xref: /qemu/hw/i386/xen/xen-hvm.c (revision d201cf7a)
1 /*
2  * Copyright (C) 2010       Citrix Ltd.
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2.  See
5  * the COPYING file in the top-level directory.
6  *
7  * Contributions after 2012-01-13 are licensed under the terms of the
8  * GNU GPL, version 2 or (at your option) any later version.
9  */
10 
11 #include "qemu/osdep.h"
12 #include "qemu/units.h"
13 
14 #include "cpu.h"
15 #include "hw/pci/pci.h"
16 #include "hw/pci/pci_host.h"
17 #include "hw/i386/pc.h"
18 #include "hw/southbridge/piix.h"
19 #include "hw/irq.h"
20 #include "hw/hw.h"
21 #include "hw/i386/apic-msidef.h"
22 #include "hw/xen/xen_common.h"
23 #include "hw/xen/xen-legacy-backend.h"
24 #include "hw/xen/xen-bus.h"
25 #include "hw/xen/xen-x86.h"
26 #include "qapi/error.h"
27 #include "qapi/qapi-commands-migration.h"
28 #include "qemu/error-report.h"
29 #include "qemu/main-loop.h"
30 #include "qemu/range.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/xen.h"
34 #include "sysemu/xen-mapcache.h"
35 #include "trace.h"
36 
37 #include <xen/hvm/ioreq.h>
38 #include <xen/hvm/e820.h>
39 
40 //#define DEBUG_XEN_HVM
41 
42 #ifdef DEBUG_XEN_HVM
43 #define DPRINTF(fmt, ...) \
44     do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47     do { } while (0)
48 #endif
49 
50 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
51 static MemoryRegion *framebuffer;
52 static bool xen_in_migration;
53 
54 /* Compatibility with older version */
55 
56 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
57  * installed.  This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
58  * needs to be included before this block and hw/xen/xen_common.h needs to
59  * be included before xen/hvm/ioreq.h
60  */
61 #ifndef IOREQ_TYPE_VMWARE_PORT
62 #define IOREQ_TYPE_VMWARE_PORT  3
63 struct vmware_regs {
64     uint32_t esi;
65     uint32_t edi;
66     uint32_t ebx;
67     uint32_t ecx;
68     uint32_t edx;
69 };
70 typedef struct vmware_regs vmware_regs_t;
71 
72 struct shared_vmport_iopage {
73     struct vmware_regs vcpu_vmport_regs[1];
74 };
75 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
76 #endif
77 
78 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
79 {
80     return shared_page->vcpu_ioreq[i].vp_eport;
81 }
82 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
83 {
84     return &shared_page->vcpu_ioreq[vcpu];
85 }
86 
87 #define BUFFER_IO_MAX_DELAY  100
88 
89 typedef struct XenPhysmap {
90     hwaddr start_addr;
91     ram_addr_t size;
92     const char *name;
93     hwaddr phys_offset;
94 
95     QLIST_ENTRY(XenPhysmap) list;
96 } XenPhysmap;
97 
98 static QLIST_HEAD(, XenPhysmap) xen_physmap;
99 
100 typedef struct XenPciDevice {
101     PCIDevice *pci_dev;
102     uint32_t sbdf;
103     QLIST_ENTRY(XenPciDevice) entry;
104 } XenPciDevice;
105 
106 typedef struct XenIOState {
107     ioservid_t ioservid;
108     shared_iopage_t *shared_page;
109     shared_vmport_iopage_t *shared_vmport_page;
110     buffered_iopage_t *buffered_io_page;
111     xenforeignmemory_resource_handle *fres;
112     QEMUTimer *buffered_io_timer;
113     CPUState **cpu_by_vcpu_id;
114     /* the evtchn port for polling the notification, */
115     evtchn_port_t *ioreq_local_port;
116     /* evtchn remote and local ports for buffered io */
117     evtchn_port_t bufioreq_remote_port;
118     evtchn_port_t bufioreq_local_port;
119     /* the evtchn fd for polling */
120     xenevtchn_handle *xce_handle;
121     /* which vcpu we are serving */
122     int send_vcpu;
123 
124     struct xs_handle *xenstore;
125     MemoryListener memory_listener;
126     MemoryListener io_listener;
127     QLIST_HEAD(, XenPciDevice) dev_list;
128     DeviceListener device_listener;
129     hwaddr free_phys_offset;
130     const XenPhysmap *log_for_dirtybit;
131     /* Buffer used by xen_sync_dirty_bitmap */
132     unsigned long *dirty_bitmap;
133 
134     Notifier exit;
135     Notifier suspend;
136     Notifier wakeup;
137 } XenIOState;
138 
139 /* Xen specific function for piix pci */
140 
141 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
142 {
143     return irq_num + (PCI_SLOT(pci_dev->devfn) << 2);
144 }
145 
146 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
147 {
148     xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
149                            irq_num & 3, level);
150 }
151 
152 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
153 {
154     int i;
155 
156     /* Scan for updates to PCI link routes (0x60-0x63). */
157     for (i = 0; i < len; i++) {
158         uint8_t v = (val >> (8 * i)) & 0xff;
159         if (v & 0x80) {
160             v = 0;
161         }
162         v &= 0xf;
163         if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) {
164             xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v);
165         }
166     }
167 }
168 
169 int xen_is_pirq_msi(uint32_t msi_data)
170 {
171     /* If vector is 0, the msi is remapped into a pirq, passed as
172      * dest_id.
173      */
174     return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
175 }
176 
177 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
178 {
179     xen_inject_msi(xen_domid, addr, data);
180 }
181 
182 static void xen_suspend_notifier(Notifier *notifier, void *data)
183 {
184     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
185 }
186 
187 /* Xen Interrupt Controller */
188 
189 static void xen_set_irq(void *opaque, int irq, int level)
190 {
191     xen_set_isa_irq_level(xen_domid, irq, level);
192 }
193 
194 qemu_irq *xen_interrupt_controller_init(void)
195 {
196     return qemu_allocate_irqs(xen_set_irq, NULL, 16);
197 }
198 
199 /* Memory Ops */
200 
201 static void xen_ram_init(PCMachineState *pcms,
202                          ram_addr_t ram_size, MemoryRegion **ram_memory_p)
203 {
204     X86MachineState *x86ms = X86_MACHINE(pcms);
205     MemoryRegion *sysmem = get_system_memory();
206     ram_addr_t block_len;
207     uint64_t user_lowmem =
208         object_property_get_uint(qdev_get_machine(),
209                                  PC_MACHINE_MAX_RAM_BELOW_4G,
210                                  &error_abort);
211 
212     /* Handle the machine opt max-ram-below-4g.  It is basically doing
213      * min(xen limit, user limit).
214      */
215     if (!user_lowmem) {
216         user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
217     }
218     if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
219         user_lowmem = HVM_BELOW_4G_RAM_END;
220     }
221 
222     if (ram_size >= user_lowmem) {
223         x86ms->above_4g_mem_size = ram_size - user_lowmem;
224         x86ms->below_4g_mem_size = user_lowmem;
225     } else {
226         x86ms->above_4g_mem_size = 0;
227         x86ms->below_4g_mem_size = ram_size;
228     }
229     if (!x86ms->above_4g_mem_size) {
230         block_len = ram_size;
231     } else {
232         /*
233          * Xen does not allocate the memory continuously, it keeps a
234          * hole of the size computed above or passed in.
235          */
236         block_len = (4 * GiB) + x86ms->above_4g_mem_size;
237     }
238     memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
239                            &error_fatal);
240     *ram_memory_p = &ram_memory;
241 
242     memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
243                              &ram_memory, 0, 0xa0000);
244     memory_region_add_subregion(sysmem, 0, &ram_640k);
245     /* Skip of the VGA IO memory space, it will be registered later by the VGA
246      * emulated device.
247      *
248      * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
249      * the Options ROM, so it is registered here as RAM.
250      */
251     memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
252                              &ram_memory, 0xc0000,
253                              x86ms->below_4g_mem_size - 0xc0000);
254     memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
255     if (x86ms->above_4g_mem_size > 0) {
256         memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
257                                  &ram_memory, 0x100000000ULL,
258                                  x86ms->above_4g_mem_size);
259         memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
260     }
261 }
262 
263 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
264                    Error **errp)
265 {
266     unsigned long nr_pfn;
267     xen_pfn_t *pfn_list;
268     int i;
269 
270     if (runstate_check(RUN_STATE_INMIGRATE)) {
271         /* RAM already populated in Xen */
272         fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
273                 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
274                 __func__, size, ram_addr);
275         return;
276     }
277 
278     if (mr == &ram_memory) {
279         return;
280     }
281 
282     trace_xen_ram_alloc(ram_addr, size);
283 
284     nr_pfn = size >> TARGET_PAGE_BITS;
285     pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
286 
287     for (i = 0; i < nr_pfn; i++) {
288         pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
289     }
290 
291     if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
292         error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
293                    ram_addr);
294     }
295 
296     g_free(pfn_list);
297 }
298 
299 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
300 {
301     XenPhysmap *physmap = NULL;
302 
303     start_addr &= TARGET_PAGE_MASK;
304 
305     QLIST_FOREACH(physmap, &xen_physmap, list) {
306         if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
307             return physmap;
308         }
309     }
310     return NULL;
311 }
312 
313 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
314 {
315     hwaddr addr = phys_offset & TARGET_PAGE_MASK;
316     XenPhysmap *physmap = NULL;
317 
318     QLIST_FOREACH(physmap, &xen_physmap, list) {
319         if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
320             return physmap->start_addr + (phys_offset - physmap->phys_offset);
321         }
322     }
323 
324     return phys_offset;
325 }
326 
327 #ifdef XEN_COMPAT_PHYSMAP
328 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
329 {
330     char path[80], value[17];
331 
332     snprintf(path, sizeof(path),
333             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
334             xen_domid, (uint64_t)physmap->phys_offset);
335     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
336     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
337         return -1;
338     }
339     snprintf(path, sizeof(path),
340             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
341             xen_domid, (uint64_t)physmap->phys_offset);
342     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
343     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
344         return -1;
345     }
346     if (physmap->name) {
347         snprintf(path, sizeof(path),
348                 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
349                 xen_domid, (uint64_t)physmap->phys_offset);
350         if (!xs_write(state->xenstore, 0, path,
351                       physmap->name, strlen(physmap->name))) {
352             return -1;
353         }
354     }
355     return 0;
356 }
357 #else
358 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
359 {
360     return 0;
361 }
362 #endif
363 
364 static int xen_add_to_physmap(XenIOState *state,
365                               hwaddr start_addr,
366                               ram_addr_t size,
367                               MemoryRegion *mr,
368                               hwaddr offset_within_region)
369 {
370     unsigned long nr_pages;
371     int rc = 0;
372     XenPhysmap *physmap = NULL;
373     hwaddr pfn, start_gpfn;
374     hwaddr phys_offset = memory_region_get_ram_addr(mr);
375     const char *mr_name;
376 
377     if (get_physmapping(start_addr, size)) {
378         return 0;
379     }
380     if (size <= 0) {
381         return -1;
382     }
383 
384     /* Xen can only handle a single dirty log region for now and we want
385      * the linear framebuffer to be that region.
386      * Avoid tracking any regions that is not videoram and avoid tracking
387      * the legacy vga region. */
388     if (mr == framebuffer && start_addr > 0xbffff) {
389         goto go_physmap;
390     }
391     return -1;
392 
393 go_physmap:
394     DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
395             start_addr, start_addr + size);
396 
397     mr_name = memory_region_name(mr);
398 
399     physmap = g_malloc(sizeof(XenPhysmap));
400 
401     physmap->start_addr = start_addr;
402     physmap->size = size;
403     physmap->name = mr_name;
404     physmap->phys_offset = phys_offset;
405 
406     QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
407 
408     if (runstate_check(RUN_STATE_INMIGRATE)) {
409         /* Now when we have a physmap entry we can replace a dummy mapping with
410          * a real one of guest foreign memory. */
411         uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
412         assert(p && p == memory_region_get_ram_ptr(mr));
413 
414         return 0;
415     }
416 
417     pfn = phys_offset >> TARGET_PAGE_BITS;
418     start_gpfn = start_addr >> TARGET_PAGE_BITS;
419     nr_pages = size >> TARGET_PAGE_BITS;
420     rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
421                                         start_gpfn);
422     if (rc) {
423         int saved_errno = errno;
424 
425         error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
426                      " to GFN %"HWADDR_PRIx" failed: %s",
427                      nr_pages, pfn, start_gpfn, strerror(saved_errno));
428         errno = saved_errno;
429         return -1;
430     }
431 
432     rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
433                                    start_addr >> TARGET_PAGE_BITS,
434                                    (start_addr + size - 1) >> TARGET_PAGE_BITS,
435                                    XEN_DOMCTL_MEM_CACHEATTR_WB);
436     if (rc) {
437         error_report("pin_memory_cacheattr failed: %s", strerror(errno));
438     }
439     return xen_save_physmap(state, physmap);
440 }
441 
442 static int xen_remove_from_physmap(XenIOState *state,
443                                    hwaddr start_addr,
444                                    ram_addr_t size)
445 {
446     int rc = 0;
447     XenPhysmap *physmap = NULL;
448     hwaddr phys_offset = 0;
449 
450     physmap = get_physmapping(start_addr, size);
451     if (physmap == NULL) {
452         return -1;
453     }
454 
455     phys_offset = physmap->phys_offset;
456     size = physmap->size;
457 
458     DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
459             "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
460 
461     size >>= TARGET_PAGE_BITS;
462     start_addr >>= TARGET_PAGE_BITS;
463     phys_offset >>= TARGET_PAGE_BITS;
464     rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
465                                         phys_offset);
466     if (rc) {
467         int saved_errno = errno;
468 
469         error_report("relocate_memory "RAM_ADDR_FMT" pages"
470                      " from GFN %"HWADDR_PRIx
471                      " to GFN %"HWADDR_PRIx" failed: %s",
472                      size, start_addr, phys_offset, strerror(saved_errno));
473         errno = saved_errno;
474         return -1;
475     }
476 
477     QLIST_REMOVE(physmap, list);
478     if (state->log_for_dirtybit == physmap) {
479         state->log_for_dirtybit = NULL;
480         g_free(state->dirty_bitmap);
481         state->dirty_bitmap = NULL;
482     }
483     g_free(physmap);
484 
485     return 0;
486 }
487 
488 static void xen_set_memory(struct MemoryListener *listener,
489                            MemoryRegionSection *section,
490                            bool add)
491 {
492     XenIOState *state = container_of(listener, XenIOState, memory_listener);
493     hwaddr start_addr = section->offset_within_address_space;
494     ram_addr_t size = int128_get64(section->size);
495     bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
496     hvmmem_type_t mem_type;
497 
498     if (section->mr == &ram_memory) {
499         return;
500     } else {
501         if (add) {
502             xen_map_memory_section(xen_domid, state->ioservid,
503                                    section);
504         } else {
505             xen_unmap_memory_section(xen_domid, state->ioservid,
506                                      section);
507         }
508     }
509 
510     if (!memory_region_is_ram(section->mr)) {
511         return;
512     }
513 
514     if (log_dirty != add) {
515         return;
516     }
517 
518     trace_xen_client_set_memory(start_addr, size, log_dirty);
519 
520     start_addr &= TARGET_PAGE_MASK;
521     size = TARGET_PAGE_ALIGN(size);
522 
523     if (add) {
524         if (!memory_region_is_rom(section->mr)) {
525             xen_add_to_physmap(state, start_addr, size,
526                                section->mr, section->offset_within_region);
527         } else {
528             mem_type = HVMMEM_ram_ro;
529             if (xen_set_mem_type(xen_domid, mem_type,
530                                  start_addr >> TARGET_PAGE_BITS,
531                                  size >> TARGET_PAGE_BITS)) {
532                 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
533                         start_addr);
534             }
535         }
536     } else {
537         if (xen_remove_from_physmap(state, start_addr, size) < 0) {
538             DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
539         }
540     }
541 }
542 
543 static void xen_region_add(MemoryListener *listener,
544                            MemoryRegionSection *section)
545 {
546     memory_region_ref(section->mr);
547     xen_set_memory(listener, section, true);
548 }
549 
550 static void xen_region_del(MemoryListener *listener,
551                            MemoryRegionSection *section)
552 {
553     xen_set_memory(listener, section, false);
554     memory_region_unref(section->mr);
555 }
556 
557 static void xen_io_add(MemoryListener *listener,
558                        MemoryRegionSection *section)
559 {
560     XenIOState *state = container_of(listener, XenIOState, io_listener);
561     MemoryRegion *mr = section->mr;
562 
563     if (mr->ops == &unassigned_io_ops) {
564         return;
565     }
566 
567     memory_region_ref(mr);
568 
569     xen_map_io_section(xen_domid, state->ioservid, section);
570 }
571 
572 static void xen_io_del(MemoryListener *listener,
573                        MemoryRegionSection *section)
574 {
575     XenIOState *state = container_of(listener, XenIOState, io_listener);
576     MemoryRegion *mr = section->mr;
577 
578     if (mr->ops == &unassigned_io_ops) {
579         return;
580     }
581 
582     xen_unmap_io_section(xen_domid, state->ioservid, section);
583 
584     memory_region_unref(mr);
585 }
586 
587 static void xen_device_realize(DeviceListener *listener,
588                                DeviceState *dev)
589 {
590     XenIOState *state = container_of(listener, XenIOState, device_listener);
591 
592     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
593         PCIDevice *pci_dev = PCI_DEVICE(dev);
594         XenPciDevice *xendev = g_new(XenPciDevice, 1);
595 
596         xendev->pci_dev = pci_dev;
597         xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
598                                      pci_dev->devfn);
599         QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
600 
601         xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
602     }
603 }
604 
605 static void xen_device_unrealize(DeviceListener *listener,
606                                  DeviceState *dev)
607 {
608     XenIOState *state = container_of(listener, XenIOState, device_listener);
609 
610     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
611         PCIDevice *pci_dev = PCI_DEVICE(dev);
612         XenPciDevice *xendev, *next;
613 
614         xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
615 
616         QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
617             if (xendev->pci_dev == pci_dev) {
618                 QLIST_REMOVE(xendev, entry);
619                 g_free(xendev);
620                 break;
621             }
622         }
623     }
624 }
625 
626 static void xen_sync_dirty_bitmap(XenIOState *state,
627                                   hwaddr start_addr,
628                                   ram_addr_t size)
629 {
630     hwaddr npages = size >> TARGET_PAGE_BITS;
631     const int width = sizeof(unsigned long) * 8;
632     size_t bitmap_size = DIV_ROUND_UP(npages, width);
633     int rc, i, j;
634     const XenPhysmap *physmap = NULL;
635 
636     physmap = get_physmapping(start_addr, size);
637     if (physmap == NULL) {
638         /* not handled */
639         return;
640     }
641 
642     if (state->log_for_dirtybit == NULL) {
643         state->log_for_dirtybit = physmap;
644         state->dirty_bitmap = g_new(unsigned long, bitmap_size);
645     } else if (state->log_for_dirtybit != physmap) {
646         /* Only one range for dirty bitmap can be tracked. */
647         return;
648     }
649 
650     rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
651                               npages, state->dirty_bitmap);
652     if (rc < 0) {
653 #ifndef ENODATA
654 #define ENODATA  ENOENT
655 #endif
656         if (errno == ENODATA) {
657             memory_region_set_dirty(framebuffer, 0, size);
658             DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
659                     ", 0x" TARGET_FMT_plx "): %s\n",
660                     start_addr, start_addr + size, strerror(errno));
661         }
662         return;
663     }
664 
665     for (i = 0; i < bitmap_size; i++) {
666         unsigned long map = state->dirty_bitmap[i];
667         while (map != 0) {
668             j = ctzl(map);
669             map &= ~(1ul << j);
670             memory_region_set_dirty(framebuffer,
671                                     (i * width + j) * TARGET_PAGE_SIZE,
672                                     TARGET_PAGE_SIZE);
673         };
674     }
675 }
676 
677 static void xen_log_start(MemoryListener *listener,
678                           MemoryRegionSection *section,
679                           int old, int new)
680 {
681     XenIOState *state = container_of(listener, XenIOState, memory_listener);
682 
683     if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
684         xen_sync_dirty_bitmap(state, section->offset_within_address_space,
685                               int128_get64(section->size));
686     }
687 }
688 
689 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
690                          int old, int new)
691 {
692     XenIOState *state = container_of(listener, XenIOState, memory_listener);
693 
694     if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
695         state->log_for_dirtybit = NULL;
696         g_free(state->dirty_bitmap);
697         state->dirty_bitmap = NULL;
698         /* Disable dirty bit tracking */
699         xen_track_dirty_vram(xen_domid, 0, 0, NULL);
700     }
701 }
702 
703 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
704 {
705     XenIOState *state = container_of(listener, XenIOState, memory_listener);
706 
707     xen_sync_dirty_bitmap(state, section->offset_within_address_space,
708                           int128_get64(section->size));
709 }
710 
711 static void xen_log_global_start(MemoryListener *listener)
712 {
713     if (xen_enabled()) {
714         xen_in_migration = true;
715     }
716 }
717 
718 static void xen_log_global_stop(MemoryListener *listener)
719 {
720     xen_in_migration = false;
721 }
722 
723 static MemoryListener xen_memory_listener = {
724     .name = "xen-memory",
725     .region_add = xen_region_add,
726     .region_del = xen_region_del,
727     .log_start = xen_log_start,
728     .log_stop = xen_log_stop,
729     .log_sync = xen_log_sync,
730     .log_global_start = xen_log_global_start,
731     .log_global_stop = xen_log_global_stop,
732     .priority = 10,
733 };
734 
735 static MemoryListener xen_io_listener = {
736     .name = "xen-io",
737     .region_add = xen_io_add,
738     .region_del = xen_io_del,
739     .priority = 10,
740 };
741 
742 static DeviceListener xen_device_listener = {
743     .realize = xen_device_realize,
744     .unrealize = xen_device_unrealize,
745 };
746 
747 /* get the ioreq packets from share mem */
748 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
749 {
750     ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
751 
752     if (req->state != STATE_IOREQ_READY) {
753         DPRINTF("I/O request not ready: "
754                 "%x, ptr: %x, port: %"PRIx64", "
755                 "data: %"PRIx64", count: %u, size: %u\n",
756                 req->state, req->data_is_ptr, req->addr,
757                 req->data, req->count, req->size);
758         return NULL;
759     }
760 
761     xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
762 
763     req->state = STATE_IOREQ_INPROCESS;
764     return req;
765 }
766 
767 /* use poll to get the port notification */
768 /* ioreq_vec--out,the */
769 /* retval--the number of ioreq packet */
770 static ioreq_t *cpu_get_ioreq(XenIOState *state)
771 {
772     MachineState *ms = MACHINE(qdev_get_machine());
773     unsigned int max_cpus = ms->smp.max_cpus;
774     int i;
775     evtchn_port_t port;
776 
777     port = xenevtchn_pending(state->xce_handle);
778     if (port == state->bufioreq_local_port) {
779         timer_mod(state->buffered_io_timer,
780                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
781         return NULL;
782     }
783 
784     if (port != -1) {
785         for (i = 0; i < max_cpus; i++) {
786             if (state->ioreq_local_port[i] == port) {
787                 break;
788             }
789         }
790 
791         if (i == max_cpus) {
792             hw_error("Fatal error while trying to get io event!\n");
793         }
794 
795         /* unmask the wanted port again */
796         xenevtchn_unmask(state->xce_handle, port);
797 
798         /* get the io packet from shared memory */
799         state->send_vcpu = i;
800         return cpu_get_ioreq_from_shared_memory(state, i);
801     }
802 
803     /* read error or read nothing */
804     return NULL;
805 }
806 
807 static uint32_t do_inp(uint32_t addr, unsigned long size)
808 {
809     switch (size) {
810         case 1:
811             return cpu_inb(addr);
812         case 2:
813             return cpu_inw(addr);
814         case 4:
815             return cpu_inl(addr);
816         default:
817             hw_error("inp: bad size: %04x %lx", addr, size);
818     }
819 }
820 
821 static void do_outp(uint32_t addr,
822         unsigned long size, uint32_t val)
823 {
824     switch (size) {
825         case 1:
826             return cpu_outb(addr, val);
827         case 2:
828             return cpu_outw(addr, val);
829         case 4:
830             return cpu_outl(addr, val);
831         default:
832             hw_error("outp: bad size: %04x %lx", addr, size);
833     }
834 }
835 
836 /*
837  * Helper functions which read/write an object from/to physical guest
838  * memory, as part of the implementation of an ioreq.
839  *
840  * Equivalent to
841  *   cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
842  *                          val, req->size, 0/1)
843  * except without the integer overflow problems.
844  */
845 static void rw_phys_req_item(hwaddr addr,
846                              ioreq_t *req, uint32_t i, void *val, int rw)
847 {
848     /* Do everything unsigned so overflow just results in a truncated result
849      * and accesses to undesired parts of guest memory, which is up
850      * to the guest */
851     hwaddr offset = (hwaddr)req->size * i;
852     if (req->df) {
853         addr -= offset;
854     } else {
855         addr += offset;
856     }
857     cpu_physical_memory_rw(addr, val, req->size, rw);
858 }
859 
860 static inline void read_phys_req_item(hwaddr addr,
861                                       ioreq_t *req, uint32_t i, void *val)
862 {
863     rw_phys_req_item(addr, req, i, val, 0);
864 }
865 static inline void write_phys_req_item(hwaddr addr,
866                                        ioreq_t *req, uint32_t i, void *val)
867 {
868     rw_phys_req_item(addr, req, i, val, 1);
869 }
870 
871 
872 static void cpu_ioreq_pio(ioreq_t *req)
873 {
874     uint32_t i;
875 
876     trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
877                          req->data, req->count, req->size);
878 
879     if (req->size > sizeof(uint32_t)) {
880         hw_error("PIO: bad size (%u)", req->size);
881     }
882 
883     if (req->dir == IOREQ_READ) {
884         if (!req->data_is_ptr) {
885             req->data = do_inp(req->addr, req->size);
886             trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
887                                          req->size);
888         } else {
889             uint32_t tmp;
890 
891             for (i = 0; i < req->count; i++) {
892                 tmp = do_inp(req->addr, req->size);
893                 write_phys_req_item(req->data, req, i, &tmp);
894             }
895         }
896     } else if (req->dir == IOREQ_WRITE) {
897         if (!req->data_is_ptr) {
898             trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
899                                           req->size);
900             do_outp(req->addr, req->size, req->data);
901         } else {
902             for (i = 0; i < req->count; i++) {
903                 uint32_t tmp = 0;
904 
905                 read_phys_req_item(req->data, req, i, &tmp);
906                 do_outp(req->addr, req->size, tmp);
907             }
908         }
909     }
910 }
911 
912 static void cpu_ioreq_move(ioreq_t *req)
913 {
914     uint32_t i;
915 
916     trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
917                          req->data, req->count, req->size);
918 
919     if (req->size > sizeof(req->data)) {
920         hw_error("MMIO: bad size (%u)", req->size);
921     }
922 
923     if (!req->data_is_ptr) {
924         if (req->dir == IOREQ_READ) {
925             for (i = 0; i < req->count; i++) {
926                 read_phys_req_item(req->addr, req, i, &req->data);
927             }
928         } else if (req->dir == IOREQ_WRITE) {
929             for (i = 0; i < req->count; i++) {
930                 write_phys_req_item(req->addr, req, i, &req->data);
931             }
932         }
933     } else {
934         uint64_t tmp;
935 
936         if (req->dir == IOREQ_READ) {
937             for (i = 0; i < req->count; i++) {
938                 read_phys_req_item(req->addr, req, i, &tmp);
939                 write_phys_req_item(req->data, req, i, &tmp);
940             }
941         } else if (req->dir == IOREQ_WRITE) {
942             for (i = 0; i < req->count; i++) {
943                 read_phys_req_item(req->data, req, i, &tmp);
944                 write_phys_req_item(req->addr, req, i, &tmp);
945             }
946         }
947     }
948 }
949 
950 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
951 {
952     uint32_t sbdf = req->addr >> 32;
953     uint32_t reg = req->addr;
954     XenPciDevice *xendev;
955 
956     if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
957         req->size != sizeof(uint32_t)) {
958         hw_error("PCI config access: bad size (%u)", req->size);
959     }
960 
961     if (req->count != 1) {
962         hw_error("PCI config access: bad count (%u)", req->count);
963     }
964 
965     QLIST_FOREACH(xendev, &state->dev_list, entry) {
966         if (xendev->sbdf != sbdf) {
967             continue;
968         }
969 
970         if (!req->data_is_ptr) {
971             if (req->dir == IOREQ_READ) {
972                 req->data = pci_host_config_read_common(
973                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
974                     req->size);
975                 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
976                                             req->size, req->data);
977             } else if (req->dir == IOREQ_WRITE) {
978                 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
979                                              req->size, req->data);
980                 pci_host_config_write_common(
981                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
982                     req->data, req->size);
983             }
984         } else {
985             uint32_t tmp;
986 
987             if (req->dir == IOREQ_READ) {
988                 tmp = pci_host_config_read_common(
989                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
990                     req->size);
991                 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
992                                             req->size, tmp);
993                 write_phys_req_item(req->data, req, 0, &tmp);
994             } else if (req->dir == IOREQ_WRITE) {
995                 read_phys_req_item(req->data, req, 0, &tmp);
996                 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
997                                              req->size, tmp);
998                 pci_host_config_write_common(
999                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
1000                     tmp, req->size);
1001             }
1002         }
1003     }
1004 }
1005 
1006 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
1007 {
1008     X86CPU *cpu;
1009     CPUX86State *env;
1010 
1011     cpu = X86_CPU(current_cpu);
1012     env = &cpu->env;
1013     env->regs[R_EAX] = req->data;
1014     env->regs[R_EBX] = vmport_regs->ebx;
1015     env->regs[R_ECX] = vmport_regs->ecx;
1016     env->regs[R_EDX] = vmport_regs->edx;
1017     env->regs[R_ESI] = vmport_regs->esi;
1018     env->regs[R_EDI] = vmport_regs->edi;
1019 }
1020 
1021 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1022 {
1023     X86CPU *cpu = X86_CPU(current_cpu);
1024     CPUX86State *env = &cpu->env;
1025 
1026     vmport_regs->ebx = env->regs[R_EBX];
1027     vmport_regs->ecx = env->regs[R_ECX];
1028     vmport_regs->edx = env->regs[R_EDX];
1029     vmport_regs->esi = env->regs[R_ESI];
1030     vmport_regs->edi = env->regs[R_EDI];
1031 }
1032 
1033 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1034 {
1035     vmware_regs_t *vmport_regs;
1036 
1037     assert(state->shared_vmport_page);
1038     vmport_regs =
1039         &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1040     QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1041 
1042     current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1043     regs_to_cpu(vmport_regs, req);
1044     cpu_ioreq_pio(req);
1045     regs_from_cpu(vmport_regs);
1046     current_cpu = NULL;
1047 }
1048 
1049 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1050 {
1051     trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1052                        req->addr, req->data, req->count, req->size);
1053 
1054     if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1055             (req->size < sizeof (target_ulong))) {
1056         req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1057     }
1058 
1059     if (req->dir == IOREQ_WRITE)
1060         trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1061                                  req->addr, req->data, req->count, req->size);
1062 
1063     switch (req->type) {
1064         case IOREQ_TYPE_PIO:
1065             cpu_ioreq_pio(req);
1066             break;
1067         case IOREQ_TYPE_COPY:
1068             cpu_ioreq_move(req);
1069             break;
1070         case IOREQ_TYPE_VMWARE_PORT:
1071             handle_vmport_ioreq(state, req);
1072             break;
1073         case IOREQ_TYPE_TIMEOFFSET:
1074             break;
1075         case IOREQ_TYPE_INVALIDATE:
1076             xen_invalidate_map_cache();
1077             break;
1078         case IOREQ_TYPE_PCI_CONFIG:
1079             cpu_ioreq_config(state, req);
1080             break;
1081         default:
1082             hw_error("Invalid ioreq type 0x%x\n", req->type);
1083     }
1084     if (req->dir == IOREQ_READ) {
1085         trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1086                                 req->addr, req->data, req->count, req->size);
1087     }
1088 }
1089 
1090 static bool handle_buffered_iopage(XenIOState *state)
1091 {
1092     buffered_iopage_t *buf_page = state->buffered_io_page;
1093     buf_ioreq_t *buf_req = NULL;
1094     bool handled_ioreq = false;
1095     ioreq_t req;
1096     int qw;
1097 
1098     if (!buf_page) {
1099         return 0;
1100     }
1101 
1102     memset(&req, 0x00, sizeof(req));
1103     req.state = STATE_IOREQ_READY;
1104     req.count = 1;
1105     req.dir = IOREQ_WRITE;
1106 
1107     for (;;) {
1108         uint32_t rdptr = buf_page->read_pointer, wrptr;
1109 
1110         xen_rmb();
1111         wrptr = buf_page->write_pointer;
1112         xen_rmb();
1113         if (rdptr != buf_page->read_pointer) {
1114             continue;
1115         }
1116         if (rdptr == wrptr) {
1117             break;
1118         }
1119         buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1120         req.size = 1U << buf_req->size;
1121         req.addr = buf_req->addr;
1122         req.data = buf_req->data;
1123         req.type = buf_req->type;
1124         xen_rmb();
1125         qw = (req.size == 8);
1126         if (qw) {
1127             if (rdptr + 1 == wrptr) {
1128                 hw_error("Incomplete quad word buffered ioreq");
1129             }
1130             buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1131                                            IOREQ_BUFFER_SLOT_NUM];
1132             req.data |= ((uint64_t)buf_req->data) << 32;
1133             xen_rmb();
1134         }
1135 
1136         handle_ioreq(state, &req);
1137 
1138         /* Only req.data may get updated by handle_ioreq(), albeit even that
1139          * should not happen as such data would never make it to the guest (we
1140          * can only usefully see writes here after all).
1141          */
1142         assert(req.state == STATE_IOREQ_READY);
1143         assert(req.count == 1);
1144         assert(req.dir == IOREQ_WRITE);
1145         assert(!req.data_is_ptr);
1146 
1147         qatomic_add(&buf_page->read_pointer, qw + 1);
1148         handled_ioreq = true;
1149     }
1150 
1151     return handled_ioreq;
1152 }
1153 
1154 static void handle_buffered_io(void *opaque)
1155 {
1156     XenIOState *state = opaque;
1157 
1158     if (handle_buffered_iopage(state)) {
1159         timer_mod(state->buffered_io_timer,
1160                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1161     } else {
1162         timer_del(state->buffered_io_timer);
1163         xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1164     }
1165 }
1166 
1167 static void cpu_handle_ioreq(void *opaque)
1168 {
1169     XenIOState *state = opaque;
1170     ioreq_t *req = cpu_get_ioreq(state);
1171 
1172     handle_buffered_iopage(state);
1173     if (req) {
1174         ioreq_t copy = *req;
1175 
1176         xen_rmb();
1177         handle_ioreq(state, &copy);
1178         req->data = copy.data;
1179 
1180         if (req->state != STATE_IOREQ_INPROCESS) {
1181             fprintf(stderr, "Badness in I/O request ... not in service?!: "
1182                     "%x, ptr: %x, port: %"PRIx64", "
1183                     "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1184                     req->state, req->data_is_ptr, req->addr,
1185                     req->data, req->count, req->size, req->type);
1186             destroy_hvm_domain(false);
1187             return;
1188         }
1189 
1190         xen_wmb(); /* Update ioreq contents /then/ update state. */
1191 
1192         /*
1193          * We do this before we send the response so that the tools
1194          * have the opportunity to pick up on the reset before the
1195          * guest resumes and does a hlt with interrupts disabled which
1196          * causes Xen to powerdown the domain.
1197          */
1198         if (runstate_is_running()) {
1199             ShutdownCause request;
1200 
1201             if (qemu_shutdown_requested_get()) {
1202                 destroy_hvm_domain(false);
1203             }
1204             request = qemu_reset_requested_get();
1205             if (request) {
1206                 qemu_system_reset(request);
1207                 destroy_hvm_domain(true);
1208             }
1209         }
1210 
1211         req->state = STATE_IORESP_READY;
1212         xenevtchn_notify(state->xce_handle,
1213                          state->ioreq_local_port[state->send_vcpu]);
1214     }
1215 }
1216 
1217 static void xen_main_loop_prepare(XenIOState *state)
1218 {
1219     int evtchn_fd = -1;
1220 
1221     if (state->xce_handle != NULL) {
1222         evtchn_fd = xenevtchn_fd(state->xce_handle);
1223     }
1224 
1225     state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1226                                                  state);
1227 
1228     if (evtchn_fd != -1) {
1229         CPUState *cpu_state;
1230 
1231         DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1232         CPU_FOREACH(cpu_state) {
1233             DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1234                     __func__, cpu_state->cpu_index, cpu_state);
1235             state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1236         }
1237         qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1238     }
1239 }
1240 
1241 
1242 static void xen_hvm_change_state_handler(void *opaque, bool running,
1243                                          RunState rstate)
1244 {
1245     XenIOState *state = opaque;
1246 
1247     if (running) {
1248         xen_main_loop_prepare(state);
1249     }
1250 
1251     xen_set_ioreq_server_state(xen_domid,
1252                                state->ioservid,
1253                                (rstate == RUN_STATE_RUNNING));
1254 }
1255 
1256 static void xen_exit_notifier(Notifier *n, void *data)
1257 {
1258     XenIOState *state = container_of(n, XenIOState, exit);
1259 
1260     xen_destroy_ioreq_server(xen_domid, state->ioservid);
1261     if (state->fres != NULL) {
1262         xenforeignmemory_unmap_resource(xen_fmem, state->fres);
1263     }
1264 
1265     xenevtchn_close(state->xce_handle);
1266     xs_daemon_close(state->xenstore);
1267 }
1268 
1269 #ifdef XEN_COMPAT_PHYSMAP
1270 static void xen_read_physmap(XenIOState *state)
1271 {
1272     XenPhysmap *physmap = NULL;
1273     unsigned int len, num, i;
1274     char path[80], *value = NULL;
1275     char **entries = NULL;
1276 
1277     snprintf(path, sizeof(path),
1278             "/local/domain/0/device-model/%d/physmap", xen_domid);
1279     entries = xs_directory(state->xenstore, 0, path, &num);
1280     if (entries == NULL)
1281         return;
1282 
1283     for (i = 0; i < num; i++) {
1284         physmap = g_malloc(sizeof (XenPhysmap));
1285         physmap->phys_offset = strtoull(entries[i], NULL, 16);
1286         snprintf(path, sizeof(path),
1287                 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1288                 xen_domid, entries[i]);
1289         value = xs_read(state->xenstore, 0, path, &len);
1290         if (value == NULL) {
1291             g_free(physmap);
1292             continue;
1293         }
1294         physmap->start_addr = strtoull(value, NULL, 16);
1295         free(value);
1296 
1297         snprintf(path, sizeof(path),
1298                 "/local/domain/0/device-model/%d/physmap/%s/size",
1299                 xen_domid, entries[i]);
1300         value = xs_read(state->xenstore, 0, path, &len);
1301         if (value == NULL) {
1302             g_free(physmap);
1303             continue;
1304         }
1305         physmap->size = strtoull(value, NULL, 16);
1306         free(value);
1307 
1308         snprintf(path, sizeof(path),
1309                 "/local/domain/0/device-model/%d/physmap/%s/name",
1310                 xen_domid, entries[i]);
1311         physmap->name = xs_read(state->xenstore, 0, path, &len);
1312 
1313         QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1314     }
1315     free(entries);
1316 }
1317 #else
1318 static void xen_read_physmap(XenIOState *state)
1319 {
1320 }
1321 #endif
1322 
1323 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1324 {
1325     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1326 }
1327 
1328 static int xen_map_ioreq_server(XenIOState *state)
1329 {
1330     void *addr = NULL;
1331     xen_pfn_t ioreq_pfn;
1332     xen_pfn_t bufioreq_pfn;
1333     evtchn_port_t bufioreq_evtchn;
1334     int rc;
1335 
1336     /*
1337      * Attempt to map using the resource API and fall back to normal
1338      * foreign mapping if this is not supported.
1339      */
1340     QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1341     QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1342     state->fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1343                                          XENMEM_resource_ioreq_server,
1344                                          state->ioservid, 0, 2,
1345                                          &addr,
1346                                          PROT_READ | PROT_WRITE, 0);
1347     if (state->fres != NULL) {
1348         trace_xen_map_resource_ioreq(state->ioservid, addr);
1349         state->buffered_io_page = addr;
1350         state->shared_page = addr + TARGET_PAGE_SIZE;
1351     } else if (errno != EOPNOTSUPP) {
1352         error_report("failed to map ioreq server resources: error %d handle=%p",
1353                      errno, xen_xc);
1354         return -1;
1355     }
1356 
1357     rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1358                                    (state->shared_page == NULL) ?
1359                                    &ioreq_pfn : NULL,
1360                                    (state->buffered_io_page == NULL) ?
1361                                    &bufioreq_pfn : NULL,
1362                                    &bufioreq_evtchn);
1363     if (rc < 0) {
1364         error_report("failed to get ioreq server info: error %d handle=%p",
1365                      errno, xen_xc);
1366         return rc;
1367     }
1368 
1369     if (state->shared_page == NULL) {
1370         DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1371 
1372         state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1373                                                   PROT_READ | PROT_WRITE,
1374                                                   1, &ioreq_pfn, NULL);
1375         if (state->shared_page == NULL) {
1376             error_report("map shared IO page returned error %d handle=%p",
1377                          errno, xen_xc);
1378         }
1379     }
1380 
1381     if (state->buffered_io_page == NULL) {
1382         DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1383 
1384         state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1385                                                        PROT_READ | PROT_WRITE,
1386                                                        1, &bufioreq_pfn,
1387                                                        NULL);
1388         if (state->buffered_io_page == NULL) {
1389             error_report("map buffered IO page returned error %d", errno);
1390             return -1;
1391         }
1392     }
1393 
1394     if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1395         return -1;
1396     }
1397 
1398     DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1399 
1400     state->bufioreq_remote_port = bufioreq_evtchn;
1401 
1402     return 0;
1403 }
1404 
1405 void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory)
1406 {
1407     MachineState *ms = MACHINE(pcms);
1408     unsigned int max_cpus = ms->smp.max_cpus;
1409     int i, rc;
1410     xen_pfn_t ioreq_pfn;
1411     XenIOState *state;
1412 
1413     state = g_malloc0(sizeof (XenIOState));
1414 
1415     state->xce_handle = xenevtchn_open(NULL, 0);
1416     if (state->xce_handle == NULL) {
1417         perror("xen: event channel open");
1418         goto err;
1419     }
1420 
1421     state->xenstore = xs_daemon_open();
1422     if (state->xenstore == NULL) {
1423         perror("xen: xenstore open");
1424         goto err;
1425     }
1426 
1427     xen_create_ioreq_server(xen_domid, &state->ioservid);
1428 
1429     state->exit.notify = xen_exit_notifier;
1430     qemu_add_exit_notifier(&state->exit);
1431 
1432     state->suspend.notify = xen_suspend_notifier;
1433     qemu_register_suspend_notifier(&state->suspend);
1434 
1435     state->wakeup.notify = xen_wakeup_notifier;
1436     qemu_register_wakeup_notifier(&state->wakeup);
1437 
1438     /*
1439      * Register wake-up support in QMP query-current-machine API
1440      */
1441     qemu_register_wakeup_support();
1442 
1443     rc = xen_map_ioreq_server(state);
1444     if (rc < 0) {
1445         goto err;
1446     }
1447 
1448     rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1449     if (!rc) {
1450         DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1451         state->shared_vmport_page =
1452             xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1453                                  1, &ioreq_pfn, NULL);
1454         if (state->shared_vmport_page == NULL) {
1455             error_report("map shared vmport IO page returned error %d handle=%p",
1456                          errno, xen_xc);
1457             goto err;
1458         }
1459     } else if (rc != -ENOSYS) {
1460         error_report("get vmport regs pfn returned error %d, rc=%d",
1461                      errno, rc);
1462         goto err;
1463     }
1464 
1465     /* Note: cpus is empty at this point in init */
1466     state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1467 
1468     rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1469     if (rc < 0) {
1470         error_report("failed to enable ioreq server info: error %d handle=%p",
1471                      errno, xen_xc);
1472         goto err;
1473     }
1474 
1475     state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1476 
1477     /* FIXME: how about if we overflow the page here? */
1478     for (i = 0; i < max_cpus; i++) {
1479         rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1480                                         xen_vcpu_eport(state->shared_page, i));
1481         if (rc == -1) {
1482             error_report("shared evtchn %d bind error %d", i, errno);
1483             goto err;
1484         }
1485         state->ioreq_local_port[i] = rc;
1486     }
1487 
1488     rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1489                                     state->bufioreq_remote_port);
1490     if (rc == -1) {
1491         error_report("buffered evtchn bind error %d", errno);
1492         goto err;
1493     }
1494     state->bufioreq_local_port = rc;
1495 
1496     /* Init RAM management */
1497 #ifdef XEN_COMPAT_PHYSMAP
1498     xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1499 #else
1500     xen_map_cache_init(NULL, state);
1501 #endif
1502     xen_ram_init(pcms, ms->ram_size, ram_memory);
1503 
1504     qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1505 
1506     state->memory_listener = xen_memory_listener;
1507     memory_listener_register(&state->memory_listener, &address_space_memory);
1508     state->log_for_dirtybit = NULL;
1509 
1510     state->io_listener = xen_io_listener;
1511     memory_listener_register(&state->io_listener, &address_space_io);
1512 
1513     state->device_listener = xen_device_listener;
1514     QLIST_INIT(&state->dev_list);
1515     device_listener_register(&state->device_listener);
1516 
1517     xen_bus_init();
1518 
1519     /* Initialize backend core & drivers */
1520     if (xen_be_init() != 0) {
1521         error_report("xen backend core setup failed");
1522         goto err;
1523     }
1524     xen_be_register_common();
1525 
1526     QLIST_INIT(&xen_physmap);
1527     xen_read_physmap(state);
1528 
1529     /* Disable ACPI build because Xen handles it */
1530     pcms->acpi_build_enabled = false;
1531 
1532     return;
1533 
1534 err:
1535     error_report("xen hardware virtual machine initialisation failed");
1536     exit(1);
1537 }
1538 
1539 void destroy_hvm_domain(bool reboot)
1540 {
1541     xc_interface *xc_handle;
1542     int sts;
1543     int rc;
1544 
1545     unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1546 
1547     if (xen_dmod) {
1548         rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1549         if (!rc) {
1550             return;
1551         }
1552         if (errno != ENOTTY /* old Xen */) {
1553             perror("xendevicemodel_shutdown failed");
1554         }
1555         /* well, try the old thing then */
1556     }
1557 
1558     xc_handle = xc_interface_open(0, 0, 0);
1559     if (xc_handle == NULL) {
1560         fprintf(stderr, "Cannot acquire xenctrl handle\n");
1561     } else {
1562         sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1563         if (sts != 0) {
1564             fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1565                     "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1566                     sts, strerror(errno));
1567         } else {
1568             fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1569                     reboot ? "reboot" : "poweroff");
1570         }
1571         xc_interface_close(xc_handle);
1572     }
1573 }
1574 
1575 void xen_register_framebuffer(MemoryRegion *mr)
1576 {
1577     framebuffer = mr;
1578 }
1579 
1580 void xen_shutdown_fatal_error(const char *fmt, ...)
1581 {
1582     va_list ap;
1583 
1584     va_start(ap, fmt);
1585     vfprintf(stderr, fmt, ap);
1586     va_end(ap);
1587     fprintf(stderr, "Will destroy the domain.\n");
1588     /* destroy the domain */
1589     qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1590 }
1591 
1592 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1593 {
1594     if (unlikely(xen_in_migration)) {
1595         int rc;
1596         ram_addr_t start_pfn, nb_pages;
1597 
1598         start = xen_phys_offset_to_gaddr(start, length);
1599 
1600         if (length == 0) {
1601             length = TARGET_PAGE_SIZE;
1602         }
1603         start_pfn = start >> TARGET_PAGE_BITS;
1604         nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1605             - start_pfn;
1606         rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1607         if (rc) {
1608             fprintf(stderr,
1609                     "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1610                     __func__, start, nb_pages, errno, strerror(errno));
1611         }
1612     }
1613 }
1614 
1615 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1616 {
1617     if (enable) {
1618         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
1619     } else {
1620         memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
1621     }
1622 }
1623