xref: /qemu/hw/i386/x86.c (revision 9d7ab222)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 
38 #include "hw/i386/x86.h"
39 #include "target/i386/cpu.h"
40 #include "hw/i386/topology.h"
41 #include "hw/i386/fw_cfg.h"
42 
43 #include "hw/acpi/cpu_hotplug.h"
44 #include "hw/nmi.h"
45 #include "hw/loader.h"
46 #include "multiboot.h"
47 #include "elf.h"
48 #include "standard-headers/asm-x86/bootparam.h"
49 
50 #define BIOS_FILENAME "bios.bin"
51 
52 /* Physical Address of PVH entry point read from kernel ELF NOTE */
53 static size_t pvh_start_addr;
54 
55 /*
56  * Calculates initial APIC ID for a specific CPU index
57  *
58  * Currently we need to be able to calculate the APIC ID from the CPU index
59  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
60  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
61  * all CPUs up to max_cpus.
62  */
63 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
64                                     unsigned int cpu_index)
65 {
66     MachineState *ms = MACHINE(x86ms);
67     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
68     uint32_t correct_id;
69     static bool warned;
70 
71     correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
72                                          ms->smp.threads, cpu_index);
73     if (x86mc->compat_apic_id_mode) {
74         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
75             error_report("APIC IDs set in compatibility mode, "
76                          "CPU topology won't match the configuration");
77             warned = true;
78         }
79         return cpu_index;
80     } else {
81         return correct_id;
82     }
83 }
84 
85 
86 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
87 {
88     Object *cpu = NULL;
89     Error *local_err = NULL;
90     CPUX86State *env = NULL;
91 
92     cpu = object_new(MACHINE(x86ms)->cpu_type);
93 
94     env = &X86_CPU(cpu)->env;
95     env->nr_dies = x86ms->smp_dies;
96 
97     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
98     object_property_set_bool(cpu, true, "realized", &local_err);
99 
100     object_unref(cpu);
101     error_propagate(errp, local_err);
102 }
103 
104 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
105 {
106     int i;
107     const CPUArchIdList *possible_cpus;
108     MachineState *ms = MACHINE(x86ms);
109     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
110 
111     x86_cpu_set_default_version(default_cpu_version);
112 
113     /*
114      * Calculates the limit to CPU APIC ID values
115      *
116      * Limit for the APIC ID value, so that all
117      * CPU APIC IDs are < x86ms->apic_id_limit.
118      *
119      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
120      */
121     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
122                                                       ms->smp.max_cpus - 1) + 1;
123     possible_cpus = mc->possible_cpu_arch_ids(ms);
124     for (i = 0; i < ms->smp.cpus; i++) {
125         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
126     }
127 }
128 
129 CpuInstanceProperties
130 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
131 {
132     MachineClass *mc = MACHINE_GET_CLASS(ms);
133     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
134 
135     assert(cpu_index < possible_cpus->len);
136     return possible_cpus->cpus[cpu_index].props;
137 }
138 
139 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
140 {
141    X86CPUTopoInfo topo;
142    X86MachineState *x86ms = X86_MACHINE(ms);
143 
144    assert(idx < ms->possible_cpus->len);
145    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
146                             x86ms->smp_dies, ms->smp.cores,
147                             ms->smp.threads, &topo);
148    return topo.pkg_id % ms->numa_state->num_nodes;
149 }
150 
151 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
152 {
153     X86MachineState *x86ms = X86_MACHINE(ms);
154     int i;
155     unsigned int max_cpus = ms->smp.max_cpus;
156 
157     if (ms->possible_cpus) {
158         /*
159          * make sure that max_cpus hasn't changed since the first use, i.e.
160          * -smp hasn't been parsed after it
161          */
162         assert(ms->possible_cpus->len == max_cpus);
163         return ms->possible_cpus;
164     }
165 
166     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
167                                   sizeof(CPUArchId) * max_cpus);
168     ms->possible_cpus->len = max_cpus;
169     for (i = 0; i < ms->possible_cpus->len; i++) {
170         X86CPUTopoInfo topo;
171 
172         ms->possible_cpus->cpus[i].type = ms->cpu_type;
173         ms->possible_cpus->cpus[i].vcpus_count = 1;
174         ms->possible_cpus->cpus[i].arch_id =
175             x86_cpu_apic_id_from_index(x86ms, i);
176         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
177                                  x86ms->smp_dies, ms->smp.cores,
178                                  ms->smp.threads, &topo);
179         ms->possible_cpus->cpus[i].props.has_socket_id = true;
180         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
181         if (x86ms->smp_dies > 1) {
182             ms->possible_cpus->cpus[i].props.has_die_id = true;
183             ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
184         }
185         ms->possible_cpus->cpus[i].props.has_core_id = true;
186         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
187         ms->possible_cpus->cpus[i].props.has_thread_id = true;
188         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
189     }
190     return ms->possible_cpus;
191 }
192 
193 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
194 {
195     /* cpu index isn't used */
196     CPUState *cs;
197 
198     CPU_FOREACH(cs) {
199         X86CPU *cpu = X86_CPU(cs);
200 
201         if (!cpu->apic_state) {
202             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
203         } else {
204             apic_deliver_nmi(cpu->apic_state);
205         }
206     }
207 }
208 
209 static long get_file_size(FILE *f)
210 {
211     long where, size;
212 
213     /* XXX: on Unix systems, using fstat() probably makes more sense */
214 
215     where = ftell(f);
216     fseek(f, 0, SEEK_END);
217     size = ftell(f);
218     fseek(f, where, SEEK_SET);
219 
220     return size;
221 }
222 
223 struct setup_data {
224     uint64_t next;
225     uint32_t type;
226     uint32_t len;
227     uint8_t data[0];
228 } __attribute__((packed));
229 
230 
231 /*
232  * The entry point into the kernel for PVH boot is different from
233  * the native entry point.  The PVH entry is defined by the x86/HVM
234  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
235  *
236  * This function is passed to load_elf() when it is called from
237  * load_elfboot() which then additionally checks for an ELF Note of
238  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
239  * parse the PVH entry address from the ELF Note.
240  *
241  * Due to trickery in elf_opts.h, load_elf() is actually available as
242  * load_elf32() or load_elf64() and this routine needs to be able
243  * to deal with being called as 32 or 64 bit.
244  *
245  * The address of the PVH entry point is saved to the 'pvh_start_addr'
246  * global variable.  (although the entry point is 32-bit, the kernel
247  * binary can be either 32-bit or 64-bit).
248  */
249 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
250 {
251     size_t *elf_note_data_addr;
252 
253     /* Check if ELF Note header passed in is valid */
254     if (arg1 == NULL) {
255         return 0;
256     }
257 
258     if (is64) {
259         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
260         uint64_t nhdr_size64 = sizeof(struct elf64_note);
261         uint64_t phdr_align = *(uint64_t *)arg2;
262         uint64_t nhdr_namesz = nhdr64->n_namesz;
263 
264         elf_note_data_addr =
265             ((void *)nhdr64) + nhdr_size64 +
266             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
267     } else {
268         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
269         uint32_t nhdr_size32 = sizeof(struct elf32_note);
270         uint32_t phdr_align = *(uint32_t *)arg2;
271         uint32_t nhdr_namesz = nhdr32->n_namesz;
272 
273         elf_note_data_addr =
274             ((void *)nhdr32) + nhdr_size32 +
275             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
276     }
277 
278     pvh_start_addr = *elf_note_data_addr;
279 
280     return pvh_start_addr;
281 }
282 
283 static bool load_elfboot(const char *kernel_filename,
284                          int kernel_file_size,
285                          uint8_t *header,
286                          size_t pvh_xen_start_addr,
287                          FWCfgState *fw_cfg)
288 {
289     uint32_t flags = 0;
290     uint32_t mh_load_addr = 0;
291     uint32_t elf_kernel_size = 0;
292     uint64_t elf_entry;
293     uint64_t elf_low, elf_high;
294     int kernel_size;
295 
296     if (ldl_p(header) != 0x464c457f) {
297         return false; /* no elfboot */
298     }
299 
300     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
301     flags = elf_is64 ?
302         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
303 
304     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
305         error_report("elfboot unsupported flags = %x", flags);
306         exit(1);
307     }
308 
309     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
310     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
311                            NULL, &elf_note_type, &elf_entry,
312                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
313                            0, 0);
314 
315     if (kernel_size < 0) {
316         error_report("Error while loading elf kernel");
317         exit(1);
318     }
319     mh_load_addr = elf_low;
320     elf_kernel_size = elf_high - elf_low;
321 
322     if (pvh_start_addr == 0) {
323         error_report("Error loading uncompressed kernel without PVH ELF Note");
324         exit(1);
325     }
326     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
327     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
328     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
329 
330     return true;
331 }
332 
333 void x86_load_linux(X86MachineState *x86ms,
334                     FWCfgState *fw_cfg,
335                     int acpi_data_size,
336                     bool pvh_enabled,
337                     bool linuxboot_dma_enabled)
338 {
339     uint16_t protocol;
340     int setup_size, kernel_size, cmdline_size;
341     int dtb_size, setup_data_offset;
342     uint32_t initrd_max;
343     uint8_t header[8192], *setup, *kernel;
344     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
345     FILE *f;
346     char *vmode;
347     MachineState *machine = MACHINE(x86ms);
348     struct setup_data *setup_data;
349     const char *kernel_filename = machine->kernel_filename;
350     const char *initrd_filename = machine->initrd_filename;
351     const char *dtb_filename = machine->dtb;
352     const char *kernel_cmdline = machine->kernel_cmdline;
353 
354     /* Align to 16 bytes as a paranoia measure */
355     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
356 
357     /* load the kernel header */
358     f = fopen(kernel_filename, "rb");
359     if (!f) {
360         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
361                 kernel_filename, strerror(errno));
362         exit(1);
363     }
364 
365     kernel_size = get_file_size(f);
366     if (!kernel_size ||
367         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
368         MIN(ARRAY_SIZE(header), kernel_size)) {
369         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
370                 kernel_filename, strerror(errno));
371         exit(1);
372     }
373 
374     /* kernel protocol version */
375     if (ldl_p(header + 0x202) == 0x53726448) {
376         protocol = lduw_p(header + 0x206);
377     } else {
378         /*
379          * This could be a multiboot kernel. If it is, let's stop treating it
380          * like a Linux kernel.
381          * Note: some multiboot images could be in the ELF format (the same of
382          * PVH), so we try multiboot first since we check the multiboot magic
383          * header before to load it.
384          */
385         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
386                            kernel_cmdline, kernel_size, header)) {
387             return;
388         }
389         /*
390          * Check if the file is an uncompressed kernel file (ELF) and load it,
391          * saving the PVH entry point used by the x86/HVM direct boot ABI.
392          * If load_elfboot() is successful, populate the fw_cfg info.
393          */
394         if (pvh_enabled &&
395             load_elfboot(kernel_filename, kernel_size,
396                          header, pvh_start_addr, fw_cfg)) {
397             fclose(f);
398 
399             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
400                 strlen(kernel_cmdline) + 1);
401             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
402 
403             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
404             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
405                              header, sizeof(header));
406 
407             /* load initrd */
408             if (initrd_filename) {
409                 GMappedFile *mapped_file;
410                 gsize initrd_size;
411                 gchar *initrd_data;
412                 GError *gerr = NULL;
413 
414                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
415                 if (!mapped_file) {
416                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
417                             initrd_filename, gerr->message);
418                     exit(1);
419                 }
420                 x86ms->initrd_mapped_file = mapped_file;
421 
422                 initrd_data = g_mapped_file_get_contents(mapped_file);
423                 initrd_size = g_mapped_file_get_length(mapped_file);
424                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
425                 if (initrd_size >= initrd_max) {
426                     fprintf(stderr, "qemu: initrd is too large, cannot support."
427                             "(max: %"PRIu32", need %"PRId64")\n",
428                             initrd_max, (uint64_t)initrd_size);
429                     exit(1);
430                 }
431 
432                 initrd_addr = (initrd_max - initrd_size) & ~4095;
433 
434                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
435                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
436                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
437                                  initrd_size);
438             }
439 
440             option_rom[nb_option_roms].bootindex = 0;
441             option_rom[nb_option_roms].name = "pvh.bin";
442             nb_option_roms++;
443 
444             return;
445         }
446         protocol = 0;
447     }
448 
449     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
450         /* Low kernel */
451         real_addr    = 0x90000;
452         cmdline_addr = 0x9a000 - cmdline_size;
453         prot_addr    = 0x10000;
454     } else if (protocol < 0x202) {
455         /* High but ancient kernel */
456         real_addr    = 0x90000;
457         cmdline_addr = 0x9a000 - cmdline_size;
458         prot_addr    = 0x100000;
459     } else {
460         /* High and recent kernel */
461         real_addr    = 0x10000;
462         cmdline_addr = 0x20000;
463         prot_addr    = 0x100000;
464     }
465 
466     /* highest address for loading the initrd */
467     if (protocol >= 0x20c &&
468         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
469         /*
470          * Linux has supported initrd up to 4 GB for a very long time (2007,
471          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
472          * though it only sets initrd_max to 2 GB to "work around bootloader
473          * bugs". Luckily, QEMU firmware(which does something like bootloader)
474          * has supported this.
475          *
476          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
477          * be loaded into any address.
478          *
479          * In addition, initrd_max is uint32_t simply because QEMU doesn't
480          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
481          * field).
482          *
483          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
484          */
485         initrd_max = UINT32_MAX;
486     } else if (protocol >= 0x203) {
487         initrd_max = ldl_p(header + 0x22c);
488     } else {
489         initrd_max = 0x37ffffff;
490     }
491 
492     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
493         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
494     }
495 
496     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
497     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
498     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
499 
500     if (protocol >= 0x202) {
501         stl_p(header + 0x228, cmdline_addr);
502     } else {
503         stw_p(header + 0x20, 0xA33F);
504         stw_p(header + 0x22, cmdline_addr - real_addr);
505     }
506 
507     /* handle vga= parameter */
508     vmode = strstr(kernel_cmdline, "vga=");
509     if (vmode) {
510         unsigned int video_mode;
511         int ret;
512         /* skip "vga=" */
513         vmode += 4;
514         if (!strncmp(vmode, "normal", 6)) {
515             video_mode = 0xffff;
516         } else if (!strncmp(vmode, "ext", 3)) {
517             video_mode = 0xfffe;
518         } else if (!strncmp(vmode, "ask", 3)) {
519             video_mode = 0xfffd;
520         } else {
521             ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
522             if (ret != 0) {
523                 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
524                         strerror(-ret));
525                 exit(1);
526             }
527         }
528         stw_p(header + 0x1fa, video_mode);
529     }
530 
531     /* loader type */
532     /*
533      * High nybble = B reserved for QEMU; low nybble is revision number.
534      * If this code is substantially changed, you may want to consider
535      * incrementing the revision.
536      */
537     if (protocol >= 0x200) {
538         header[0x210] = 0xB0;
539     }
540     /* heap */
541     if (protocol >= 0x201) {
542         header[0x211] |= 0x80; /* CAN_USE_HEAP */
543         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
544     }
545 
546     /* load initrd */
547     if (initrd_filename) {
548         GMappedFile *mapped_file;
549         gsize initrd_size;
550         gchar *initrd_data;
551         GError *gerr = NULL;
552 
553         if (protocol < 0x200) {
554             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
555             exit(1);
556         }
557 
558         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
559         if (!mapped_file) {
560             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
561                     initrd_filename, gerr->message);
562             exit(1);
563         }
564         x86ms->initrd_mapped_file = mapped_file;
565 
566         initrd_data = g_mapped_file_get_contents(mapped_file);
567         initrd_size = g_mapped_file_get_length(mapped_file);
568         if (initrd_size >= initrd_max) {
569             fprintf(stderr, "qemu: initrd is too large, cannot support."
570                     "(max: %"PRIu32", need %"PRId64")\n",
571                     initrd_max, (uint64_t)initrd_size);
572             exit(1);
573         }
574 
575         initrd_addr = (initrd_max - initrd_size) & ~4095;
576 
577         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
578         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
579         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
580 
581         stl_p(header + 0x218, initrd_addr);
582         stl_p(header + 0x21c, initrd_size);
583     }
584 
585     /* load kernel and setup */
586     setup_size = header[0x1f1];
587     if (setup_size == 0) {
588         setup_size = 4;
589     }
590     setup_size = (setup_size + 1) * 512;
591     if (setup_size > kernel_size) {
592         fprintf(stderr, "qemu: invalid kernel header\n");
593         exit(1);
594     }
595     kernel_size -= setup_size;
596 
597     setup  = g_malloc(setup_size);
598     kernel = g_malloc(kernel_size);
599     fseek(f, 0, SEEK_SET);
600     if (fread(setup, 1, setup_size, f) != setup_size) {
601         fprintf(stderr, "fread() failed\n");
602         exit(1);
603     }
604     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
605         fprintf(stderr, "fread() failed\n");
606         exit(1);
607     }
608     fclose(f);
609 
610     /* append dtb to kernel */
611     if (dtb_filename) {
612         if (protocol < 0x209) {
613             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
614             exit(1);
615         }
616 
617         dtb_size = get_image_size(dtb_filename);
618         if (dtb_size <= 0) {
619             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
620                     dtb_filename, strerror(errno));
621             exit(1);
622         }
623 
624         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
625         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
626         kernel = g_realloc(kernel, kernel_size);
627 
628         stq_p(header + 0x250, prot_addr + setup_data_offset);
629 
630         setup_data = (struct setup_data *)(kernel + setup_data_offset);
631         setup_data->next = 0;
632         setup_data->type = cpu_to_le32(SETUP_DTB);
633         setup_data->len = cpu_to_le32(dtb_size);
634 
635         load_image_size(dtb_filename, setup_data->data, dtb_size);
636     }
637 
638     memcpy(setup, header, MIN(sizeof(header), setup_size));
639 
640     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
641     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
642     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
643 
644     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
645     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
646     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
647 
648     option_rom[nb_option_roms].bootindex = 0;
649     option_rom[nb_option_roms].name = "linuxboot.bin";
650     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
651         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
652     }
653     nb_option_roms++;
654 }
655 
656 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
657 {
658     char *filename;
659     MemoryRegion *bios, *isa_bios;
660     int bios_size, isa_bios_size;
661     int ret;
662 
663     /* BIOS load */
664     if (bios_name == NULL) {
665         bios_name = BIOS_FILENAME;
666     }
667     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
668     if (filename) {
669         bios_size = get_image_size(filename);
670     } else {
671         bios_size = -1;
672     }
673     if (bios_size <= 0 ||
674         (bios_size % 65536) != 0) {
675         goto bios_error;
676     }
677     bios = g_malloc(sizeof(*bios));
678     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
679     if (!isapc_ram_fw) {
680         memory_region_set_readonly(bios, true);
681     }
682     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
683     if (ret != 0) {
684     bios_error:
685         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
686         exit(1);
687     }
688     g_free(filename);
689 
690     /* map the last 128KB of the BIOS in ISA space */
691     isa_bios_size = MIN(bios_size, 128 * KiB);
692     isa_bios = g_malloc(sizeof(*isa_bios));
693     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
694                              bios_size - isa_bios_size, isa_bios_size);
695     memory_region_add_subregion_overlap(rom_memory,
696                                         0x100000 - isa_bios_size,
697                                         isa_bios,
698                                         1);
699     if (!isapc_ram_fw) {
700         memory_region_set_readonly(isa_bios, true);
701     }
702 
703     /* map all the bios at the top of memory */
704     memory_region_add_subregion(rom_memory,
705                                 (uint32_t)(-bios_size),
706                                 bios);
707 }
708 
709 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
710                                              const char *name, void *opaque,
711                                              Error **errp)
712 {
713     X86MachineState *x86ms = X86_MACHINE(obj);
714     uint64_t value = x86ms->max_ram_below_4g;
715 
716     visit_type_size(v, name, &value, errp);
717 }
718 
719 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
720                                              const char *name, void *opaque,
721                                              Error **errp)
722 {
723     X86MachineState *x86ms = X86_MACHINE(obj);
724     Error *error = NULL;
725     uint64_t value;
726 
727     visit_type_size(v, name, &value, &error);
728     if (error) {
729         error_propagate(errp, error);
730         return;
731     }
732     if (value > 4 * GiB) {
733         error_setg(&error,
734                    "Machine option 'max-ram-below-4g=%"PRIu64
735                    "' expects size less than or equal to 4G", value);
736         error_propagate(errp, error);
737         return;
738     }
739 
740     if (value < 1 * MiB) {
741         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
742                     "BIOS may not work with less than 1MiB", value);
743     }
744 
745     x86ms->max_ram_below_4g = value;
746 }
747 
748 static void x86_machine_initfn(Object *obj)
749 {
750     X86MachineState *x86ms = X86_MACHINE(obj);
751 
752     x86ms->max_ram_below_4g = 0; /* use default */
753     x86ms->smp_dies = 1;
754 }
755 
756 static void x86_machine_class_init(ObjectClass *oc, void *data)
757 {
758     MachineClass *mc = MACHINE_CLASS(oc);
759     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
760     NMIClass *nc = NMI_CLASS(oc);
761 
762     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
763     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
764     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
765     x86mc->compat_apic_id_mode = false;
766     nc->nmi_monitor_handler = x86_nmi;
767 
768     object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
769         x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
770         NULL, NULL, &error_abort);
771 
772     object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
773         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
774 }
775 
776 static const TypeInfo x86_machine_info = {
777     .name = TYPE_X86_MACHINE,
778     .parent = TYPE_MACHINE,
779     .abstract = true,
780     .instance_size = sizeof(X86MachineState),
781     .instance_init = x86_machine_initfn,
782     .class_size = sizeof(X86MachineClass),
783     .class_init = x86_machine_class_init,
784     .interfaces = (InterfaceInfo[]) {
785          { TYPE_NMI },
786          { }
787     },
788 };
789 
790 static void x86_machine_register_types(void)
791 {
792     type_register_static(&x86_machine_info);
793 }
794 
795 type_init(x86_machine_register_types)
796