xref: /qemu/hw/i386/x86.c (revision 0f900bae)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/xen.h"
44 #include "trace.h"
45 
46 #include "hw/i386/x86.h"
47 #include "target/i386/cpu.h"
48 #include "hw/i386/topology.h"
49 #include "hw/i386/fw_cfg.h"
50 #include "hw/intc/i8259.h"
51 #include "hw/rtc/mc146818rtc.h"
52 #include "target/i386/sev.h"
53 
54 #include "hw/acpi/cpu_hotplug.h"
55 #include "hw/irq.h"
56 #include "hw/nmi.h"
57 #include "hw/loader.h"
58 #include "multiboot.h"
59 #include "elf.h"
60 #include "standard-headers/asm-x86/bootparam.h"
61 #include CONFIG_DEVICES
62 #include "kvm/kvm_i386.h"
63 
64 /* Physical Address of PVH entry point read from kernel ELF NOTE */
65 static size_t pvh_start_addr;
66 
67 inline void init_topo_info(X86CPUTopoInfo *topo_info,
68                            const X86MachineState *x86ms)
69 {
70     MachineState *ms = MACHINE(x86ms);
71 
72     topo_info->dies_per_pkg = ms->smp.dies;
73     topo_info->cores_per_die = ms->smp.cores;
74     topo_info->threads_per_core = ms->smp.threads;
75 }
76 
77 /*
78  * Calculates initial APIC ID for a specific CPU index
79  *
80  * Currently we need to be able to calculate the APIC ID from the CPU index
81  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
82  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
83  * all CPUs up to max_cpus.
84  */
85 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
86                                     unsigned int cpu_index)
87 {
88     X86CPUTopoInfo topo_info;
89 
90     init_topo_info(&topo_info, x86ms);
91 
92     return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
93 }
94 
95 
96 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
97 {
98     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
99 
100     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
101         goto out;
102     }
103     qdev_realize(DEVICE(cpu), NULL, errp);
104 
105 out:
106     object_unref(cpu);
107 }
108 
109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
110 {
111     int i;
112     const CPUArchIdList *possible_cpus;
113     MachineState *ms = MACHINE(x86ms);
114     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
115 
116     x86_cpu_set_default_version(default_cpu_version);
117 
118     /*
119      * Calculates the limit to CPU APIC ID values
120      *
121      * Limit for the APIC ID value, so that all
122      * CPU APIC IDs are < x86ms->apic_id_limit.
123      *
124      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
125      */
126     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
127                                                       ms->smp.max_cpus - 1) + 1;
128 
129     /*
130      * Can we support APIC ID 255 or higher?
131      *
132      * Under Xen: yes.
133      * With userspace emulated lapic: no
134      * With KVM's in-kernel lapic: only if X2APIC API is enabled.
135      */
136     if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
137         (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
138         error_report("current -smp configuration requires kernel "
139                      "irqchip and X2APIC API support.");
140         exit(EXIT_FAILURE);
141     }
142 
143     possible_cpus = mc->possible_cpu_arch_ids(ms);
144     for (i = 0; i < ms->smp.cpus; i++) {
145         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
146     }
147 }
148 
149 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
150 {
151     if (cpus_count > 0xff) {
152         /*
153          * If the number of CPUs can't be represented in 8 bits, the
154          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
155          * to make old BIOSes fail more predictably.
156          */
157         rtc_set_memory(rtc, 0x5f, 0);
158     } else {
159         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
160     }
161 }
162 
163 static int x86_apic_cmp(const void *a, const void *b)
164 {
165    CPUArchId *apic_a = (CPUArchId *)a;
166    CPUArchId *apic_b = (CPUArchId *)b;
167 
168    return apic_a->arch_id - apic_b->arch_id;
169 }
170 
171 /*
172  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
173  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
174  * entry corresponding to CPU's apic_id returns NULL.
175  */
176 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
177 {
178     CPUArchId apic_id, *found_cpu;
179 
180     apic_id.arch_id = id;
181     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
182         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
183         x86_apic_cmp);
184     if (found_cpu && idx) {
185         *idx = found_cpu - ms->possible_cpus->cpus;
186     }
187     return found_cpu;
188 }
189 
190 void x86_cpu_plug(HotplugHandler *hotplug_dev,
191                   DeviceState *dev, Error **errp)
192 {
193     CPUArchId *found_cpu;
194     Error *local_err = NULL;
195     X86CPU *cpu = X86_CPU(dev);
196     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
197 
198     if (x86ms->acpi_dev) {
199         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
200         if (local_err) {
201             goto out;
202         }
203     }
204 
205     /* increment the number of CPUs */
206     x86ms->boot_cpus++;
207     if (x86ms->rtc) {
208         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
209     }
210     if (x86ms->fw_cfg) {
211         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
212     }
213 
214     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
215     found_cpu->cpu = OBJECT(dev);
216 out:
217     error_propagate(errp, local_err);
218 }
219 
220 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
221                                DeviceState *dev, Error **errp)
222 {
223     int idx = -1;
224     X86CPU *cpu = X86_CPU(dev);
225     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
226 
227     if (!x86ms->acpi_dev) {
228         error_setg(errp, "CPU hot unplug not supported without ACPI");
229         return;
230     }
231 
232     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
233     assert(idx != -1);
234     if (idx == 0) {
235         error_setg(errp, "Boot CPU is unpluggable");
236         return;
237     }
238 
239     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
240                                    errp);
241 }
242 
243 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
244                        DeviceState *dev, Error **errp)
245 {
246     CPUArchId *found_cpu;
247     Error *local_err = NULL;
248     X86CPU *cpu = X86_CPU(dev);
249     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
250 
251     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
252     if (local_err) {
253         goto out;
254     }
255 
256     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
257     found_cpu->cpu = NULL;
258     qdev_unrealize(dev);
259 
260     /* decrement the number of CPUs */
261     x86ms->boot_cpus--;
262     /* Update the number of CPUs in CMOS */
263     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
264     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
265  out:
266     error_propagate(errp, local_err);
267 }
268 
269 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
270                       DeviceState *dev, Error **errp)
271 {
272     int idx;
273     CPUState *cs;
274     CPUArchId *cpu_slot;
275     X86CPUTopoIDs topo_ids;
276     X86CPU *cpu = X86_CPU(dev);
277     CPUX86State *env = &cpu->env;
278     MachineState *ms = MACHINE(hotplug_dev);
279     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
280     unsigned int smp_cores = ms->smp.cores;
281     unsigned int smp_threads = ms->smp.threads;
282     X86CPUTopoInfo topo_info;
283 
284     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
285         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
286                    ms->cpu_type);
287         return;
288     }
289 
290     if (x86ms->acpi_dev) {
291         Error *local_err = NULL;
292 
293         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
294                                  &local_err);
295         if (local_err) {
296             error_propagate(errp, local_err);
297             return;
298         }
299     }
300 
301     init_topo_info(&topo_info, x86ms);
302 
303     env->nr_dies = ms->smp.dies;
304 
305     /*
306      * If APIC ID is not set,
307      * set it based on socket/die/core/thread properties.
308      */
309     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
310         int max_socket = (ms->smp.max_cpus - 1) /
311                                 smp_threads / smp_cores / ms->smp.dies;
312 
313         /*
314          * die-id was optional in QEMU 4.0 and older, so keep it optional
315          * if there's only one die per socket.
316          */
317         if (cpu->die_id < 0 && ms->smp.dies == 1) {
318             cpu->die_id = 0;
319         }
320 
321         if (cpu->socket_id < 0) {
322             error_setg(errp, "CPU socket-id is not set");
323             return;
324         } else if (cpu->socket_id > max_socket) {
325             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
326                        cpu->socket_id, max_socket);
327             return;
328         }
329         if (cpu->die_id < 0) {
330             error_setg(errp, "CPU die-id is not set");
331             return;
332         } else if (cpu->die_id > ms->smp.dies - 1) {
333             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
334                        cpu->die_id, ms->smp.dies - 1);
335             return;
336         }
337         if (cpu->core_id < 0) {
338             error_setg(errp, "CPU core-id is not set");
339             return;
340         } else if (cpu->core_id > (smp_cores - 1)) {
341             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
342                        cpu->core_id, smp_cores - 1);
343             return;
344         }
345         if (cpu->thread_id < 0) {
346             error_setg(errp, "CPU thread-id is not set");
347             return;
348         } else if (cpu->thread_id > (smp_threads - 1)) {
349             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
350                        cpu->thread_id, smp_threads - 1);
351             return;
352         }
353 
354         topo_ids.pkg_id = cpu->socket_id;
355         topo_ids.die_id = cpu->die_id;
356         topo_ids.core_id = cpu->core_id;
357         topo_ids.smt_id = cpu->thread_id;
358         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
359     }
360 
361     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
362     if (!cpu_slot) {
363         MachineState *ms = MACHINE(x86ms);
364 
365         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
366         error_setg(errp,
367             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
368             " APIC ID %" PRIu32 ", valid index range 0:%d",
369             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
370             cpu->apic_id, ms->possible_cpus->len - 1);
371         return;
372     }
373 
374     if (cpu_slot->cpu) {
375         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
376                    idx, cpu->apic_id);
377         return;
378     }
379 
380     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
381      * so that machine_query_hotpluggable_cpus would show correct values
382      */
383     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
384      * once -smp refactoring is complete and there will be CPU private
385      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
386     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
387     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
388         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
389             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
390             topo_ids.pkg_id);
391         return;
392     }
393     cpu->socket_id = topo_ids.pkg_id;
394 
395     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
396         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
397             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
398         return;
399     }
400     cpu->die_id = topo_ids.die_id;
401 
402     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
403         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
404             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
405             topo_ids.core_id);
406         return;
407     }
408     cpu->core_id = topo_ids.core_id;
409 
410     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
411         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
412             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
413             topo_ids.smt_id);
414         return;
415     }
416     cpu->thread_id = topo_ids.smt_id;
417 
418     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
419         !kvm_hv_vpindex_settable()) {
420         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
421         return;
422     }
423 
424     cs = CPU(cpu);
425     cs->cpu_index = idx;
426 
427     numa_cpu_pre_plug(cpu_slot, dev, errp);
428 }
429 
430 CpuInstanceProperties
431 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
432 {
433     MachineClass *mc = MACHINE_GET_CLASS(ms);
434     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
435 
436     assert(cpu_index < possible_cpus->len);
437     return possible_cpus->cpus[cpu_index].props;
438 }
439 
440 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
441 {
442    X86CPUTopoIDs topo_ids;
443    X86MachineState *x86ms = X86_MACHINE(ms);
444    X86CPUTopoInfo topo_info;
445 
446    init_topo_info(&topo_info, x86ms);
447 
448    assert(idx < ms->possible_cpus->len);
449    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
450                             &topo_info, &topo_ids);
451    return topo_ids.pkg_id % ms->numa_state->num_nodes;
452 }
453 
454 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
455 {
456     X86MachineState *x86ms = X86_MACHINE(ms);
457     unsigned int max_cpus = ms->smp.max_cpus;
458     X86CPUTopoInfo topo_info;
459     int i;
460 
461     if (ms->possible_cpus) {
462         /*
463          * make sure that max_cpus hasn't changed since the first use, i.e.
464          * -smp hasn't been parsed after it
465          */
466         assert(ms->possible_cpus->len == max_cpus);
467         return ms->possible_cpus;
468     }
469 
470     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
471                                   sizeof(CPUArchId) * max_cpus);
472     ms->possible_cpus->len = max_cpus;
473 
474     init_topo_info(&topo_info, x86ms);
475 
476     for (i = 0; i < ms->possible_cpus->len; i++) {
477         X86CPUTopoIDs topo_ids;
478 
479         ms->possible_cpus->cpus[i].type = ms->cpu_type;
480         ms->possible_cpus->cpus[i].vcpus_count = 1;
481         ms->possible_cpus->cpus[i].arch_id =
482             x86_cpu_apic_id_from_index(x86ms, i);
483         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
484                                  &topo_info, &topo_ids);
485         ms->possible_cpus->cpus[i].props.has_socket_id = true;
486         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
487         if (ms->smp.dies > 1) {
488             ms->possible_cpus->cpus[i].props.has_die_id = true;
489             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
490         }
491         ms->possible_cpus->cpus[i].props.has_core_id = true;
492         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
493         ms->possible_cpus->cpus[i].props.has_thread_id = true;
494         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
495     }
496     return ms->possible_cpus;
497 }
498 
499 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
500 {
501     /* cpu index isn't used */
502     CPUState *cs;
503 
504     CPU_FOREACH(cs) {
505         X86CPU *cpu = X86_CPU(cs);
506 
507         if (!cpu->apic_state) {
508             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
509         } else {
510             apic_deliver_nmi(cpu->apic_state);
511         }
512     }
513 }
514 
515 static long get_file_size(FILE *f)
516 {
517     long where, size;
518 
519     /* XXX: on Unix systems, using fstat() probably makes more sense */
520 
521     where = ftell(f);
522     fseek(f, 0, SEEK_END);
523     size = ftell(f);
524     fseek(f, where, SEEK_SET);
525 
526     return size;
527 }
528 
529 /* TSC handling */
530 uint64_t cpu_get_tsc(CPUX86State *env)
531 {
532     return cpus_get_elapsed_ticks();
533 }
534 
535 /* IRQ handling */
536 static void pic_irq_request(void *opaque, int irq, int level)
537 {
538     CPUState *cs = first_cpu;
539     X86CPU *cpu = X86_CPU(cs);
540 
541     trace_x86_pic_interrupt(irq, level);
542     if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
543         !whpx_apic_in_platform()) {
544         CPU_FOREACH(cs) {
545             cpu = X86_CPU(cs);
546             if (apic_accept_pic_intr(cpu->apic_state)) {
547                 apic_deliver_pic_intr(cpu->apic_state, level);
548             }
549         }
550     } else {
551         if (level) {
552             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
553         } else {
554             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
555         }
556     }
557 }
558 
559 qemu_irq x86_allocate_cpu_irq(void)
560 {
561     return qemu_allocate_irq(pic_irq_request, NULL, 0);
562 }
563 
564 int cpu_get_pic_interrupt(CPUX86State *env)
565 {
566     X86CPU *cpu = env_archcpu(env);
567     int intno;
568 
569     if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
570         intno = apic_get_interrupt(cpu->apic_state);
571         if (intno >= 0) {
572             return intno;
573         }
574         /* read the irq from the PIC */
575         if (!apic_accept_pic_intr(cpu->apic_state)) {
576             return -1;
577         }
578     }
579 
580     intno = pic_read_irq(isa_pic);
581     return intno;
582 }
583 
584 DeviceState *cpu_get_current_apic(void)
585 {
586     if (current_cpu) {
587         X86CPU *cpu = X86_CPU(current_cpu);
588         return cpu->apic_state;
589     } else {
590         return NULL;
591     }
592 }
593 
594 void gsi_handler(void *opaque, int n, int level)
595 {
596     GSIState *s = opaque;
597 
598     trace_x86_gsi_interrupt(n, level);
599     switch (n) {
600     case 0 ... ISA_NUM_IRQS - 1:
601         if (s->i8259_irq[n]) {
602             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
603             qemu_set_irq(s->i8259_irq[n], level);
604         }
605         /* fall through */
606     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
607         qemu_set_irq(s->ioapic_irq[n], level);
608         break;
609     case IO_APIC_SECONDARY_IRQBASE
610         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
611         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
612         break;
613     }
614 }
615 
616 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
617 {
618     DeviceState *dev;
619     SysBusDevice *d;
620     unsigned int i;
621 
622     assert(parent_name);
623     if (kvm_ioapic_in_kernel()) {
624         dev = qdev_new(TYPE_KVM_IOAPIC);
625     } else {
626         dev = qdev_new(TYPE_IOAPIC);
627     }
628     object_property_add_child(object_resolve_path(parent_name, NULL),
629                               "ioapic", OBJECT(dev));
630     d = SYS_BUS_DEVICE(dev);
631     sysbus_realize_and_unref(d, &error_fatal);
632     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
633 
634     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
635         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
636     }
637 }
638 
639 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
640 {
641     DeviceState *dev;
642     SysBusDevice *d;
643     unsigned int i;
644 
645     dev = qdev_new(TYPE_IOAPIC);
646     d = SYS_BUS_DEVICE(dev);
647     sysbus_realize_and_unref(d, &error_fatal);
648     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
649 
650     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
651         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
652     }
653     return dev;
654 }
655 
656 typedef struct SetupData {
657     uint64_t next;
658     uint32_t type;
659     uint32_t len;
660     uint8_t data[];
661 } __attribute__((packed)) SetupData;
662 
663 
664 /*
665  * The entry point into the kernel for PVH boot is different from
666  * the native entry point.  The PVH entry is defined by the x86/HVM
667  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
668  *
669  * This function is passed to load_elf() when it is called from
670  * load_elfboot() which then additionally checks for an ELF Note of
671  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
672  * parse the PVH entry address from the ELF Note.
673  *
674  * Due to trickery in elf_opts.h, load_elf() is actually available as
675  * load_elf32() or load_elf64() and this routine needs to be able
676  * to deal with being called as 32 or 64 bit.
677  *
678  * The address of the PVH entry point is saved to the 'pvh_start_addr'
679  * global variable.  (although the entry point is 32-bit, the kernel
680  * binary can be either 32-bit or 64-bit).
681  */
682 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
683 {
684     size_t *elf_note_data_addr;
685 
686     /* Check if ELF Note header passed in is valid */
687     if (arg1 == NULL) {
688         return 0;
689     }
690 
691     if (is64) {
692         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
693         uint64_t nhdr_size64 = sizeof(struct elf64_note);
694         uint64_t phdr_align = *(uint64_t *)arg2;
695         uint64_t nhdr_namesz = nhdr64->n_namesz;
696 
697         elf_note_data_addr =
698             ((void *)nhdr64) + nhdr_size64 +
699             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
700 
701         pvh_start_addr = *elf_note_data_addr;
702     } else {
703         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
704         uint32_t nhdr_size32 = sizeof(struct elf32_note);
705         uint32_t phdr_align = *(uint32_t *)arg2;
706         uint32_t nhdr_namesz = nhdr32->n_namesz;
707 
708         elf_note_data_addr =
709             ((void *)nhdr32) + nhdr_size32 +
710             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
711 
712         pvh_start_addr = *(uint32_t *)elf_note_data_addr;
713     }
714 
715     return pvh_start_addr;
716 }
717 
718 static bool load_elfboot(const char *kernel_filename,
719                          int kernel_file_size,
720                          uint8_t *header,
721                          size_t pvh_xen_start_addr,
722                          FWCfgState *fw_cfg)
723 {
724     uint32_t flags = 0;
725     uint32_t mh_load_addr = 0;
726     uint32_t elf_kernel_size = 0;
727     uint64_t elf_entry;
728     uint64_t elf_low, elf_high;
729     int kernel_size;
730 
731     if (ldl_p(header) != 0x464c457f) {
732         return false; /* no elfboot */
733     }
734 
735     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
736     flags = elf_is64 ?
737         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
738 
739     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
740         error_report("elfboot unsupported flags = %x", flags);
741         exit(1);
742     }
743 
744     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
745     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
746                            NULL, &elf_note_type, &elf_entry,
747                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
748                            0, 0);
749 
750     if (kernel_size < 0) {
751         error_report("Error while loading elf kernel");
752         exit(1);
753     }
754     mh_load_addr = elf_low;
755     elf_kernel_size = elf_high - elf_low;
756 
757     if (pvh_start_addr == 0) {
758         error_report("Error loading uncompressed kernel without PVH ELF Note");
759         exit(1);
760     }
761     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
762     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
763     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
764 
765     return true;
766 }
767 
768 typedef struct SetupDataFixup {
769     void *pos;
770     hwaddr orig_val, new_val;
771     uint32_t addr;
772 } SetupDataFixup;
773 
774 static void fixup_setup_data(void *opaque)
775 {
776     SetupDataFixup *fixup = opaque;
777     stq_p(fixup->pos, fixup->new_val);
778 }
779 
780 static void reset_setup_data(void *opaque)
781 {
782     SetupDataFixup *fixup = opaque;
783     stq_p(fixup->pos, fixup->orig_val);
784 }
785 
786 static void reset_rng_seed(void *opaque)
787 {
788     SetupData *setup_data = opaque;
789     qemu_guest_getrandom_nofail(setup_data->data, le32_to_cpu(setup_data->len));
790 }
791 
792 void x86_load_linux(X86MachineState *x86ms,
793                     FWCfgState *fw_cfg,
794                     int acpi_data_size,
795                     bool pvh_enabled,
796                     bool legacy_no_rng_seed)
797 {
798     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
799     uint16_t protocol;
800     int setup_size, kernel_size, cmdline_size;
801     int dtb_size, setup_data_offset;
802     uint32_t initrd_max;
803     uint8_t header[8192], *setup, *kernel;
804     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0;
805     FILE *f;
806     char *vmode;
807     MachineState *machine = MACHINE(x86ms);
808     SetupData *setup_data;
809     const char *kernel_filename = machine->kernel_filename;
810     const char *initrd_filename = machine->initrd_filename;
811     const char *dtb_filename = machine->dtb;
812     const char *kernel_cmdline = machine->kernel_cmdline;
813     SevKernelLoaderContext sev_load_ctx = {};
814     enum { RNG_SEED_LENGTH = 32 };
815 
816     /* Align to 16 bytes as a paranoia measure */
817     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
818 
819     /* load the kernel header */
820     f = fopen(kernel_filename, "rb");
821     if (!f) {
822         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
823                 kernel_filename, strerror(errno));
824         exit(1);
825     }
826 
827     kernel_size = get_file_size(f);
828     if (!kernel_size ||
829         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
830         MIN(ARRAY_SIZE(header), kernel_size)) {
831         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
832                 kernel_filename, strerror(errno));
833         exit(1);
834     }
835 
836     /* kernel protocol version */
837     if (ldl_p(header + 0x202) == 0x53726448) {
838         protocol = lduw_p(header + 0x206);
839     } else {
840         /*
841          * This could be a multiboot kernel. If it is, let's stop treating it
842          * like a Linux kernel.
843          * Note: some multiboot images could be in the ELF format (the same of
844          * PVH), so we try multiboot first since we check the multiboot magic
845          * header before to load it.
846          */
847         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
848                            kernel_cmdline, kernel_size, header)) {
849             return;
850         }
851         /*
852          * Check if the file is an uncompressed kernel file (ELF) and load it,
853          * saving the PVH entry point used by the x86/HVM direct boot ABI.
854          * If load_elfboot() is successful, populate the fw_cfg info.
855          */
856         if (pvh_enabled &&
857             load_elfboot(kernel_filename, kernel_size,
858                          header, pvh_start_addr, fw_cfg)) {
859             fclose(f);
860 
861             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
862                 strlen(kernel_cmdline) + 1);
863             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
864 
865             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
866             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
867                              header, sizeof(header));
868 
869             /* load initrd */
870             if (initrd_filename) {
871                 GMappedFile *mapped_file;
872                 gsize initrd_size;
873                 gchar *initrd_data;
874                 GError *gerr = NULL;
875 
876                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
877                 if (!mapped_file) {
878                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
879                             initrd_filename, gerr->message);
880                     exit(1);
881                 }
882                 x86ms->initrd_mapped_file = mapped_file;
883 
884                 initrd_data = g_mapped_file_get_contents(mapped_file);
885                 initrd_size = g_mapped_file_get_length(mapped_file);
886                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
887                 if (initrd_size >= initrd_max) {
888                     fprintf(stderr, "qemu: initrd is too large, cannot support."
889                             "(max: %"PRIu32", need %"PRId64")\n",
890                             initrd_max, (uint64_t)initrd_size);
891                     exit(1);
892                 }
893 
894                 initrd_addr = (initrd_max - initrd_size) & ~4095;
895 
896                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
897                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
898                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
899                                  initrd_size);
900             }
901 
902             option_rom[nb_option_roms].bootindex = 0;
903             option_rom[nb_option_roms].name = "pvh.bin";
904             nb_option_roms++;
905 
906             return;
907         }
908         protocol = 0;
909     }
910 
911     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
912         /* Low kernel */
913         real_addr    = 0x90000;
914         cmdline_addr = 0x9a000 - cmdline_size;
915         prot_addr    = 0x10000;
916     } else if (protocol < 0x202) {
917         /* High but ancient kernel */
918         real_addr    = 0x90000;
919         cmdline_addr = 0x9a000 - cmdline_size;
920         prot_addr    = 0x100000;
921     } else {
922         /* High and recent kernel */
923         real_addr    = 0x10000;
924         cmdline_addr = 0x20000;
925         prot_addr    = 0x100000;
926     }
927 
928     /* highest address for loading the initrd */
929     if (protocol >= 0x20c &&
930         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
931         /*
932          * Linux has supported initrd up to 4 GB for a very long time (2007,
933          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
934          * though it only sets initrd_max to 2 GB to "work around bootloader
935          * bugs". Luckily, QEMU firmware(which does something like bootloader)
936          * has supported this.
937          *
938          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
939          * be loaded into any address.
940          *
941          * In addition, initrd_max is uint32_t simply because QEMU doesn't
942          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
943          * field).
944          *
945          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
946          */
947         initrd_max = UINT32_MAX;
948     } else if (protocol >= 0x203) {
949         initrd_max = ldl_p(header + 0x22c);
950     } else {
951         initrd_max = 0x37ffffff;
952     }
953 
954     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
955         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
956     }
957 
958     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
959     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
960     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
961     sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
962     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
963 
964     if (protocol >= 0x202) {
965         stl_p(header + 0x228, cmdline_addr);
966     } else {
967         stw_p(header + 0x20, 0xA33F);
968         stw_p(header + 0x22, cmdline_addr - real_addr);
969     }
970 
971     /* handle vga= parameter */
972     vmode = strstr(kernel_cmdline, "vga=");
973     if (vmode) {
974         unsigned int video_mode;
975         const char *end;
976         int ret;
977         /* skip "vga=" */
978         vmode += 4;
979         if (!strncmp(vmode, "normal", 6)) {
980             video_mode = 0xffff;
981         } else if (!strncmp(vmode, "ext", 3)) {
982             video_mode = 0xfffe;
983         } else if (!strncmp(vmode, "ask", 3)) {
984             video_mode = 0xfffd;
985         } else {
986             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
987             if (ret != 0 || (*end && *end != ' ')) {
988                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
989                 exit(1);
990             }
991         }
992         stw_p(header + 0x1fa, video_mode);
993     }
994 
995     /* loader type */
996     /*
997      * High nybble = B reserved for QEMU; low nybble is revision number.
998      * If this code is substantially changed, you may want to consider
999      * incrementing the revision.
1000      */
1001     if (protocol >= 0x200) {
1002         header[0x210] = 0xB0;
1003     }
1004     /* heap */
1005     if (protocol >= 0x201) {
1006         header[0x211] |= 0x80; /* CAN_USE_HEAP */
1007         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1008     }
1009 
1010     /* load initrd */
1011     if (initrd_filename) {
1012         GMappedFile *mapped_file;
1013         gsize initrd_size;
1014         gchar *initrd_data;
1015         GError *gerr = NULL;
1016 
1017         if (protocol < 0x200) {
1018             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1019             exit(1);
1020         }
1021 
1022         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1023         if (!mapped_file) {
1024             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1025                     initrd_filename, gerr->message);
1026             exit(1);
1027         }
1028         x86ms->initrd_mapped_file = mapped_file;
1029 
1030         initrd_data = g_mapped_file_get_contents(mapped_file);
1031         initrd_size = g_mapped_file_get_length(mapped_file);
1032         if (initrd_size >= initrd_max) {
1033             fprintf(stderr, "qemu: initrd is too large, cannot support."
1034                     "(max: %"PRIu32", need %"PRId64")\n",
1035                     initrd_max, (uint64_t)initrd_size);
1036             exit(1);
1037         }
1038 
1039         initrd_addr = (initrd_max - initrd_size) & ~4095;
1040 
1041         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1042         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1043         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1044         sev_load_ctx.initrd_data = initrd_data;
1045         sev_load_ctx.initrd_size = initrd_size;
1046 
1047         stl_p(header + 0x218, initrd_addr);
1048         stl_p(header + 0x21c, initrd_size);
1049     }
1050 
1051     /* load kernel and setup */
1052     setup_size = header[0x1f1];
1053     if (setup_size == 0) {
1054         setup_size = 4;
1055     }
1056     setup_size = (setup_size + 1) * 512;
1057     if (setup_size > kernel_size) {
1058         fprintf(stderr, "qemu: invalid kernel header\n");
1059         exit(1);
1060     }
1061     kernel_size -= setup_size;
1062 
1063     setup  = g_malloc(setup_size);
1064     kernel = g_malloc(kernel_size);
1065     fseek(f, 0, SEEK_SET);
1066     if (fread(setup, 1, setup_size, f) != setup_size) {
1067         fprintf(stderr, "fread() failed\n");
1068         exit(1);
1069     }
1070     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1071         fprintf(stderr, "fread() failed\n");
1072         exit(1);
1073     }
1074     fclose(f);
1075 
1076     /* append dtb to kernel */
1077     if (dtb_filename) {
1078         if (protocol < 0x209) {
1079             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1080             exit(1);
1081         }
1082 
1083         dtb_size = get_image_size(dtb_filename);
1084         if (dtb_size <= 0) {
1085             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1086                     dtb_filename, strerror(errno));
1087             exit(1);
1088         }
1089 
1090         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1091         kernel_size = setup_data_offset + sizeof(SetupData) + dtb_size;
1092         kernel = g_realloc(kernel, kernel_size);
1093 
1094 
1095         setup_data = (SetupData *)(kernel + setup_data_offset);
1096         setup_data->next = cpu_to_le64(first_setup_data);
1097         first_setup_data = prot_addr + setup_data_offset;
1098         setup_data->type = cpu_to_le32(SETUP_DTB);
1099         setup_data->len = cpu_to_le32(dtb_size);
1100 
1101         load_image_size(dtb_filename, setup_data->data, dtb_size);
1102     }
1103 
1104     if (!legacy_no_rng_seed) {
1105         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1106         kernel_size = setup_data_offset + sizeof(SetupData) + RNG_SEED_LENGTH;
1107         kernel = g_realloc(kernel, kernel_size);
1108         setup_data = (SetupData *)(kernel + setup_data_offset);
1109         setup_data->next = cpu_to_le64(first_setup_data);
1110         first_setup_data = prot_addr + setup_data_offset;
1111         setup_data->type = cpu_to_le32(SETUP_RNG_SEED);
1112         setup_data->len = cpu_to_le32(RNG_SEED_LENGTH);
1113         qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH);
1114         qemu_register_reset(reset_rng_seed, setup_data);
1115         fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_KERNEL_DATA, reset_rng_seed, NULL,
1116                                   setup_data, kernel, kernel_size, true);
1117     } else {
1118         fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1119     }
1120 
1121     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1122     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1123     sev_load_ctx.kernel_data = (char *)kernel;
1124     sev_load_ctx.kernel_size = kernel_size;
1125 
1126     /*
1127      * If we're starting an encrypted VM, it will be OVMF based, which uses the
1128      * efi stub for booting and doesn't require any values to be placed in the
1129      * kernel header.  We therefore don't update the header so the hash of the
1130      * kernel on the other side of the fw_cfg interface matches the hash of the
1131      * file the user passed in.
1132      */
1133     if (!sev_enabled()) {
1134         SetupDataFixup *fixup = g_malloc(sizeof(*fixup));
1135 
1136         memcpy(setup, header, MIN(sizeof(header), setup_size));
1137         /* Offset 0x250 is a pointer to the first setup_data link. */
1138         fixup->pos = setup + 0x250;
1139         fixup->orig_val = ldq_p(fixup->pos);
1140         fixup->new_val = first_setup_data;
1141         fixup->addr = cpu_to_le32(real_addr);
1142         fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_SETUP_ADDR, fixup_setup_data, NULL,
1143                                   fixup, &fixup->addr, sizeof(fixup->addr), true);
1144         qemu_register_reset(reset_setup_data, fixup);
1145     } else {
1146         fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1147     }
1148     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1149     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1150     sev_load_ctx.setup_data = (char *)setup;
1151     sev_load_ctx.setup_size = setup_size;
1152 
1153     if (sev_enabled()) {
1154         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1155     }
1156 
1157     option_rom[nb_option_roms].bootindex = 0;
1158     option_rom[nb_option_roms].name = "linuxboot.bin";
1159     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1160         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1161     }
1162     nb_option_roms++;
1163 }
1164 
1165 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1166                        MemoryRegion *rom_memory, bool isapc_ram_fw)
1167 {
1168     const char *bios_name;
1169     char *filename;
1170     MemoryRegion *bios, *isa_bios;
1171     int bios_size, isa_bios_size;
1172     ssize_t ret;
1173 
1174     /* BIOS load */
1175     bios_name = ms->firmware ?: default_firmware;
1176     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1177     if (filename) {
1178         bios_size = get_image_size(filename);
1179     } else {
1180         bios_size = -1;
1181     }
1182     if (bios_size <= 0 ||
1183         (bios_size % 65536) != 0) {
1184         goto bios_error;
1185     }
1186     bios = g_malloc(sizeof(*bios));
1187     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1188     if (sev_enabled()) {
1189         /*
1190          * The concept of a "reset" simply doesn't exist for
1191          * confidential computing guests, we have to destroy and
1192          * re-launch them instead.  So there is no need to register
1193          * the firmware as rom to properly re-initialize on reset.
1194          * Just go for a straight file load instead.
1195          */
1196         void *ptr = memory_region_get_ram_ptr(bios);
1197         load_image_size(filename, ptr, bios_size);
1198         x86_firmware_configure(ptr, bios_size);
1199     } else {
1200         if (!isapc_ram_fw) {
1201             memory_region_set_readonly(bios, true);
1202         }
1203         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1204         if (ret != 0) {
1205             goto bios_error;
1206         }
1207     }
1208     g_free(filename);
1209 
1210     /* map the last 128KB of the BIOS in ISA space */
1211     isa_bios_size = MIN(bios_size, 128 * KiB);
1212     isa_bios = g_malloc(sizeof(*isa_bios));
1213     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1214                              bios_size - isa_bios_size, isa_bios_size);
1215     memory_region_add_subregion_overlap(rom_memory,
1216                                         0x100000 - isa_bios_size,
1217                                         isa_bios,
1218                                         1);
1219     if (!isapc_ram_fw) {
1220         memory_region_set_readonly(isa_bios, true);
1221     }
1222 
1223     /* map all the bios at the top of memory */
1224     memory_region_add_subregion(rom_memory,
1225                                 (uint32_t)(-bios_size),
1226                                 bios);
1227     return;
1228 
1229 bios_error:
1230     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1231     exit(1);
1232 }
1233 
1234 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1235 {
1236     bool smm_available = false;
1237 
1238     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1239         return false;
1240     }
1241 
1242     if (tcg_enabled() || qtest_enabled()) {
1243         smm_available = true;
1244     } else if (kvm_enabled()) {
1245         smm_available = kvm_has_smm();
1246     }
1247 
1248     if (smm_available) {
1249         return true;
1250     }
1251 
1252     if (x86ms->smm == ON_OFF_AUTO_ON) {
1253         error_report("System Management Mode not supported by this hypervisor.");
1254         exit(1);
1255     }
1256     return false;
1257 }
1258 
1259 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1260                                void *opaque, Error **errp)
1261 {
1262     X86MachineState *x86ms = X86_MACHINE(obj);
1263     OnOffAuto smm = x86ms->smm;
1264 
1265     visit_type_OnOffAuto(v, name, &smm, errp);
1266 }
1267 
1268 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1269                                void *opaque, Error **errp)
1270 {
1271     X86MachineState *x86ms = X86_MACHINE(obj);
1272 
1273     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1274 }
1275 
1276 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1277 {
1278     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1279         return false;
1280     }
1281     return true;
1282 }
1283 
1284 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1285                                  void *opaque, Error **errp)
1286 {
1287     X86MachineState *x86ms = X86_MACHINE(obj);
1288     OnOffAuto acpi = x86ms->acpi;
1289 
1290     visit_type_OnOffAuto(v, name, &acpi, errp);
1291 }
1292 
1293 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1294                                  void *opaque, Error **errp)
1295 {
1296     X86MachineState *x86ms = X86_MACHINE(obj);
1297 
1298     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1299 }
1300 
1301 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1302                                     void *opaque, Error **errp)
1303 {
1304     X86MachineState *x86ms = X86_MACHINE(obj);
1305     OnOffAuto pit = x86ms->pit;
1306 
1307     visit_type_OnOffAuto(v, name, &pit, errp);
1308 }
1309 
1310 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1311                                     void *opaque, Error **errp)
1312 {
1313     X86MachineState *x86ms = X86_MACHINE(obj);;
1314 
1315     visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1316 }
1317 
1318 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1319                                 void *opaque, Error **errp)
1320 {
1321     X86MachineState *x86ms = X86_MACHINE(obj);
1322     OnOffAuto pic = x86ms->pic;
1323 
1324     visit_type_OnOffAuto(v, name, &pic, errp);
1325 }
1326 
1327 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1328                                 void *opaque, Error **errp)
1329 {
1330     X86MachineState *x86ms = X86_MACHINE(obj);
1331 
1332     visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1333 }
1334 
1335 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1336 {
1337     X86MachineState *x86ms = X86_MACHINE(obj);
1338 
1339     return g_strdup(x86ms->oem_id);
1340 }
1341 
1342 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1343 {
1344     X86MachineState *x86ms = X86_MACHINE(obj);
1345     size_t len = strlen(value);
1346 
1347     if (len > 6) {
1348         error_setg(errp,
1349                    "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1350                    "6 bytes in size");
1351         return;
1352     }
1353 
1354     strncpy(x86ms->oem_id, value, 6);
1355 }
1356 
1357 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1358 {
1359     X86MachineState *x86ms = X86_MACHINE(obj);
1360 
1361     return g_strdup(x86ms->oem_table_id);
1362 }
1363 
1364 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1365                                          Error **errp)
1366 {
1367     X86MachineState *x86ms = X86_MACHINE(obj);
1368     size_t len = strlen(value);
1369 
1370     if (len > 8) {
1371         error_setg(errp,
1372                    "User specified "X86_MACHINE_OEM_TABLE_ID
1373                    " value is bigger than "
1374                    "8 bytes in size");
1375         return;
1376     }
1377     strncpy(x86ms->oem_table_id, value, 8);
1378 }
1379 
1380 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1381                                 const char *name, void *opaque, Error **errp)
1382 {
1383     X86MachineState *x86ms = X86_MACHINE(obj);
1384     uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1385 
1386     visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1387 }
1388 
1389 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1390                                const char *name, void *opaque, Error **errp)
1391 {
1392     X86MachineState *x86ms = X86_MACHINE(obj);
1393 
1394     visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1395 }
1396 
1397 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1398                                 void *opaque, Error **errp)
1399 {
1400     X86MachineState *x86ms = X86_MACHINE(obj);
1401     SgxEPCList *list = x86ms->sgx_epc_list;
1402 
1403     visit_type_SgxEPCList(v, name, &list, errp);
1404 }
1405 
1406 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1407                                 void *opaque, Error **errp)
1408 {
1409     X86MachineState *x86ms = X86_MACHINE(obj);
1410     SgxEPCList *list;
1411 
1412     list = x86ms->sgx_epc_list;
1413     visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1414 
1415     qapi_free_SgxEPCList(list);
1416 }
1417 
1418 static void x86_machine_initfn(Object *obj)
1419 {
1420     X86MachineState *x86ms = X86_MACHINE(obj);
1421 
1422     x86ms->smm = ON_OFF_AUTO_AUTO;
1423     x86ms->acpi = ON_OFF_AUTO_AUTO;
1424     x86ms->pit = ON_OFF_AUTO_AUTO;
1425     x86ms->pic = ON_OFF_AUTO_AUTO;
1426     x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1427     x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1428     x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1429     x86ms->bus_lock_ratelimit = 0;
1430     x86ms->above_4g_mem_start = 4 * GiB;
1431 }
1432 
1433 static void x86_machine_class_init(ObjectClass *oc, void *data)
1434 {
1435     MachineClass *mc = MACHINE_CLASS(oc);
1436     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1437     NMIClass *nc = NMI_CLASS(oc);
1438 
1439     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1440     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1441     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1442     x86mc->save_tsc_khz = true;
1443     x86mc->fwcfg_dma_enabled = true;
1444     nc->nmi_monitor_handler = x86_nmi;
1445 
1446     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1447         x86_machine_get_smm, x86_machine_set_smm,
1448         NULL, NULL);
1449     object_class_property_set_description(oc, X86_MACHINE_SMM,
1450         "Enable SMM");
1451 
1452     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1453         x86_machine_get_acpi, x86_machine_set_acpi,
1454         NULL, NULL);
1455     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1456         "Enable ACPI");
1457 
1458     object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1459                               x86_machine_get_pit,
1460                               x86_machine_set_pit,
1461                               NULL, NULL);
1462     object_class_property_set_description(oc, X86_MACHINE_PIT,
1463         "Enable i8254 PIT");
1464 
1465     object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1466                               x86_machine_get_pic,
1467                               x86_machine_set_pic,
1468                               NULL, NULL);
1469     object_class_property_set_description(oc, X86_MACHINE_PIC,
1470         "Enable i8259 PIC");
1471 
1472     object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1473                                   x86_machine_get_oem_id,
1474                                   x86_machine_set_oem_id);
1475     object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1476                                           "Override the default value of field OEMID "
1477                                           "in ACPI table header."
1478                                           "The string may be up to 6 bytes in size");
1479 
1480 
1481     object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1482                                   x86_machine_get_oem_table_id,
1483                                   x86_machine_set_oem_table_id);
1484     object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1485                                           "Override the default value of field OEM Table ID "
1486                                           "in ACPI table header."
1487                                           "The string may be up to 8 bytes in size");
1488 
1489     object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1490                                 x86_machine_get_bus_lock_ratelimit,
1491                                 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1492     object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1493             "Set the ratelimit for the bus locks acquired in VMs");
1494 
1495     object_class_property_add(oc, "sgx-epc", "SgxEPC",
1496         machine_get_sgx_epc, machine_set_sgx_epc,
1497         NULL, NULL);
1498     object_class_property_set_description(oc, "sgx-epc",
1499         "SGX EPC device");
1500 }
1501 
1502 static const TypeInfo x86_machine_info = {
1503     .name = TYPE_X86_MACHINE,
1504     .parent = TYPE_MACHINE,
1505     .abstract = true,
1506     .instance_size = sizeof(X86MachineState),
1507     .instance_init = x86_machine_initfn,
1508     .class_size = sizeof(X86MachineClass),
1509     .class_init = x86_machine_class_init,
1510     .interfaces = (InterfaceInfo[]) {
1511          { TYPE_NMI },
1512          { }
1513     },
1514 };
1515 
1516 static void x86_machine_register_types(void)
1517 {
1518     type_register_static(&x86_machine_info);
1519 }
1520 
1521 type_init(x86_machine_register_types)
1522