228, cmdline_addr);
831     } else {
832         stw_p(header+0x20, 0xA33F);
833         stw_p(header+0x22, cmdline_addr-real_addr);
834     }
835 
836     /* handle vga= parameter */
837     vmode = strstr(kernel_cmdline, "vga=");
838     if (vmode) {
839         unsigned int video_mode;
840         /* skip "vga=" */
841         vmode += 4;
842         if (!strncmp(vmode, "normal", 6)) {
843             video_mode = 0xffff;
844         } else if (!strncmp(vmode, "ext", 3)) {
845             video_mode = 0xfffe;
846         } else if (!strncmp(vmode, "ask", 3)) {
847             video_mode = 0xfffd;
848         } else {
849             video_mode = strtol(vmode, NULL, 0);
850         }
851         stw_p(header+0x1fa, video_mode);
852     }
853 
854     /* loader type */
855     /* High nybble = B reserved for QEMU; low nybble is revision number.
856        If this code is substantially changed, you may want to consider
857        incrementing the revision. */
858     if (protocol >= 0x200) {
859         header[0x210] = 0xB0;
860     }
861     /* heap */
862     if (protocol >= 0x201) {
863         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
864         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
865     }
866 
867     /* load initrd */
868     if (initrd_filename) {
869         if (protocol < 0x200) {
870             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
871             exit(1);
872         }
873 
874         initrd_size = get_image_size(initrd_filename);
875         if (initrd_size < 0) {
876             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
877                     initrd_filename, strerror(errno));
878             exit(1);
879         }
880 
881         initrd_addr = (initrd_max-initrd_size) & ~4095;
882 
883         initrd_data = g_malloc(initrd_size);
884         load_image(initrd_filename, initrd_data);
885 
886         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
887         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
888         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
889 
890         stl_p(header+0x218, initrd_addr);
891         stl_p(header+0x21c, initrd_size);
892     }
893 
894     /* load kernel and setup */
895     setup_size = header[0x1f1];
896     if (setup_size == 0) {
897         setup_size = 4;
898     }
899     setup_size = (setup_size+1)*512;
900     kernel_size -= setup_size;
901 
902     setup  = g_malloc(setup_size);
903     kernel = g_malloc(kernel_size);
904     fseek(f, 0, SEEK_SET);
905     if (fread(setup, 1, setup_size, f) != setup_size) {
906         fprintf(stderr, "fread() failed\n");
907         exit(1);
908     }
909     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
910         fprintf(stderr, "fread() failed\n");
911         exit(1);
912     }
913     fclose(f);
914     memcpy(setup, header, MIN(sizeof(header), setup_size));
915 
916     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
917     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
918     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
919 
920     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
921     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
922     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
923 
924     option_rom[nb_option_roms].name = "linuxboot.bin";
925     option_rom[nb_option_roms].bootindex = 0;
926     nb_option_roms++;
927 }
928 
929 #define NE2000_NB_MAX 6
930 
931 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
932                                               0x280, 0x380 };
933 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
934 
935 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
936 {
937     static int nb_ne2k = 0;
938 
939     if (nb_ne2k == NE2000_NB_MAX)
940         return;
941     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
942                     ne2000_irq[nb_ne2k], nd);
943     nb_ne2k++;
944 }
945 
946 DeviceState *cpu_get_current_apic(void)
947 {
948     if (current_cpu) {
949         X86CPU *cpu = X86_CPU(current_cpu);
950         return cpu->apic_state;
951     } else {
952         return NULL;
953     }
954 }
955 
956 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
957 {
958     X86CPU *cpu = opaque;
959 
960     if (level) {
961         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
962     }
963 }
964 
965 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
966                           DeviceState *icc_bridge, Error **errp)
967 {
968     X86CPU *cpu;
969     Error *local_err = NULL;
970 
971     cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
972     if (local_err != NULL) {
973         error_propagate(errp, local_err);
974         return NULL;
975     }
976 
977     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
978     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
979 
980     if (local_err) {
981         error_propagate(errp, local_err);
982         object_unref(OBJECT(cpu));
983         cpu = NULL;
984     }
985     return cpu;
986 }
987 
988 static const char *current_cpu_model;
989 
990 void pc_hot_add_cpu(const int64_t id, Error **errp)
991 {
992     DeviceState *icc_bridge;
993     int64_t apic_id = x86_cpu_apic_id_from_index(id);
994 
995     if (id < 0) {
996         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
997         return;
998     }
999 
1000     if (cpu_exists(apic_id)) {
1001         error_setg(errp, "Unable to add CPU: %" PRIi64
1002                    ", it already exists", id);
1003         return;
1004     }
1005 
1006     if (id >= max_cpus) {
1007         error_setg(errp, "Unable to add CPU: %" PRIi64
1008                    ", max allowed: %d", id, max_cpus - 1);
1009         return;
1010     }
1011 
1012     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1013         error_setg(errp, "Unable to add CPU: %" PRIi64
1014                    ", resulting APIC ID (%" PRIi64 ") is too large",
1015                    id, apic_id);
1016         return;
1017     }
1018 
1019     icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1020                                                  TYPE_ICC_BRIDGE, NULL));
1021     pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1022 }
1023 
1024 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1025 {
1026     int i;
1027     X86CPU *cpu = NULL;
1028     Error *error = NULL;
1029     unsigned long apic_id_limit;
1030 
1031     /* init CPUs */
1032     if (cpu_model == NULL) {
1033 #ifdef TARGET_X86_64
1034         cpu_model = "qemu64";
1035 #else
1036         cpu_model = "qemu32";
1037 #endif
1038     }
1039     current_cpu_model = cpu_model;
1040 
1041     apic_id_limit = pc_apic_id_limit(max_cpus);
1042     if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1043         error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1044                      apic_id_limit - 1);
1045         exit(1);
1046     }
1047 
1048     for (i = 0; i < smp_cpus; i++) {
1049         cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1050                          icc_bridge, &error);
1051         if (error) {
1052             error_report("%s", error_get_pretty(error));
1053             error_free(error);
1054             exit(1);
1055         }
1056     }
1057 
1058     /* map APIC MMIO area if CPU has APIC */
1059     if (cpu && cpu->apic_state) {
1060         /* XXX: what if the base changes? */
1061         sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1062                                 APIC_DEFAULT_ADDRESS, 0x1000);
1063     }
1064 
1065     /* tell smbios about cpuid version and features */
1066     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1067 }
1068 
1069 /* pci-info ROM file. Little endian format */
1070 typedef struct PcRomPciInfo {
1071     uint64_t w32_min;
1072     uint64_t w32_max;
1073     uint64_t w64_min;
1074     uint64_t w64_max;
1075 } PcRomPciInfo;
1076 
1077 typedef struct PcGuestInfoState {
1078     PcGuestInfo info;
1079     Notifier machine_done;
1080 } PcGuestInfoState;
1081 
1082 static
1083 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1084 {
1085     PcGuestInfoState *guest_info_state = container_of(notifier,
1086                                                       PcGuestInfoState,
1087                                                       machine_done);
1088     acpi_setup(&guest_info_state->info);
1089 }
1090 
1091 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1092                                 ram_addr_t above_4g_mem_size)
1093 {
1094     PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1095     PcGuestInfo *guest_info = &guest_info_state->info;
1096     int i, j;
1097 
1098     guest_info->ram_size_below_4g = below_4g_mem_size;
1099     guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1100     guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1101     guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1102     guest_info->numa_nodes = nb_numa_nodes;
1103     guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1104                                     sizeof *guest_info->node_mem);
1105     for (i = 0; i < nb_numa_nodes; i++) {
1106         guest_info->node_mem[i] = numa_info[i].node_mem;
1107     }
1108 
1109     guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1110                                      sizeof *guest_info->node_cpu);
1111 
1112     for (i = 0; i < max_cpus; i++) {
1113         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1114         assert(apic_id < guest_info->apic_id_limit);
1115         for (j = 0; j < nb_numa_nodes; j++) {
1116             if (test_bit(i, numa_info[j].node_cpu)) {
1117                 guest_info->node_cpu[apic_id] = j;
1118                 break;
1119             }
1120         }
1121     }
1122 
1123     guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1124     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1125     return guest_info;
1126 }
1127 
1128 /* setup pci memory address space mapping into system address space */
1129 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1130                             MemoryRegion *pci_address_space)
1131 {
1132     /* Set to lower priority than RAM */
1133     memory_region_add_subregion_overlap(system_memory, 0x0,
1134                                         pci_address_space, -1);
1135 }
1136 
1137 void pc_acpi_init(const char *default_dsdt)
1138 {
1139     char *filename;
1140 
1141     if (acpi_tables != NULL) {
1142         /* manually set via -acpitable, leave it alone */
1143         return;
1144     }
1145 
1146     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1147     if (filename == NULL) {
1148         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1149     } else {
1150         char *arg;
1151         QemuOpts *opts;
1152         Error *err = NULL;
1153 
1154         arg = g_strdup_printf("file=%s", filename);
1155 
1156         /* creates a deep copy of "arg" */
1157         opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1158         g_assert(opts != NULL);
1159 
1160         acpi_table_add_builtin(opts, &err);
1161         if (err) {
1162             error_report("WARNING: failed to load %s: %s", filename,
1163                          error_get_pretty(err));
1164             error_free(err);
1165         }
1166         g_free(arg);
1167         g_free(filename);
1168     }
1169 }
1170 
1171 FWCfgState *xen_load_linux(const char *kernel_filename,
1172                            const char *kernel_cmdline,
1173                            const char *initrd_filename,
1174                            ram_addr_t below_4g_mem_size,
1175                            PcGuestInfo *guest_info)
1176 {
1177     int i;
1178     FWCfgState *fw_cfg;
1179 
1180     assert(kernel_filename != NULL);
1181 
1182     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
1183     rom_set_fw(fw_cfg);
1184 
1185     load_linux(fw_cfg, kernel_filename, initrd_filename,
1186                kernel_cmdline, below_4g_mem_size);
1187     for (i = 0; i < nb_option_roms; i++) {
1188         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1189                !strcmp(option_rom[i].name, "multiboot.bin"));
1190         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1191     }
1192     guest_info->fw_cfg = fw_cfg;
1193     return fw_cfg;
1194 }
1195 
1196 FWCfgState *pc_memory_init(MachineState *machine,
1197                            MemoryRegion *system_memory,
1198                            ram_addr_t below_4g_mem_size,
1199                            ram_addr_t above_4g_mem_size,
1200                            MemoryRegion *rom_memory,
1201                            MemoryRegion **ram_memory,
1202                            PcGuestInfo *guest_info)
1203 {
1204     int linux_boot, i;
1205     MemoryRegion *ram, *option_rom_mr;
1206     MemoryRegion *ram_below_4g, *ram_above_4g;
1207     FWCfgState *fw_cfg;
1208     PCMachineState *pcms = PC_MACHINE(machine);
1209 
1210     assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1211 
1212     linux_boot = (machine->kernel_filename != NULL);
1213 
1214     /* Allocate RAM.  We allocate it as a single memory region and use
1215      * aliases to address portions of it, mostly for backwards compatibility
1216      * with older qemus that used qemu_ram_alloc().
1217      */
1218     ram = g_malloc(sizeof(*ram));
1219     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1220                                          machine->ram_size);
1221     *ram_memory = ram;
1222     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1223     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1224                              0, below_4g_mem_size);
1225     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1226     e820_add_entry(0, below_4g_mem_size, E820_RAM);
1227     if (above_4g_mem_size > 0) {
1228         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1229         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1230                                  below_4g_mem_size, above_4g_mem_size);
1231         memory_region_add_subregion(system_memory, 0x100000000ULL,
1232                                     ram_above_4g);
1233         e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1234     }
1235 
1236     if (!guest_info->has_reserved_memory &&
1237         (machine->ram_slots ||
1238          (machine->maxram_size > machine->ram_size))) {
1239         MachineClass *mc = MACHINE_GET_CLASS(machine);
1240 
1241         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1242                      mc->name);
1243         exit(EXIT_FAILURE);
1244     }
1245 
1246     /* initialize hotplug memory address space */
1247     if (guest_info->has_reserved_memory &&
1248         (machine->ram_size < machine->maxram_size)) {
1249         ram_addr_t hotplug_mem_size =
1250             machine->maxram_size - machine->ram_size;
1251 
1252         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1253             error_report("unsupported amount of memory slots: %"PRIu64,
1254                          machine->ram_slots);
1255             exit(EXIT_FAILURE);
1256         }
1257 
1258         pcms->hotplug_memory_base =
1259             ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1260 
1261         if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1262             hotplug_mem_size) {
1263             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1264                          machine->maxram_size);
1265             exit(EXIT_FAILURE);
1266         }
1267 
1268         memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1269                            "hotplug-memory", hotplug_mem_size);
1270         memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1271                                     &pcms->hotplug_memory);
1272     }
1273 
1274     /* Initialize PC system firmware */
1275     pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1276 
1277     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1278     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1279                            &error_abort);
1280     vmstate_register_ram_global(option_rom_mr);
1281     memory_region_add_subregion_overlap(rom_memory,
1282                                         PC_ROM_MIN_VGA,
1283                                         option_rom_mr,
1284                                         1);
1285 
1286     fw_cfg = bochs_bios_init();
1287     rom_set_fw(fw_cfg);
1288 
1289     if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1290         uint64_t *val = g_malloc(sizeof(*val));
1291         *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1292         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1293     }
1294 
1295     if (linux_boot) {
1296         load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1297                    machine->kernel_cmdline, below_4g_mem_size);
1298     }
1299 
1300     for (i = 0; i < nb_option_roms; i++) {
1301         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1302     }
1303     guest_info->fw_cfg = fw_cfg;
1304     return fw_cfg;
1305 }
1306 
1307 qemu_irq *pc_allocate_cpu_irq(void)
1308 {
1309     return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1310 }
1311 
1312 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1313 {
1314     DeviceState *dev = NULL;
1315 
1316     if (pci_bus) {
1317         PCIDevice *pcidev = pci_vga_init(pci_bus);
1318         dev = pcidev ? &pcidev->qdev : NULL;
1319     } else if (isa_bus) {
1320         ISADevice *isadev = isa_vga_init(isa_bus);
1321         dev = isadev ? DEVICE(isadev) : NULL;
1322     }
1323     return dev;
1324 }
1325 
1326 static void cpu_request_exit(void *opaque, int irq, int level)
1327 {
1328     CPUState *cpu = current_cpu;
1329 
1330     if (cpu && level) {
1331         cpu_exit(cpu);
1332     }
1333 }
1334 
1335 static const MemoryRegionOps ioport80_io_ops = {
1336     .write = ioport80_write,
1337     .read = ioport80_read,
1338     .endianness = DEVICE_NATIVE_ENDIAN,
1339     .impl = {
1340         .min_access_size = 1,
1341         .max_access_size = 1,
1342     },
1343 };
1344 
1345 static const MemoryRegionOps ioportF0_io_ops = {
1346     .write = ioportF0_write,
1347     .read = ioportF0_read,
1348     .endianness = DEVICE_NATIVE_ENDIAN,
1349     .impl = {
1350         .min_access_size = 1,
1351         .max_access_size = 1,
1352     },
1353 };
1354 
1355 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1356                           ISADevice **rtc_state,
1357                           ISADevice **floppy,
1358                           bool no_vmport,
1359                           uint32 hpet_irqs)
1360 {
1361     int i;
1362     DriveInfo *fd[MAX_FD];
1363     DeviceState *hpet = NULL;
1364     int pit_isa_irq = 0;
1365     qemu_irq pit_alt_irq = NULL;
1366     qemu_irq rtc_irq = NULL;
1367     qemu_irq *a20_line;
1368     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1369     qemu_irq *cpu_exit_irq;
1370     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1371     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1372 
1373     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1374     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1375 
1376     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1377     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1378 
1379     /*
1380      * Check if an HPET shall be created.
1381      *
1382      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1383      * when the HPET wants to take over. Thus we have to disable the latter.
1384      */
1385     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1386         /* In order to set property, here not using sysbus_try_create_simple */
1387         hpet = qdev_try_create(NULL, TYPE_HPET);
1388         if (hpet) {
1389             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1390              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1391              * IRQ8 and IRQ2.
1392              */
1393             uint8_t compat = object_property_get_int(OBJECT(hpet),
1394                     HPET_INTCAP, NULL);
1395             if (!compat) {
1396                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1397             }
1398             qdev_init_nofail(hpet);
1399             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1400 
1401             for (i = 0; i < GSI_NUM_PINS; i++) {
1402                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1403             }
1404             pit_isa_irq = -1;
1405             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1406             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1407         }
1408     }
1409     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1410 
1411     qemu_register_boot_set(pc_boot_set, *rtc_state);
1412 
1413     if (!xen_enabled()) {
1414         if (kvm_irqchip_in_kernel()) {
1415             pit = kvm_pit_init(isa_bus, 0x40);
1416         } else {
1417             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1418         }
1419         if (hpet) {
1420             /* connect PIT to output control line of the HPET */
1421             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1422         }
1423         pcspk_init(isa_bus, pit);
1424     }
1425 
1426     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1427         if (serial_hds[i]) {
1428             serial_isa_init(isa_bus, i, serial_hds[i]);
1429         }
1430     }
1431 
1432     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1433         if (parallel_hds[i]) {
1434             parallel_init(isa_bus, i, parallel_hds[i]);
1435         }
1436     }
1437 
1438     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1439     i8042 = isa_create_simple(isa_bus, "i8042");
1440     i8042_setup_a20_line(i8042, &a20_line[0]);
1441     if (!no_vmport) {
1442         vmport_init(isa_bus);
1443         vmmouse = isa_try_create(isa_bus, "vmmouse");
1444     } else {
1445         vmmouse = NULL;
1446     }
1447     if (vmmouse) {
1448         DeviceState *dev = DEVICE(vmmouse);
1449         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1450         qdev_init_nofail(dev);
1451     }
1452     port92 = isa_create_simple(isa_bus, "port92");
1453     port92_init(port92, &a20_line[1]);
1454 
1455     cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1456     DMA_init(0, cpu_exit_irq);
1457 
1458     for(i = 0; i < MAX_FD; i++) {
1459         fd[i] = drive_get(IF_FLOPPY, 0, i);
1460     }
1461     *floppy = fdctrl_init_isa(isa_bus, fd);
1462 }
1463 
1464 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1465 {
1466     int i;
1467 
1468     for (i = 0; i < nb_nics; i++) {
1469         NICInfo *nd = &nd_table[i];
1470 
1471         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1472             pc_init_ne2k_isa(isa_bus, nd);
1473         } else {
1474             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1475         }
1476     }
1477 }
1478 
1479 void pc_pci_device_init(PCIBus *pci_bus)
1480 {
1481     int max_bus;
1482     int bus;
1483 
1484     max_bus = drive_get_max_bus(IF_SCSI);
1485     for (bus = 0; bus <= max_bus; bus++) {
1486         pci_create_simple(pci_bus, -1, "lsi53c895a");
1487     }
1488 }
1489 
1490 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1491 {
1492     DeviceState *dev;
1493     SysBusDevice *d;
1494     unsigned int i;
1495 
1496     if (kvm_irqchip_in_kernel()) {
1497         dev = qdev_create(NULL, "kvm-ioapic");
1498     } else {
1499         dev = qdev_create(NULL, "ioapic");
1500     }
1501     if (parent_name) {
1502         object_property_add_child(object_resolve_path(parent_name, NULL),
1503                                   "ioapic", OBJECT(dev), NULL);
1504     }
1505     qdev_init_nofail(dev);
1506     d = SYS_BUS_DEVICE(dev);
1507     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1508 
1509     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1510         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1511     }
1512 }
1513 
1514 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1515 {
1516     MachineClass *mc = MACHINE_CLASS(oc);
1517     QEMUMachine *qm = data;
1518 
1519     mc->name = qm->name;
1520     mc->alias = qm->alias;
1521     mc->desc = qm->desc;
1522     mc->init = qm->init;
1523     mc->reset = qm->reset;
1524     mc->hot_add_cpu = qm->hot_add_cpu;
1525     mc->kvm_type = qm->kvm_type;
1526     mc->block_default_type = qm->block_default_type;
1527     mc->max_cpus = qm->max_cpus;
1528     mc->no_serial = qm->no_serial;
1529     mc->no_parallel = qm->no_parallel;
1530     mc->use_virtcon = qm->use_virtcon;
1531     mc->use_sclp = qm->use_sclp;
1532     mc->no_floppy = qm->no_floppy;
1533     mc->no_cdrom = qm->no_cdrom;
1534     mc->no_sdcard = qm->no_sdcard;
1535     mc->is_default = qm->is_default;
1536     mc->default_machine_opts = qm->default_machine_opts;
1537     mc->default_boot_order = qm->default_boot_order;
1538     mc->compat_props = qm->compat_props;
1539     mc->hw_version = qm->hw_version;
1540 }
1541 
1542 void qemu_register_pc_machine(QEMUMachine *m)
1543 {
1544     char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1545     TypeInfo ti = {
1546         .name       = name,
1547         .parent     = TYPE_PC_MACHINE,
1548         .class_init = pc_generic_machine_class_init,
1549         .class_data = (void *)m,
1550     };
1551 
1552     type_register(&ti);
1553     g_free(name);
1554 }
1555 
1556 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1557                          DeviceState *dev, Error **errp)
1558 {
1559     int slot;
1560     HotplugHandlerClass *hhc;
1561     Error *local_err = NULL;
1562     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1563     MachineState *machine = MACHINE(hotplug_dev);
1564     PCDIMMDevice *dimm = PC_DIMM(dev);
1565     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1566     MemoryRegion *mr = ddc->get_memory_region(dimm);
1567     uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
1568                                             &local_err);
1569     if (local_err) {
1570         goto out;
1571     }
1572 
1573     addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1574                                  memory_region_size(&pcms->hotplug_memory),
1575                                  !addr ? NULL : &addr,
1576                                  memory_region_size(mr), &local_err);
1577     if (local_err) {
1578         goto out;
1579     }
1580 
1581     object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1582     if (local_err) {
1583         goto out;
1584     }
1585     trace_mhp_pc_dimm_assigned_address(addr);
1586 
1587     slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1588     if (local_err) {
1589         goto out;
1590     }
1591 
1592     slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1593                                  machine->ram_slots, &local_err);
1594     if (local_err) {
1595         goto out;
1596     }
1597     object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1598     if (local_err) {
1599         goto out;
1600     }
1601     trace_mhp_pc_dimm_assigned_slot(slot);
1602 
1603     if (!pcms->acpi_dev) {
1604         error_setg(&local_err,
1605                    "memory hotplug is not enabled: missing acpi device");
1606         goto out;
1607     }
1608 
1609     memory_region_add_subregion(&pcms->hotplug_memory,
1610                                 addr - pcms->hotplug_memory_base, mr);
1611     vmstate_register_ram(mr, dev);
1612 
1613     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1614     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1615 out:
1616     error_propagate(errp, local_err);
1617 }
1618 
1619 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1620                                       DeviceState *dev, Error **errp)
1621 {
1622     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1623         pc_dimm_plug(hotplug_dev, dev, errp);
1624     }
1625 }
1626 
1627 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1628                                              DeviceState *dev)
1629 {
1630     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1631 
1632     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1633         return HOTPLUG_HANDLER(machine);
1634     }
1635 
1636     return pcmc->get_hotplug_handler ?
1637         pcmc->get_hotplug_handler(machine, dev) : NULL;
1638 }
1639 
1640 static void
1641 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1642                                           const char *name, Error **errp)
1643 {
1644     PCMachineState *pcms = PC_MACHINE(obj);
1645     int64_t value = memory_region_size(&pcms->hotplug_memory);
1646 
1647     visit_type_int(v, &value, name, errp);
1648 }
1649 
1650 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1651                                          void *opaque, const char *name,
1652                                          Error **errp)
1653 {
1654     PCMachineState *pcms = PC_MACHINE(obj);
1655     uint64_t value = pcms->max_ram_below_4g;
1656 
1657     visit_type_size(v, &value, name, errp);
1658 }
1659 
1660 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1661                                          void *opaque, const char *name,
1662                                          Error **errp)
1663 {
1664     PCMachineState *pcms = PC_MACHINE(obj);
1665     Error *error = NULL;
1666     uint64_t value;
1667 
1668     visit_type_size(v, &value, name, &error);
1669     if (error) {
1670         error_propagate(errp, error);
1671         return;
1672     }
1673     if (value > (1ULL << 32)) {
1674         error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1675                   "Machine option 'max-ram-below-4g=%"PRIu64
1676                   "' expects size less than or equal to 4G", value);
1677         error_propagate(errp, error);
1678         return;
1679     }
1680 
1681     if (value < (1ULL << 20)) {
1682         error_report("Warning: small max_ram_below_4g(%"PRIu64
1683                      ") less than 1M.  BIOS may not work..",
1684                      value);
1685     }
1686 
1687     pcms->max_ram_below_4g = value;
1688 }
1689 
1690 static void pc_machine_initfn(Object *obj)
1691 {
1692     PCMachineState *pcms = PC_MACHINE(obj);
1693 
1694     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1695                         pc_machine_get_hotplug_memory_region_size,
1696                         NULL, NULL, NULL, NULL);
1697     pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1698     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1699                         pc_machine_get_max_ram_below_4g,
1700                         pc_machine_set_max_ram_below_4g,
1701                         NULL, NULL, NULL);
1702 }
1703 
1704 static void pc_machine_class_init(ObjectClass *oc, void *data)
1705 {
1706     MachineClass *mc = MACHINE_CLASS(oc);
1707     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1708     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1709 
1710     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1711     mc->get_hotplug_handler = pc_get_hotpug_handler;
1712     hc->plug = pc_machine_device_plug_cb;
1713 }
1714 
1715 static const TypeInfo pc_machine_info = {
1716     .name = TYPE_PC_MACHINE,
1717     .parent = TYPE_MACHINE,
1718     .abstract = true,
1719     .instance_size = sizeof(PCMachineState),
1720     .instance_init = pc_machine_initfn,
1721     .class_size = sizeof(PCMachineClass),
1722     .class_init = pc_machine_class_init,
1723     .interfaces = (InterfaceInfo[]) {
1724          { TYPE_HOTPLUG_HANDLER },
1725          { }
1726     },
1727 };
1728 
1729 static void pc_machine_register_types(void)
1730 {
1731     type_register_static(&pc_machine_info);
1732 }
1733 
1734 type_init(pc_machine_register_types)
1735