xref: /qemu/hw/i386/x86.c (revision 138ca49a)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "trace.h"
41 
42 #include "hw/i386/x86.h"
43 #include "target/i386/cpu.h"
44 #include "hw/i386/topology.h"
45 #include "hw/i386/fw_cfg.h"
46 #include "hw/intc/i8259.h"
47 #include "hw/rtc/mc146818rtc.h"
48 
49 #include "hw/acpi/cpu_hotplug.h"
50 #include "hw/irq.h"
51 #include "hw/nmi.h"
52 #include "hw/loader.h"
53 #include "multiboot.h"
54 #include "elf.h"
55 #include "standard-headers/asm-x86/bootparam.h"
56 #include CONFIG_DEVICES
57 #include "kvm/kvm_i386.h"
58 
59 /* Physical Address of PVH entry point read from kernel ELF NOTE */
60 static size_t pvh_start_addr;
61 
62 inline void init_topo_info(X86CPUTopoInfo *topo_info,
63                            const X86MachineState *x86ms)
64 {
65     MachineState *ms = MACHINE(x86ms);
66 
67     topo_info->dies_per_pkg = x86ms->smp_dies;
68     topo_info->cores_per_die = ms->smp.cores;
69     topo_info->threads_per_core = ms->smp.threads;
70 }
71 
72 /*
73  * Calculates initial APIC ID for a specific CPU index
74  *
75  * Currently we need to be able to calculate the APIC ID from the CPU index
76  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
77  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
78  * all CPUs up to max_cpus.
79  */
80 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
81                                     unsigned int cpu_index)
82 {
83     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
84     X86CPUTopoInfo topo_info;
85     uint32_t correct_id;
86     static bool warned;
87 
88     init_topo_info(&topo_info, x86ms);
89 
90     correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
91     if (x86mc->compat_apic_id_mode) {
92         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
93             error_report("APIC IDs set in compatibility mode, "
94                          "CPU topology won't match the configuration");
95             warned = true;
96         }
97         return cpu_index;
98     } else {
99         return correct_id;
100     }
101 }
102 
103 
104 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
105 {
106     Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
107 
108     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
109         goto out;
110     }
111     qdev_realize(DEVICE(cpu), NULL, errp);
112 
113 out:
114     object_unref(cpu);
115 }
116 
117 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
118 {
119     int i;
120     const CPUArchIdList *possible_cpus;
121     MachineState *ms = MACHINE(x86ms);
122     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
123 
124     x86_cpu_set_default_version(default_cpu_version);
125 
126     /*
127      * Calculates the limit to CPU APIC ID values
128      *
129      * Limit for the APIC ID value, so that all
130      * CPU APIC IDs are < x86ms->apic_id_limit.
131      *
132      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
133      */
134     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
135                                                       ms->smp.max_cpus - 1) + 1;
136     possible_cpus = mc->possible_cpu_arch_ids(ms);
137     for (i = 0; i < ms->smp.cpus; i++) {
138         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
139     }
140 }
141 
142 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
143 {
144     if (cpus_count > 0xff) {
145         /*
146          * If the number of CPUs can't be represented in 8 bits, the
147          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
148          * to make old BIOSes fail more predictably.
149          */
150         rtc_set_memory(rtc, 0x5f, 0);
151     } else {
152         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
153     }
154 }
155 
156 static int x86_apic_cmp(const void *a, const void *b)
157 {
158    CPUArchId *apic_a = (CPUArchId *)a;
159    CPUArchId *apic_b = (CPUArchId *)b;
160 
161    return apic_a->arch_id - apic_b->arch_id;
162 }
163 
164 /*
165  * returns pointer to CPUArchId descriptor that matches CPU's apic_id
166  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
167  * entry corresponding to CPU's apic_id returns NULL.
168  */
169 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
170 {
171     CPUArchId apic_id, *found_cpu;
172 
173     apic_id.arch_id = id;
174     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
175         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
176         x86_apic_cmp);
177     if (found_cpu && idx) {
178         *idx = found_cpu - ms->possible_cpus->cpus;
179     }
180     return found_cpu;
181 }
182 
183 void x86_cpu_plug(HotplugHandler *hotplug_dev,
184                   DeviceState *dev, Error **errp)
185 {
186     CPUArchId *found_cpu;
187     Error *local_err = NULL;
188     X86CPU *cpu = X86_CPU(dev);
189     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
190 
191     if (x86ms->acpi_dev) {
192         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
193         if (local_err) {
194             goto out;
195         }
196     }
197 
198     /* increment the number of CPUs */
199     x86ms->boot_cpus++;
200     if (x86ms->rtc) {
201         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
202     }
203     if (x86ms->fw_cfg) {
204         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
205     }
206 
207     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
208     found_cpu->cpu = OBJECT(dev);
209 out:
210     error_propagate(errp, local_err);
211 }
212 
213 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
214                                DeviceState *dev, Error **errp)
215 {
216     int idx = -1;
217     X86CPU *cpu = X86_CPU(dev);
218     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
219 
220     if (!x86ms->acpi_dev) {
221         error_setg(errp, "CPU hot unplug not supported without ACPI");
222         return;
223     }
224 
225     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
226     assert(idx != -1);
227     if (idx == 0) {
228         error_setg(errp, "Boot CPU is unpluggable");
229         return;
230     }
231 
232     hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
233                                    errp);
234 }
235 
236 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
237                        DeviceState *dev, Error **errp)
238 {
239     CPUArchId *found_cpu;
240     Error *local_err = NULL;
241     X86CPU *cpu = X86_CPU(dev);
242     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
243 
244     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
245     if (local_err) {
246         goto out;
247     }
248 
249     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
250     found_cpu->cpu = NULL;
251     qdev_unrealize(dev);
252 
253     /* decrement the number of CPUs */
254     x86ms->boot_cpus--;
255     /* Update the number of CPUs in CMOS */
256     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
257     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
258  out:
259     error_propagate(errp, local_err);
260 }
261 
262 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
263                       DeviceState *dev, Error **errp)
264 {
265     int idx;
266     CPUState *cs;
267     CPUArchId *cpu_slot;
268     X86CPUTopoIDs topo_ids;
269     X86CPU *cpu = X86_CPU(dev);
270     CPUX86State *env = &cpu->env;
271     MachineState *ms = MACHINE(hotplug_dev);
272     X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
273     unsigned int smp_cores = ms->smp.cores;
274     unsigned int smp_threads = ms->smp.threads;
275     X86CPUTopoInfo topo_info;
276 
277     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
278         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
279                    ms->cpu_type);
280         return;
281     }
282 
283     if (x86ms->acpi_dev) {
284         Error *local_err = NULL;
285 
286         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
287                                  &local_err);
288         if (local_err) {
289             error_propagate(errp, local_err);
290             return;
291         }
292     }
293 
294     init_topo_info(&topo_info, x86ms);
295 
296     env->nr_dies = x86ms->smp_dies;
297 
298     /*
299      * If APIC ID is not set,
300      * set it based on socket/die/core/thread properties.
301      */
302     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
303         int max_socket = (ms->smp.max_cpus - 1) /
304                                 smp_threads / smp_cores / x86ms->smp_dies;
305 
306         /*
307          * die-id was optional in QEMU 4.0 and older, so keep it optional
308          * if there's only one die per socket.
309          */
310         if (cpu->die_id < 0 && x86ms->smp_dies == 1) {
311             cpu->die_id = 0;
312         }
313 
314         if (cpu->socket_id < 0) {
315             error_setg(errp, "CPU socket-id is not set");
316             return;
317         } else if (cpu->socket_id > max_socket) {
318             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
319                        cpu->socket_id, max_socket);
320             return;
321         }
322         if (cpu->die_id < 0) {
323             error_setg(errp, "CPU die-id is not set");
324             return;
325         } else if (cpu->die_id > x86ms->smp_dies - 1) {
326             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
327                        cpu->die_id, x86ms->smp_dies - 1);
328             return;
329         }
330         if (cpu->core_id < 0) {
331             error_setg(errp, "CPU core-id is not set");
332             return;
333         } else if (cpu->core_id > (smp_cores - 1)) {
334             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
335                        cpu->core_id, smp_cores - 1);
336             return;
337         }
338         if (cpu->thread_id < 0) {
339             error_setg(errp, "CPU thread-id is not set");
340             return;
341         } else if (cpu->thread_id > (smp_threads - 1)) {
342             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
343                        cpu->thread_id, smp_threads - 1);
344             return;
345         }
346 
347         topo_ids.pkg_id = cpu->socket_id;
348         topo_ids.die_id = cpu->die_id;
349         topo_ids.core_id = cpu->core_id;
350         topo_ids.smt_id = cpu->thread_id;
351         cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
352     }
353 
354     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
355     if (!cpu_slot) {
356         MachineState *ms = MACHINE(x86ms);
357 
358         x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
359         error_setg(errp,
360             "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
361             " APIC ID %" PRIu32 ", valid index range 0:%d",
362             topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
363             cpu->apic_id, ms->possible_cpus->len - 1);
364         return;
365     }
366 
367     if (cpu_slot->cpu) {
368         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
369                    idx, cpu->apic_id);
370         return;
371     }
372 
373     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
374      * so that machine_query_hotpluggable_cpus would show correct values
375      */
376     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
377      * once -smp refactoring is complete and there will be CPU private
378      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
379     x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
380     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
381         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
382             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
383             topo_ids.pkg_id);
384         return;
385     }
386     cpu->socket_id = topo_ids.pkg_id;
387 
388     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
389         error_setg(errp, "property die-id: %u doesn't match set apic-id:"
390             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
391         return;
392     }
393     cpu->die_id = topo_ids.die_id;
394 
395     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
396         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
397             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
398             topo_ids.core_id);
399         return;
400     }
401     cpu->core_id = topo_ids.core_id;
402 
403     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
404         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
405             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
406             topo_ids.smt_id);
407         return;
408     }
409     cpu->thread_id = topo_ids.smt_id;
410 
411     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
412         !kvm_hv_vpindex_settable()) {
413         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
414         return;
415     }
416 
417     cs = CPU(cpu);
418     cs->cpu_index = idx;
419 
420     numa_cpu_pre_plug(cpu_slot, dev, errp);
421 }
422 
423 CpuInstanceProperties
424 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
425 {
426     MachineClass *mc = MACHINE_GET_CLASS(ms);
427     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
428 
429     assert(cpu_index < possible_cpus->len);
430     return possible_cpus->cpus[cpu_index].props;
431 }
432 
433 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
434 {
435    X86CPUTopoIDs topo_ids;
436    X86MachineState *x86ms = X86_MACHINE(ms);
437    X86CPUTopoInfo topo_info;
438 
439    init_topo_info(&topo_info, x86ms);
440 
441    assert(idx < ms->possible_cpus->len);
442    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
443                             &topo_info, &topo_ids);
444    return topo_ids.pkg_id % ms->numa_state->num_nodes;
445 }
446 
447 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
448 {
449     X86MachineState *x86ms = X86_MACHINE(ms);
450     unsigned int max_cpus = ms->smp.max_cpus;
451     X86CPUTopoInfo topo_info;
452     int i;
453 
454     if (ms->possible_cpus) {
455         /*
456          * make sure that max_cpus hasn't changed since the first use, i.e.
457          * -smp hasn't been parsed after it
458          */
459         assert(ms->possible_cpus->len == max_cpus);
460         return ms->possible_cpus;
461     }
462 
463     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
464                                   sizeof(CPUArchId) * max_cpus);
465     ms->possible_cpus->len = max_cpus;
466 
467     init_topo_info(&topo_info, x86ms);
468 
469     for (i = 0; i < ms->possible_cpus->len; i++) {
470         X86CPUTopoIDs topo_ids;
471 
472         ms->possible_cpus->cpus[i].type = ms->cpu_type;
473         ms->possible_cpus->cpus[i].vcpus_count = 1;
474         ms->possible_cpus->cpus[i].arch_id =
475             x86_cpu_apic_id_from_index(x86ms, i);
476         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
477                                  &topo_info, &topo_ids);
478         ms->possible_cpus->cpus[i].props.has_socket_id = true;
479         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
480         if (x86ms->smp_dies > 1) {
481             ms->possible_cpus->cpus[i].props.has_die_id = true;
482             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
483         }
484         ms->possible_cpus->cpus[i].props.has_core_id = true;
485         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
486         ms->possible_cpus->cpus[i].props.has_thread_id = true;
487         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
488     }
489     return ms->possible_cpus;
490 }
491 
492 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
493 {
494     /* cpu index isn't used */
495     CPUState *cs;
496 
497     CPU_FOREACH(cs) {
498         X86CPU *cpu = X86_CPU(cs);
499 
500         if (!cpu->apic_state) {
501             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
502         } else {
503             apic_deliver_nmi(cpu->apic_state);
504         }
505     }
506 }
507 
508 static long get_file_size(FILE *f)
509 {
510     long where, size;
511 
512     /* XXX: on Unix systems, using fstat() probably makes more sense */
513 
514     where = ftell(f);
515     fseek(f, 0, SEEK_END);
516     size = ftell(f);
517     fseek(f, where, SEEK_SET);
518 
519     return size;
520 }
521 
522 /* TSC handling */
523 uint64_t cpu_get_tsc(CPUX86State *env)
524 {
525     return cpus_get_elapsed_ticks();
526 }
527 
528 /* IRQ handling */
529 static void pic_irq_request(void *opaque, int irq, int level)
530 {
531     CPUState *cs = first_cpu;
532     X86CPU *cpu = X86_CPU(cs);
533 
534     trace_x86_pic_interrupt(irq, level);
535     if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
536         !whpx_apic_in_platform()) {
537         CPU_FOREACH(cs) {
538             cpu = X86_CPU(cs);
539             if (apic_accept_pic_intr(cpu->apic_state)) {
540                 apic_deliver_pic_intr(cpu->apic_state, level);
541             }
542         }
543     } else {
544         if (level) {
545             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
546         } else {
547             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
548         }
549     }
550 }
551 
552 qemu_irq x86_allocate_cpu_irq(void)
553 {
554     return qemu_allocate_irq(pic_irq_request, NULL, 0);
555 }
556 
557 int cpu_get_pic_interrupt(CPUX86State *env)
558 {
559     X86CPU *cpu = env_archcpu(env);
560     int intno;
561 
562     if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
563         intno = apic_get_interrupt(cpu->apic_state);
564         if (intno >= 0) {
565             return intno;
566         }
567         /* read the irq from the PIC */
568         if (!apic_accept_pic_intr(cpu->apic_state)) {
569             return -1;
570         }
571     }
572 
573     intno = pic_read_irq(isa_pic);
574     return intno;
575 }
576 
577 DeviceState *cpu_get_current_apic(void)
578 {
579     if (current_cpu) {
580         X86CPU *cpu = X86_CPU(current_cpu);
581         return cpu->apic_state;
582     } else {
583         return NULL;
584     }
585 }
586 
587 void gsi_handler(void *opaque, int n, int level)
588 {
589     GSIState *s = opaque;
590 
591     trace_x86_gsi_interrupt(n, level);
592     switch (n) {
593     case 0 ... ISA_NUM_IRQS - 1:
594         if (s->i8259_irq[n]) {
595             /* Under KVM, Kernel will forward to both PIC and IOAPIC */
596             qemu_set_irq(s->i8259_irq[n], level);
597         }
598         /* fall through */
599     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
600         qemu_set_irq(s->ioapic_irq[n], level);
601         break;
602     case IO_APIC_SECONDARY_IRQBASE
603         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
604         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
605         break;
606     }
607 }
608 
609 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
610 {
611     DeviceState *dev;
612     SysBusDevice *d;
613     unsigned int i;
614 
615     assert(parent_name);
616     if (kvm_ioapic_in_kernel()) {
617         dev = qdev_new(TYPE_KVM_IOAPIC);
618     } else {
619         dev = qdev_new(TYPE_IOAPIC);
620     }
621     object_property_add_child(object_resolve_path(parent_name, NULL),
622                               "ioapic", OBJECT(dev));
623     d = SYS_BUS_DEVICE(dev);
624     sysbus_realize_and_unref(d, &error_fatal);
625     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
626 
627     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
628         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
629     }
630 }
631 
632 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
633 {
634     DeviceState *dev;
635     SysBusDevice *d;
636     unsigned int i;
637 
638     dev = qdev_new(TYPE_IOAPIC);
639     d = SYS_BUS_DEVICE(dev);
640     sysbus_realize_and_unref(d, &error_fatal);
641     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
642 
643     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
644         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
645     }
646     return dev;
647 }
648 
649 struct setup_data {
650     uint64_t next;
651     uint32_t type;
652     uint32_t len;
653     uint8_t data[];
654 } __attribute__((packed));
655 
656 
657 /*
658  * The entry point into the kernel for PVH boot is different from
659  * the native entry point.  The PVH entry is defined by the x86/HVM
660  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
661  *
662  * This function is passed to load_elf() when it is called from
663  * load_elfboot() which then additionally checks for an ELF Note of
664  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
665  * parse the PVH entry address from the ELF Note.
666  *
667  * Due to trickery in elf_opts.h, load_elf() is actually available as
668  * load_elf32() or load_elf64() and this routine needs to be able
669  * to deal with being called as 32 or 64 bit.
670  *
671  * The address of the PVH entry point is saved to the 'pvh_start_addr'
672  * global variable.  (although the entry point is 32-bit, the kernel
673  * binary can be either 32-bit or 64-bit).
674  */
675 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
676 {
677     size_t *elf_note_data_addr;
678 
679     /* Check if ELF Note header passed in is valid */
680     if (arg1 == NULL) {
681         return 0;
682     }
683 
684     if (is64) {
685         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
686         uint64_t nhdr_size64 = sizeof(struct elf64_note);
687         uint64_t phdr_align = *(uint64_t *)arg2;
688         uint64_t nhdr_namesz = nhdr64->n_namesz;
689 
690         elf_note_data_addr =
691             ((void *)nhdr64) + nhdr_size64 +
692             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
693     } else {
694         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
695         uint32_t nhdr_size32 = sizeof(struct elf32_note);
696         uint32_t phdr_align = *(uint32_t *)arg2;
697         uint32_t nhdr_namesz = nhdr32->n_namesz;
698 
699         elf_note_data_addr =
700             ((void *)nhdr32) + nhdr_size32 +
701             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
702     }
703 
704     pvh_start_addr = *elf_note_data_addr;
705 
706     return pvh_start_addr;
707 }
708 
709 static bool load_elfboot(const char *kernel_filename,
710                          int kernel_file_size,
711                          uint8_t *header,
712                          size_t pvh_xen_start_addr,
713                          FWCfgState *fw_cfg)
714 {
715     uint32_t flags = 0;
716     uint32_t mh_load_addr = 0;
717     uint32_t elf_kernel_size = 0;
718     uint64_t elf_entry;
719     uint64_t elf_low, elf_high;
720     int kernel_size;
721 
722     if (ldl_p(header) != 0x464c457f) {
723         return false; /* no elfboot */
724     }
725 
726     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
727     flags = elf_is64 ?
728         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
729 
730     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
731         error_report("elfboot unsupported flags = %x", flags);
732         exit(1);
733     }
734 
735     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
736     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
737                            NULL, &elf_note_type, &elf_entry,
738                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
739                            0, 0);
740 
741     if (kernel_size < 0) {
742         error_report("Error while loading elf kernel");
743         exit(1);
744     }
745     mh_load_addr = elf_low;
746     elf_kernel_size = elf_high - elf_low;
747 
748     if (pvh_start_addr == 0) {
749         error_report("Error loading uncompressed kernel without PVH ELF Note");
750         exit(1);
751     }
752     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
753     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
754     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
755 
756     return true;
757 }
758 
759 void x86_load_linux(X86MachineState *x86ms,
760                     FWCfgState *fw_cfg,
761                     int acpi_data_size,
762                     bool pvh_enabled,
763                     bool linuxboot_dma_enabled)
764 {
765     uint16_t protocol;
766     int setup_size, kernel_size, cmdline_size;
767     int dtb_size, setup_data_offset;
768     uint32_t initrd_max;
769     uint8_t header[8192], *setup, *kernel;
770     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
771     FILE *f;
772     char *vmode;
773     MachineState *machine = MACHINE(x86ms);
774     struct setup_data *setup_data;
775     const char *kernel_filename = machine->kernel_filename;
776     const char *initrd_filename = machine->initrd_filename;
777     const char *dtb_filename = machine->dtb;
778     const char *kernel_cmdline = machine->kernel_cmdline;
779 
780     /* Align to 16 bytes as a paranoia measure */
781     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
782 
783     /* load the kernel header */
784     f = fopen(kernel_filename, "rb");
785     if (!f) {
786         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
787                 kernel_filename, strerror(errno));
788         exit(1);
789     }
790 
791     kernel_size = get_file_size(f);
792     if (!kernel_size ||
793         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
794         MIN(ARRAY_SIZE(header), kernel_size)) {
795         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
796                 kernel_filename, strerror(errno));
797         exit(1);
798     }
799 
800     /* kernel protocol version */
801     if (ldl_p(header + 0x202) == 0x53726448) {
802         protocol = lduw_p(header + 0x206);
803     } else {
804         /*
805          * This could be a multiboot kernel. If it is, let's stop treating it
806          * like a Linux kernel.
807          * Note: some multiboot images could be in the ELF format (the same of
808          * PVH), so we try multiboot first since we check the multiboot magic
809          * header before to load it.
810          */
811         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
812                            kernel_cmdline, kernel_size, header)) {
813             return;
814         }
815         /*
816          * Check if the file is an uncompressed kernel file (ELF) and load it,
817          * saving the PVH entry point used by the x86/HVM direct boot ABI.
818          * If load_elfboot() is successful, populate the fw_cfg info.
819          */
820         if (pvh_enabled &&
821             load_elfboot(kernel_filename, kernel_size,
822                          header, pvh_start_addr, fw_cfg)) {
823             fclose(f);
824 
825             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
826                 strlen(kernel_cmdline) + 1);
827             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
828 
829             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
830             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
831                              header, sizeof(header));
832 
833             /* load initrd */
834             if (initrd_filename) {
835                 GMappedFile *mapped_file;
836                 gsize initrd_size;
837                 gchar *initrd_data;
838                 GError *gerr = NULL;
839 
840                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
841                 if (!mapped_file) {
842                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
843                             initrd_filename, gerr->message);
844                     exit(1);
845                 }
846                 x86ms->initrd_mapped_file = mapped_file;
847 
848                 initrd_data = g_mapped_file_get_contents(mapped_file);
849                 initrd_size = g_mapped_file_get_length(mapped_file);
850                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
851                 if (initrd_size >= initrd_max) {
852                     fprintf(stderr, "qemu: initrd is too large, cannot support."
853                             "(max: %"PRIu32", need %"PRId64")\n",
854                             initrd_max, (uint64_t)initrd_size);
855                     exit(1);
856                 }
857 
858                 initrd_addr = (initrd_max - initrd_size) & ~4095;
859 
860                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
861                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
862                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
863                                  initrd_size);
864             }
865 
866             option_rom[nb_option_roms].bootindex = 0;
867             option_rom[nb_option_roms].name = "pvh.bin";
868             nb_option_roms++;
869 
870             return;
871         }
872         protocol = 0;
873     }
874 
875     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
876         /* Low kernel */
877         real_addr    = 0x90000;
878         cmdline_addr = 0x9a000 - cmdline_size;
879         prot_addr    = 0x10000;
880     } else if (protocol < 0x202) {
881         /* High but ancient kernel */
882         real_addr    = 0x90000;
883         cmdline_addr = 0x9a000 - cmdline_size;
884         prot_addr    = 0x100000;
885     } else {
886         /* High and recent kernel */
887         real_addr    = 0x10000;
888         cmdline_addr = 0x20000;
889         prot_addr    = 0x100000;
890     }
891 
892     /* highest address for loading the initrd */
893     if (protocol >= 0x20c &&
894         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
895         /*
896          * Linux has supported initrd up to 4 GB for a very long time (2007,
897          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
898          * though it only sets initrd_max to 2 GB to "work around bootloader
899          * bugs". Luckily, QEMU firmware(which does something like bootloader)
900          * has supported this.
901          *
902          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
903          * be loaded into any address.
904          *
905          * In addition, initrd_max is uint32_t simply because QEMU doesn't
906          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
907          * field).
908          *
909          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
910          */
911         initrd_max = UINT32_MAX;
912     } else if (protocol >= 0x203) {
913         initrd_max = ldl_p(header + 0x22c);
914     } else {
915         initrd_max = 0x37ffffff;
916     }
917 
918     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
919         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
920     }
921 
922     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
923     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
924     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
925 
926     if (protocol >= 0x202) {
927         stl_p(header + 0x228, cmdline_addr);
928     } else {
929         stw_p(header + 0x20, 0xA33F);
930         stw_p(header + 0x22, cmdline_addr - real_addr);
931     }
932 
933     /* handle vga= parameter */
934     vmode = strstr(kernel_cmdline, "vga=");
935     if (vmode) {
936         unsigned int video_mode;
937         const char *end;
938         int ret;
939         /* skip "vga=" */
940         vmode += 4;
941         if (!strncmp(vmode, "normal", 6)) {
942             video_mode = 0xffff;
943         } else if (!strncmp(vmode, "ext", 3)) {
944             video_mode = 0xfffe;
945         } else if (!strncmp(vmode, "ask", 3)) {
946             video_mode = 0xfffd;
947         } else {
948             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
949             if (ret != 0 || (*end && *end != ' ')) {
950                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
951                 exit(1);
952             }
953         }
954         stw_p(header + 0x1fa, video_mode);
955     }
956 
957     /* loader type */
958     /*
959      * High nybble = B reserved for QEMU; low nybble is revision number.
960      * If this code is substantially changed, you may want to consider
961      * incrementing the revision.
962      */
963     if (protocol >= 0x200) {
964         header[0x210] = 0xB0;
965     }
966     /* heap */
967     if (protocol >= 0x201) {
968         header[0x211] |= 0x80; /* CAN_USE_HEAP */
969         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
970     }
971 
972     /* load initrd */
973     if (initrd_filename) {
974         GMappedFile *mapped_file;
975         gsize initrd_size;
976         gchar *initrd_data;
977         GError *gerr = NULL;
978 
979         if (protocol < 0x200) {
980             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
981             exit(1);
982         }
983 
984         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
985         if (!mapped_file) {
986             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
987                     initrd_filename, gerr->message);
988             exit(1);
989         }
990         x86ms->initrd_mapped_file = mapped_file;
991 
992         initrd_data = g_mapped_file_get_contents(mapped_file);
993         initrd_size = g_mapped_file_get_length(mapped_file);
994         if (initrd_size >= initrd_max) {
995             fprintf(stderr, "qemu: initrd is too large, cannot support."
996                     "(max: %"PRIu32", need %"PRId64")\n",
997                     initrd_max, (uint64_t)initrd_size);
998             exit(1);
999         }
1000 
1001         initrd_addr = (initrd_max - initrd_size) & ~4095;
1002 
1003         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1004         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1005         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1006 
1007         stl_p(header + 0x218, initrd_addr);
1008         stl_p(header + 0x21c, initrd_size);
1009     }
1010 
1011     /* load kernel and setup */
1012     setup_size = header[0x1f1];
1013     if (setup_size == 0) {
1014         setup_size = 4;
1015     }
1016     setup_size = (setup_size + 1) * 512;
1017     if (setup_size > kernel_size) {
1018         fprintf(stderr, "qemu: invalid kernel header\n");
1019         exit(1);
1020     }
1021     kernel_size -= setup_size;
1022 
1023     setup  = g_malloc(setup_size);
1024     kernel = g_malloc(kernel_size);
1025     fseek(f, 0, SEEK_SET);
1026     if (fread(setup, 1, setup_size, f) != setup_size) {
1027         fprintf(stderr, "fread() failed\n");
1028         exit(1);
1029     }
1030     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1031         fprintf(stderr, "fread() failed\n");
1032         exit(1);
1033     }
1034     fclose(f);
1035 
1036     /* append dtb to kernel */
1037     if (dtb_filename) {
1038         if (protocol < 0x209) {
1039             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1040             exit(1);
1041         }
1042 
1043         dtb_size = get_image_size(dtb_filename);
1044         if (dtb_size <= 0) {
1045             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1046                     dtb_filename, strerror(errno));
1047             exit(1);
1048         }
1049 
1050         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1051         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1052         kernel = g_realloc(kernel, kernel_size);
1053 
1054         stq_p(header + 0x250, prot_addr + setup_data_offset);
1055 
1056         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1057         setup_data->next = 0;
1058         setup_data->type = cpu_to_le32(SETUP_DTB);
1059         setup_data->len = cpu_to_le32(dtb_size);
1060 
1061         load_image_size(dtb_filename, setup_data->data, dtb_size);
1062     }
1063 
1064     memcpy(setup, header, MIN(sizeof(header), setup_size));
1065 
1066     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1067     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1068     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1069 
1070     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1071     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1072     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1073 
1074     option_rom[nb_option_roms].bootindex = 0;
1075     option_rom[nb_option_roms].name = "linuxboot.bin";
1076     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1077         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1078     }
1079     nb_option_roms++;
1080 }
1081 
1082 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1083                        MemoryRegion *rom_memory, bool isapc_ram_fw)
1084 {
1085     const char *bios_name;
1086     char *filename;
1087     MemoryRegion *bios, *isa_bios;
1088     int bios_size, isa_bios_size;
1089     int ret;
1090 
1091     /* BIOS load */
1092     bios_name = ms->firmware ?: default_firmware;
1093     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1094     if (filename) {
1095         bios_size = get_image_size(filename);
1096     } else {
1097         bios_size = -1;
1098     }
1099     if (bios_size <= 0 ||
1100         (bios_size % 65536) != 0) {
1101         goto bios_error;
1102     }
1103     bios = g_malloc(sizeof(*bios));
1104     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1105     if (!isapc_ram_fw) {
1106         memory_region_set_readonly(bios, true);
1107     }
1108     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1109     if (ret != 0) {
1110     bios_error:
1111         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1112         exit(1);
1113     }
1114     g_free(filename);
1115 
1116     /* map the last 128KB of the BIOS in ISA space */
1117     isa_bios_size = MIN(bios_size, 128 * KiB);
1118     isa_bios = g_malloc(sizeof(*isa_bios));
1119     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1120                              bios_size - isa_bios_size, isa_bios_size);
1121     memory_region_add_subregion_overlap(rom_memory,
1122                                         0x100000 - isa_bios_size,
1123                                         isa_bios,
1124                                         1);
1125     if (!isapc_ram_fw) {
1126         memory_region_set_readonly(isa_bios, true);
1127     }
1128 
1129     /* map all the bios at the top of memory */
1130     memory_region_add_subregion(rom_memory,
1131                                 (uint32_t)(-bios_size),
1132                                 bios);
1133 }
1134 
1135 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1136 {
1137     bool smm_available = false;
1138 
1139     if (x86ms->smm == ON_OFF_AUTO_OFF) {
1140         return false;
1141     }
1142 
1143     if (tcg_enabled() || qtest_enabled()) {
1144         smm_available = true;
1145     } else if (kvm_enabled()) {
1146         smm_available = kvm_has_smm();
1147     }
1148 
1149     if (smm_available) {
1150         return true;
1151     }
1152 
1153     if (x86ms->smm == ON_OFF_AUTO_ON) {
1154         error_report("System Management Mode not supported by this hypervisor.");
1155         exit(1);
1156     }
1157     return false;
1158 }
1159 
1160 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1161                                void *opaque, Error **errp)
1162 {
1163     X86MachineState *x86ms = X86_MACHINE(obj);
1164     OnOffAuto smm = x86ms->smm;
1165 
1166     visit_type_OnOffAuto(v, name, &smm, errp);
1167 }
1168 
1169 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1170                                void *opaque, Error **errp)
1171 {
1172     X86MachineState *x86ms = X86_MACHINE(obj);
1173 
1174     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1175 }
1176 
1177 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1178 {
1179     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1180         return false;
1181     }
1182     return true;
1183 }
1184 
1185 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1186                                  void *opaque, Error **errp)
1187 {
1188     X86MachineState *x86ms = X86_MACHINE(obj);
1189     OnOffAuto acpi = x86ms->acpi;
1190 
1191     visit_type_OnOffAuto(v, name, &acpi, errp);
1192 }
1193 
1194 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1195                                  void *opaque, Error **errp)
1196 {
1197     X86MachineState *x86ms = X86_MACHINE(obj);
1198 
1199     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1200 }
1201 
1202 static void x86_machine_initfn(Object *obj)
1203 {
1204     X86MachineState *x86ms = X86_MACHINE(obj);
1205 
1206     x86ms->smm = ON_OFF_AUTO_AUTO;
1207     x86ms->acpi = ON_OFF_AUTO_AUTO;
1208     x86ms->smp_dies = 1;
1209     x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1210 }
1211 
1212 static void x86_machine_class_init(ObjectClass *oc, void *data)
1213 {
1214     MachineClass *mc = MACHINE_CLASS(oc);
1215     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1216     NMIClass *nc = NMI_CLASS(oc);
1217 
1218     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1219     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1220     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1221     x86mc->compat_apic_id_mode = false;
1222     x86mc->save_tsc_khz = true;
1223     nc->nmi_monitor_handler = x86_nmi;
1224 
1225     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1226         x86_machine_get_smm, x86_machine_set_smm,
1227         NULL, NULL);
1228     object_class_property_set_description(oc, X86_MACHINE_SMM,
1229         "Enable SMM");
1230 
1231     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1232         x86_machine_get_acpi, x86_machine_set_acpi,
1233         NULL, NULL);
1234     object_class_property_set_description(oc, X86_MACHINE_ACPI,
1235         "Enable ACPI");
1236 }
1237 
1238 static const TypeInfo x86_machine_info = {
1239     .name = TYPE_X86_MACHINE,
1240     .parent = TYPE_MACHINE,
1241     .abstract = true,
1242     .instance_size = sizeof(X86MachineState),
1243     .instance_init = x86_machine_initfn,
1244     .class_size = sizeof(X86MachineClass),
1245     .class_init = x86_machine_class_init,
1246     .interfaces = (InterfaceInfo[]) {
1247          { TYPE_NMI },
1248          { }
1249     },
1250 };
1251 
1252 static void x86_machine_register_types(void)
1253 {
1254     type_register_static(&x86_machine_info);
1255 }
1256 
1257 type_init(x86_machine_register_types)
1258