xref: /qemu/hw/intc/arm_gic.c (revision c5840b90)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 /* Return true if this GIC config has interrupt groups, which is
65  * true if we're a GICv2, or a GICv1 with the security extensions.
66  */
67 static inline bool gic_has_groups(GICState *s)
68 {
69     return s->revision == 2 || s->security_extn;
70 }
71 
72 /* TODO: Many places that call this routine could be optimized.  */
73 /* Update interrupt status after enabled or pending bits have been changed.  */
74 void gic_update(GICState *s)
75 {
76     int best_irq;
77     int best_prio;
78     int irq;
79     int irq_level, fiq_level;
80     int cpu;
81     int cm;
82 
83     for (cpu = 0; cpu < s->num_cpu; cpu++) {
84         cm = 1 << cpu;
85         s->current_pending[cpu] = 1023;
86         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88             qemu_irq_lower(s->parent_irq[cpu]);
89             qemu_irq_lower(s->parent_fiq[cpu]);
90             continue;
91         }
92         best_prio = 0x100;
93         best_irq = 1023;
94         for (irq = 0; irq < s->num_irq; irq++) {
95             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96                 (!GIC_TEST_ACTIVE(irq, cm)) &&
97                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
98                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
99                     best_prio = GIC_GET_PRIORITY(irq, cpu);
100                     best_irq = irq;
101                 }
102             }
103         }
104 
105         if (best_irq != 1023) {
106             trace_gic_update_bestirq(cpu, best_irq, best_prio,
107                 s->priority_mask[cpu], s->running_priority[cpu]);
108         }
109 
110         irq_level = fiq_level = 0;
111 
112         if (best_prio < s->priority_mask[cpu]) {
113             s->current_pending[cpu] = best_irq;
114             if (best_prio < s->running_priority[cpu]) {
115                 int group = GIC_TEST_GROUP(best_irq, cm);
116 
117                 if (extract32(s->ctlr, group, 1) &&
118                     extract32(s->cpu_ctlr[cpu], group, 1)) {
119                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
120                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
121                                 best_irq, cpu);
122                         fiq_level = 1;
123                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
124                     } else {
125                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
126                                 best_irq, cpu);
127                         irq_level = 1;
128                         trace_gic_update_set_irq(cpu, "irq", irq_level);
129                     }
130                 }
131             }
132         }
133 
134         qemu_set_irq(s->parent_irq[cpu], irq_level);
135         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
136     }
137 }
138 
139 void gic_set_pending_private(GICState *s, int cpu, int irq)
140 {
141     int cm = 1 << cpu;
142 
143     if (gic_test_pending(s, irq, cm)) {
144         return;
145     }
146 
147     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
148     GIC_SET_PENDING(irq, cm);
149     gic_update(s);
150 }
151 
152 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
153                                  int cm, int target)
154 {
155     if (level) {
156         GIC_SET_LEVEL(irq, cm);
157         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
158             DPRINTF("Set %d pending mask %x\n", irq, target);
159             GIC_SET_PENDING(irq, target);
160         }
161     } else {
162         GIC_CLEAR_LEVEL(irq, cm);
163     }
164 }
165 
166 static void gic_set_irq_generic(GICState *s, int irq, int level,
167                                 int cm, int target)
168 {
169     if (level) {
170         GIC_SET_LEVEL(irq, cm);
171         DPRINTF("Set %d pending mask %x\n", irq, target);
172         if (GIC_TEST_EDGE_TRIGGER(irq)) {
173             GIC_SET_PENDING(irq, target);
174         }
175     } else {
176         GIC_CLEAR_LEVEL(irq, cm);
177     }
178 }
179 
180 /* Process a change in an external IRQ input.  */
181 static void gic_set_irq(void *opaque, int irq, int level)
182 {
183     /* Meaning of the 'irq' parameter:
184      *  [0..N-1] : external interrupts
185      *  [N..N+31] : PPI (internal) interrupts for CPU 0
186      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
187      *  ...
188      */
189     GICState *s = (GICState *)opaque;
190     int cm, target;
191     if (irq < (s->num_irq - GIC_INTERNAL)) {
192         /* The first external input line is internal interrupt 32.  */
193         cm = ALL_CPU_MASK;
194         irq += GIC_INTERNAL;
195         target = GIC_TARGET(irq);
196     } else {
197         int cpu;
198         irq -= (s->num_irq - GIC_INTERNAL);
199         cpu = irq / GIC_INTERNAL;
200         irq %= GIC_INTERNAL;
201         cm = 1 << cpu;
202         target = cm;
203     }
204 
205     assert(irq >= GIC_NR_SGIS);
206 
207     if (level == GIC_TEST_LEVEL(irq, cm)) {
208         return;
209     }
210 
211     if (s->revision == REV_11MPCORE) {
212         gic_set_irq_11mpcore(s, irq, level, cm, target);
213     } else {
214         gic_set_irq_generic(s, irq, level, cm, target);
215     }
216     trace_gic_set_irq(irq, level, cm, target);
217 
218     gic_update(s);
219 }
220 
221 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
222                                             MemTxAttrs attrs)
223 {
224     uint16_t pending_irq = s->current_pending[cpu];
225 
226     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
227         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
228         /* On a GIC without the security extensions, reading this register
229          * behaves in the same way as a secure access to a GIC with them.
230          */
231         bool secure = !s->security_extn || attrs.secure;
232 
233         if (group == 0 && !secure) {
234             /* Group0 interrupts hidden from Non-secure access */
235             return 1023;
236         }
237         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
238             /* Group1 interrupts only seen by Secure access if
239              * AckCtl bit set.
240              */
241             return 1022;
242         }
243     }
244     return pending_irq;
245 }
246 
247 static int gic_get_group_priority(GICState *s, int cpu, int irq)
248 {
249     /* Return the group priority of the specified interrupt
250      * (which is the top bits of its priority, with the number
251      * of bits masked determined by the applicable binary point register).
252      */
253     int bpr;
254     uint32_t mask;
255 
256     if (gic_has_groups(s) &&
257         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
258         GIC_TEST_GROUP(irq, (1 << cpu))) {
259         bpr = s->abpr[cpu] - 1;
260         assert(bpr >= 0);
261     } else {
262         bpr = s->bpr[cpu];
263     }
264 
265     /* a BPR of 0 means the group priority bits are [7:1];
266      * a BPR of 1 means they are [7:2], and so on down to
267      * a BPR of 7 meaning no group priority bits at all.
268      */
269     mask = ~0U << ((bpr & 7) + 1);
270 
271     return GIC_GET_PRIORITY(irq, cpu) & mask;
272 }
273 
274 static void gic_activate_irq(GICState *s, int cpu, int irq)
275 {
276     /* Set the appropriate Active Priority Register bit for this IRQ,
277      * and update the running priority.
278      */
279     int prio = gic_get_group_priority(s, cpu, irq);
280     int preemption_level = prio >> (GIC_MIN_BPR + 1);
281     int regno = preemption_level / 32;
282     int bitno = preemption_level % 32;
283 
284     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
285         s->nsapr[regno][cpu] |= (1 << bitno);
286     } else {
287         s->apr[regno][cpu] |= (1 << bitno);
288     }
289 
290     s->running_priority[cpu] = prio;
291     GIC_SET_ACTIVE(irq, 1 << cpu);
292 }
293 
294 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
295 {
296     /* Recalculate the current running priority for this CPU based
297      * on the set bits in the Active Priority Registers.
298      */
299     int i;
300     for (i = 0; i < GIC_NR_APRS; i++) {
301         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
302         if (!apr) {
303             continue;
304         }
305         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
306     }
307     return 0x100;
308 }
309 
310 static void gic_drop_prio(GICState *s, int cpu, int group)
311 {
312     /* Drop the priority of the currently active interrupt in the
313      * specified group.
314      *
315      * Note that we can guarantee (because of the requirement to nest
316      * GICC_IAR reads [which activate an interrupt and raise priority]
317      * with GICC_EOIR writes [which drop the priority for the interrupt])
318      * that the interrupt we're being called for is the highest priority
319      * active interrupt, meaning that it has the lowest set bit in the
320      * APR registers.
321      *
322      * If the guest does not honour the ordering constraints then the
323      * behaviour of the GIC is UNPREDICTABLE, which for us means that
324      * the values of the APR registers might become incorrect and the
325      * running priority will be wrong, so interrupts that should preempt
326      * might not do so, and interrupts that should not preempt might do so.
327      */
328     int i;
329 
330     for (i = 0; i < GIC_NR_APRS; i++) {
331         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
332         if (!*papr) {
333             continue;
334         }
335         /* Clear lowest set bit */
336         *papr &= *papr - 1;
337         break;
338     }
339 
340     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
341 }
342 
343 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
344 {
345     int ret, irq, src;
346     int cm = 1 << cpu;
347 
348     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
349      * for the case where this GIC supports grouping and the pending interrupt
350      * is in the wrong group.
351      */
352     irq = gic_get_current_pending_irq(s, cpu, attrs);
353     trace_gic_acknowledge_irq(cpu, irq);
354 
355     if (irq >= GIC_MAXIRQ) {
356         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
357         return irq;
358     }
359 
360     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
361         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
362         return 1023;
363     }
364 
365     if (s->revision == REV_11MPCORE) {
366         /* Clear pending flags for both level and edge triggered interrupts.
367          * Level triggered IRQs will be reasserted once they become inactive.
368          */
369         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370         ret = irq;
371     } else {
372         if (irq < GIC_NR_SGIS) {
373             /* Lookup the source CPU for the SGI and clear this in the
374              * sgi_pending map.  Return the src and clear the overall pending
375              * state on this CPU if the SGI is not pending from any CPUs.
376              */
377             assert(s->sgi_pending[irq][cpu] != 0);
378             src = ctz32(s->sgi_pending[irq][cpu]);
379             s->sgi_pending[irq][cpu] &= ~(1 << src);
380             if (s->sgi_pending[irq][cpu] == 0) {
381                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382             }
383             ret = irq | ((src & 0x7) << 10);
384         } else {
385             /* Clear pending state for both level and edge triggered
386              * interrupts. (level triggered interrupts with an active line
387              * remain pending, see gic_test_pending)
388              */
389             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
390             ret = irq;
391         }
392     }
393 
394     gic_activate_irq(s, cpu, irq);
395     gic_update(s);
396     DPRINTF("ACK %d\n", irq);
397     return ret;
398 }
399 
400 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
401                       MemTxAttrs attrs)
402 {
403     if (s->security_extn && !attrs.secure) {
404         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
405             return; /* Ignore Non-secure access of Group0 IRQ */
406         }
407         val = 0x80 | (val >> 1); /* Non-secure view */
408     }
409 
410     if (irq < GIC_INTERNAL) {
411         s->priority1[irq][cpu] = val;
412     } else {
413         s->priority2[(irq) - GIC_INTERNAL] = val;
414     }
415 }
416 
417 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
418                                  MemTxAttrs attrs)
419 {
420     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
421 
422     if (s->security_extn && !attrs.secure) {
423         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
424             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
425         }
426         prio = (prio << 1) & 0xff; /* Non-secure view */
427     }
428     return prio;
429 }
430 
431 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
432                                   MemTxAttrs attrs)
433 {
434     if (s->security_extn && !attrs.secure) {
435         if (s->priority_mask[cpu] & 0x80) {
436             /* Priority Mask in upper half */
437             pmask = 0x80 | (pmask >> 1);
438         } else {
439             /* Non-secure write ignored if priority mask is in lower half */
440             return;
441         }
442     }
443     s->priority_mask[cpu] = pmask;
444 }
445 
446 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
447 {
448     uint32_t pmask = s->priority_mask[cpu];
449 
450     if (s->security_extn && !attrs.secure) {
451         if (pmask & 0x80) {
452             /* Priority Mask in upper half, return Non-secure view */
453             pmask = (pmask << 1) & 0xff;
454         } else {
455             /* Priority Mask in lower half, RAZ */
456             pmask = 0;
457         }
458     }
459     return pmask;
460 }
461 
462 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
463 {
464     uint32_t ret = s->cpu_ctlr[cpu];
465 
466     if (s->security_extn && !attrs.secure) {
467         /* Construct the NS banked view of GICC_CTLR from the correct
468          * bits of the S banked view. We don't need to move the bypass
469          * control bits because we don't implement that (IMPDEF) part
470          * of the GIC architecture.
471          */
472         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
473     }
474     return ret;
475 }
476 
477 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
478                                 MemTxAttrs attrs)
479 {
480     uint32_t mask;
481 
482     if (s->security_extn && !attrs.secure) {
483         /* The NS view can only write certain bits in the register;
484          * the rest are unchanged
485          */
486         mask = GICC_CTLR_EN_GRP1;
487         if (s->revision == 2) {
488             mask |= GICC_CTLR_EOIMODE_NS;
489         }
490         s->cpu_ctlr[cpu] &= ~mask;
491         s->cpu_ctlr[cpu] |= (value << 1) & mask;
492     } else {
493         if (s->revision == 2) {
494             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
495         } else {
496             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
497         }
498         s->cpu_ctlr[cpu] = value & mask;
499     }
500     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
501             "Group1 Interrupts %sabled\n", cpu,
502             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
503             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
504 }
505 
506 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
507 {
508     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
509         /* Idle priority */
510         return 0xff;
511     }
512 
513     if (s->security_extn && !attrs.secure) {
514         if (s->running_priority[cpu] & 0x80) {
515             /* Running priority in upper half of range: return the Non-secure
516              * view of the priority.
517              */
518             return s->running_priority[cpu] << 1;
519         } else {
520             /* Running priority in lower half of range: RAZ */
521             return 0;
522         }
523     } else {
524         return s->running_priority[cpu];
525     }
526 }
527 
528 /* Return true if we should split priority drop and interrupt deactivation,
529  * ie whether the relevant EOIMode bit is set.
530  */
531 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
532 {
533     if (s->revision != 2) {
534         /* Before GICv2 prio-drop and deactivate are not separable */
535         return false;
536     }
537     if (s->security_extn && !attrs.secure) {
538         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
539     }
540     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
541 }
542 
543 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
544 {
545     int cm = 1 << cpu;
546     int group;
547 
548     if (irq >= s->num_irq) {
549         /*
550          * This handles two cases:
551          * 1. If software writes the ID of a spurious interrupt [ie 1023]
552          * to the GICC_DIR, the GIC ignores that write.
553          * 2. If software writes the number of a non-existent interrupt
554          * this must be a subcase of "value written is not an active interrupt"
555          * and so this is UNPREDICTABLE. We choose to ignore it.
556          */
557         return;
558     }
559 
560     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
561 
562     if (!gic_eoi_split(s, cpu, attrs)) {
563         /* This is UNPREDICTABLE; we choose to ignore it */
564         qemu_log_mask(LOG_GUEST_ERROR,
565                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
566         return;
567     }
568 
569     if (s->security_extn && !attrs.secure && !group) {
570         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
571         return;
572     }
573 
574     GIC_CLEAR_ACTIVE(irq, cm);
575 }
576 
577 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
578 {
579     int cm = 1 << cpu;
580     int group;
581 
582     DPRINTF("EOI %d\n", irq);
583     if (irq >= s->num_irq) {
584         /* This handles two cases:
585          * 1. If software writes the ID of a spurious interrupt [ie 1023]
586          * to the GICC_EOIR, the GIC ignores that write.
587          * 2. If software writes the number of a non-existent interrupt
588          * this must be a subcase of "value written does not match the last
589          * valid interrupt value read from the Interrupt Acknowledge
590          * register" and so this is UNPREDICTABLE. We choose to ignore it.
591          */
592         return;
593     }
594     if (s->running_priority[cpu] == 0x100) {
595         return; /* No active IRQ.  */
596     }
597 
598     if (s->revision == REV_11MPCORE) {
599         /* Mark level triggered interrupts as pending if they are still
600            raised.  */
601         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
602             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
603             DPRINTF("Set %d pending mask %x\n", irq, cm);
604             GIC_SET_PENDING(irq, cm);
605         }
606     }
607 
608     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
609 
610     if (s->security_extn && !attrs.secure && !group) {
611         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
612         return;
613     }
614 
615     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
616      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
617      * i.e. go ahead and complete the irq anyway.
618      */
619 
620     gic_drop_prio(s, cpu, group);
621 
622     /* In GICv2 the guest can choose to split priority-drop and deactivate */
623     if (!gic_eoi_split(s, cpu, attrs)) {
624         GIC_CLEAR_ACTIVE(irq, cm);
625     }
626     gic_update(s);
627 }
628 
629 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
630 {
631     GICState *s = (GICState *)opaque;
632     uint32_t res;
633     int irq;
634     int i;
635     int cpu;
636     int cm;
637     int mask;
638 
639     cpu = gic_get_current_cpu(s);
640     cm = 1 << cpu;
641     if (offset < 0x100) {
642         if (offset == 0) {      /* GICD_CTLR */
643             if (s->security_extn && !attrs.secure) {
644                 /* The NS bank of this register is just an alias of the
645                  * EnableGrp1 bit in the S bank version.
646                  */
647                 return extract32(s->ctlr, 1, 1);
648             } else {
649                 return s->ctlr;
650             }
651         }
652         if (offset == 4)
653             /* Interrupt Controller Type Register */
654             return ((s->num_irq / 32) - 1)
655                     | ((s->num_cpu - 1) << 5)
656                     | (s->security_extn << 10);
657         if (offset < 0x08)
658             return 0;
659         if (offset >= 0x80) {
660             /* Interrupt Group Registers: these RAZ/WI if this is an NS
661              * access to a GIC with the security extensions, or if the GIC
662              * doesn't have groups at all.
663              */
664             res = 0;
665             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
666                 /* Every byte offset holds 8 group status bits */
667                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
668                 if (irq >= s->num_irq) {
669                     goto bad_reg;
670                 }
671                 for (i = 0; i < 8; i++) {
672                     if (GIC_TEST_GROUP(irq + i, cm)) {
673                         res |= (1 << i);
674                     }
675                 }
676             }
677             return res;
678         }
679         goto bad_reg;
680     } else if (offset < 0x200) {
681         /* Interrupt Set/Clear Enable.  */
682         if (offset < 0x180)
683             irq = (offset - 0x100) * 8;
684         else
685             irq = (offset - 0x180) * 8;
686         irq += GIC_BASE_IRQ;
687         if (irq >= s->num_irq)
688             goto bad_reg;
689         res = 0;
690         for (i = 0; i < 8; i++) {
691             if (s->security_extn && !attrs.secure &&
692                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
693                 continue; /* Ignore Non-secure access of Group0 IRQ */
694             }
695 
696             if (GIC_TEST_ENABLED(irq + i, cm)) {
697                 res |= (1 << i);
698             }
699         }
700     } else if (offset < 0x300) {
701         /* Interrupt Set/Clear Pending.  */
702         if (offset < 0x280)
703             irq = (offset - 0x200) * 8;
704         else
705             irq = (offset - 0x280) * 8;
706         irq += GIC_BASE_IRQ;
707         if (irq >= s->num_irq)
708             goto bad_reg;
709         res = 0;
710         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
711         for (i = 0; i < 8; i++) {
712             if (s->security_extn && !attrs.secure &&
713                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
714                 continue; /* Ignore Non-secure access of Group0 IRQ */
715             }
716 
717             if (gic_test_pending(s, irq + i, mask)) {
718                 res |= (1 << i);
719             }
720         }
721     } else if (offset < 0x400) {
722         /* Interrupt Active.  */
723         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
724         if (irq >= s->num_irq)
725             goto bad_reg;
726         res = 0;
727         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
728         for (i = 0; i < 8; i++) {
729             if (s->security_extn && !attrs.secure &&
730                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
731                 continue; /* Ignore Non-secure access of Group0 IRQ */
732             }
733 
734             if (GIC_TEST_ACTIVE(irq + i, mask)) {
735                 res |= (1 << i);
736             }
737         }
738     } else if (offset < 0x800) {
739         /* Interrupt Priority.  */
740         irq = (offset - 0x400) + GIC_BASE_IRQ;
741         if (irq >= s->num_irq)
742             goto bad_reg;
743         res = gic_get_priority(s, cpu, irq, attrs);
744     } else if (offset < 0xc00) {
745         /* Interrupt CPU Target.  */
746         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
747             /* For uniprocessor GICs these RAZ/WI */
748             res = 0;
749         } else {
750             irq = (offset - 0x800) + GIC_BASE_IRQ;
751             if (irq >= s->num_irq) {
752                 goto bad_reg;
753             }
754             if (irq < 29 && s->revision == REV_11MPCORE) {
755                 res = 0;
756             } else if (irq < GIC_INTERNAL) {
757                 res = cm;
758             } else {
759                 res = GIC_TARGET(irq);
760             }
761         }
762     } else if (offset < 0xf00) {
763         /* Interrupt Configuration.  */
764         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
765         if (irq >= s->num_irq)
766             goto bad_reg;
767         res = 0;
768         for (i = 0; i < 4; i++) {
769             if (s->security_extn && !attrs.secure &&
770                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
771                 continue; /* Ignore Non-secure access of Group0 IRQ */
772             }
773 
774             if (GIC_TEST_MODEL(irq + i))
775                 res |= (1 << (i * 2));
776             if (GIC_TEST_EDGE_TRIGGER(irq + i))
777                 res |= (2 << (i * 2));
778         }
779     } else if (offset < 0xf10) {
780         goto bad_reg;
781     } else if (offset < 0xf30) {
782         if (s->revision == REV_11MPCORE) {
783             goto bad_reg;
784         }
785 
786         if (offset < 0xf20) {
787             /* GICD_CPENDSGIRn */
788             irq = (offset - 0xf10);
789         } else {
790             irq = (offset - 0xf20);
791             /* GICD_SPENDSGIRn */
792         }
793 
794         if (s->security_extn && !attrs.secure &&
795             !GIC_TEST_GROUP(irq, 1 << cpu)) {
796             res = 0; /* Ignore Non-secure access of Group0 IRQ */
797         } else {
798             res = s->sgi_pending[irq][cpu];
799         }
800     } else if (offset < 0xfd0) {
801         goto bad_reg;
802     } else if (offset < 0x1000) {
803         if (offset & 3) {
804             res = 0;
805         } else {
806             switch (s->revision) {
807             case REV_11MPCORE:
808                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
809                 break;
810             case 1:
811                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
812                 break;
813             case 2:
814                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
815                 break;
816             default:
817                 res = 0;
818             }
819         }
820     } else {
821         g_assert_not_reached();
822     }
823     return res;
824 bad_reg:
825     qemu_log_mask(LOG_GUEST_ERROR,
826                   "gic_dist_readb: Bad offset %x\n", (int)offset);
827     return 0;
828 }
829 
830 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
831                                  unsigned size, MemTxAttrs attrs)
832 {
833     switch (size) {
834     case 1:
835         *data = gic_dist_readb(opaque, offset, attrs);
836         return MEMTX_OK;
837     case 2:
838         *data = gic_dist_readb(opaque, offset, attrs);
839         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
840         return MEMTX_OK;
841     case 4:
842         *data = gic_dist_readb(opaque, offset, attrs);
843         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
844         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
845         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
846         return MEMTX_OK;
847     default:
848         return MEMTX_ERROR;
849     }
850 }
851 
852 static void gic_dist_writeb(void *opaque, hwaddr offset,
853                             uint32_t value, MemTxAttrs attrs)
854 {
855     GICState *s = (GICState *)opaque;
856     int irq;
857     int i;
858     int cpu;
859 
860     cpu = gic_get_current_cpu(s);
861     if (offset < 0x100) {
862         if (offset == 0) {
863             if (s->security_extn && !attrs.secure) {
864                 /* NS version is just an alias of the S version's bit 1 */
865                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
866             } else if (gic_has_groups(s)) {
867                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
868             } else {
869                 s->ctlr = value & GICD_CTLR_EN_GRP0;
870             }
871             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
872                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
873                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
874         } else if (offset < 4) {
875             /* ignored.  */
876         } else if (offset >= 0x80) {
877             /* Interrupt Group Registers: RAZ/WI for NS access to secure
878              * GIC, or for GICs without groups.
879              */
880             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
881                 /* Every byte offset holds 8 group status bits */
882                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
883                 if (irq >= s->num_irq) {
884                     goto bad_reg;
885                 }
886                 for (i = 0; i < 8; i++) {
887                     /* Group bits are banked for private interrupts */
888                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
889                     if (value & (1 << i)) {
890                         /* Group1 (Non-secure) */
891                         GIC_SET_GROUP(irq + i, cm);
892                     } else {
893                         /* Group0 (Secure) */
894                         GIC_CLEAR_GROUP(irq + i, cm);
895                     }
896                 }
897             }
898         } else {
899             goto bad_reg;
900         }
901     } else if (offset < 0x180) {
902         /* Interrupt Set Enable.  */
903         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
904         if (irq >= s->num_irq)
905             goto bad_reg;
906         if (irq < GIC_NR_SGIS) {
907             value = 0xff;
908         }
909 
910         for (i = 0; i < 8; i++) {
911             if (value & (1 << i)) {
912                 int mask =
913                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
914                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
915 
916                 if (s->security_extn && !attrs.secure &&
917                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
918                     continue; /* Ignore Non-secure access of Group0 IRQ */
919                 }
920 
921                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
922                     DPRINTF("Enabled IRQ %d\n", irq + i);
923                     trace_gic_enable_irq(irq + i);
924                 }
925                 GIC_SET_ENABLED(irq + i, cm);
926                 /* If a raised level triggered IRQ enabled then mark
927                    is as pending.  */
928                 if (GIC_TEST_LEVEL(irq + i, mask)
929                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
930                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
931                     GIC_SET_PENDING(irq + i, mask);
932                 }
933             }
934         }
935     } else if (offset < 0x200) {
936         /* Interrupt Clear Enable.  */
937         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
938         if (irq >= s->num_irq)
939             goto bad_reg;
940         if (irq < GIC_NR_SGIS) {
941             value = 0;
942         }
943 
944         for (i = 0; i < 8; i++) {
945             if (value & (1 << i)) {
946                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
947 
948                 if (s->security_extn && !attrs.secure &&
949                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
950                     continue; /* Ignore Non-secure access of Group0 IRQ */
951                 }
952 
953                 if (GIC_TEST_ENABLED(irq + i, cm)) {
954                     DPRINTF("Disabled IRQ %d\n", irq + i);
955                     trace_gic_disable_irq(irq + i);
956                 }
957                 GIC_CLEAR_ENABLED(irq + i, cm);
958             }
959         }
960     } else if (offset < 0x280) {
961         /* Interrupt Set Pending.  */
962         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
963         if (irq >= s->num_irq)
964             goto bad_reg;
965         if (irq < GIC_NR_SGIS) {
966             value = 0;
967         }
968 
969         for (i = 0; i < 8; i++) {
970             if (value & (1 << i)) {
971                 if (s->security_extn && !attrs.secure &&
972                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
973                     continue; /* Ignore Non-secure access of Group0 IRQ */
974                 }
975 
976                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
977             }
978         }
979     } else if (offset < 0x300) {
980         /* Interrupt Clear Pending.  */
981         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
982         if (irq >= s->num_irq)
983             goto bad_reg;
984         if (irq < GIC_NR_SGIS) {
985             value = 0;
986         }
987 
988         for (i = 0; i < 8; i++) {
989             if (s->security_extn && !attrs.secure &&
990                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
991                 continue; /* Ignore Non-secure access of Group0 IRQ */
992             }
993 
994             /* ??? This currently clears the pending bit for all CPUs, even
995                for per-CPU interrupts.  It's unclear whether this is the
996                corect behavior.  */
997             if (value & (1 << i)) {
998                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
999             }
1000         }
1001     } else if (offset < 0x400) {
1002         /* Interrupt Active.  */
1003         goto bad_reg;
1004     } else if (offset < 0x800) {
1005         /* Interrupt Priority.  */
1006         irq = (offset - 0x400) + GIC_BASE_IRQ;
1007         if (irq >= s->num_irq)
1008             goto bad_reg;
1009         gic_set_priority(s, cpu, irq, value, attrs);
1010     } else if (offset < 0xc00) {
1011         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1012          * annoying exception of the 11MPCore's GIC.
1013          */
1014         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1015             irq = (offset - 0x800) + GIC_BASE_IRQ;
1016             if (irq >= s->num_irq) {
1017                 goto bad_reg;
1018             }
1019             if (irq < 29 && s->revision == REV_11MPCORE) {
1020                 value = 0;
1021             } else if (irq < GIC_INTERNAL) {
1022                 value = ALL_CPU_MASK;
1023             }
1024             s->irq_target[irq] = value & ALL_CPU_MASK;
1025         }
1026     } else if (offset < 0xf00) {
1027         /* Interrupt Configuration.  */
1028         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1029         if (irq >= s->num_irq)
1030             goto bad_reg;
1031         if (irq < GIC_NR_SGIS)
1032             value |= 0xaa;
1033         for (i = 0; i < 4; i++) {
1034             if (s->security_extn && !attrs.secure &&
1035                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1036                 continue; /* Ignore Non-secure access of Group0 IRQ */
1037             }
1038 
1039             if (s->revision == REV_11MPCORE) {
1040                 if (value & (1 << (i * 2))) {
1041                     GIC_SET_MODEL(irq + i);
1042                 } else {
1043                     GIC_CLEAR_MODEL(irq + i);
1044                 }
1045             }
1046             if (value & (2 << (i * 2))) {
1047                 GIC_SET_EDGE_TRIGGER(irq + i);
1048             } else {
1049                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1050             }
1051         }
1052     } else if (offset < 0xf10) {
1053         /* 0xf00 is only handled for 32-bit writes.  */
1054         goto bad_reg;
1055     } else if (offset < 0xf20) {
1056         /* GICD_CPENDSGIRn */
1057         if (s->revision == REV_11MPCORE) {
1058             goto bad_reg;
1059         }
1060         irq = (offset - 0xf10);
1061 
1062         if (!s->security_extn || attrs.secure ||
1063             GIC_TEST_GROUP(irq, 1 << cpu)) {
1064             s->sgi_pending[irq][cpu] &= ~value;
1065             if (s->sgi_pending[irq][cpu] == 0) {
1066                 GIC_CLEAR_PENDING(irq, 1 << cpu);
1067             }
1068         }
1069     } else if (offset < 0xf30) {
1070         /* GICD_SPENDSGIRn */
1071         if (s->revision == REV_11MPCORE) {
1072             goto bad_reg;
1073         }
1074         irq = (offset - 0xf20);
1075 
1076         if (!s->security_extn || attrs.secure ||
1077             GIC_TEST_GROUP(irq, 1 << cpu)) {
1078             GIC_SET_PENDING(irq, 1 << cpu);
1079             s->sgi_pending[irq][cpu] |= value;
1080         }
1081     } else {
1082         goto bad_reg;
1083     }
1084     gic_update(s);
1085     return;
1086 bad_reg:
1087     qemu_log_mask(LOG_GUEST_ERROR,
1088                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1089 }
1090 
1091 static void gic_dist_writew(void *opaque, hwaddr offset,
1092                             uint32_t value, MemTxAttrs attrs)
1093 {
1094     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1095     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1096 }
1097 
1098 static void gic_dist_writel(void *opaque, hwaddr offset,
1099                             uint32_t value, MemTxAttrs attrs)
1100 {
1101     GICState *s = (GICState *)opaque;
1102     if (offset == 0xf00) {
1103         int cpu;
1104         int irq;
1105         int mask;
1106         int target_cpu;
1107 
1108         cpu = gic_get_current_cpu(s);
1109         irq = value & 0x3ff;
1110         switch ((value >> 24) & 3) {
1111         case 0:
1112             mask = (value >> 16) & ALL_CPU_MASK;
1113             break;
1114         case 1:
1115             mask = ALL_CPU_MASK ^ (1 << cpu);
1116             break;
1117         case 2:
1118             mask = 1 << cpu;
1119             break;
1120         default:
1121             DPRINTF("Bad Soft Int target filter\n");
1122             mask = ALL_CPU_MASK;
1123             break;
1124         }
1125         GIC_SET_PENDING(irq, mask);
1126         target_cpu = ctz32(mask);
1127         while (target_cpu < GIC_NCPU) {
1128             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1129             mask &= ~(1 << target_cpu);
1130             target_cpu = ctz32(mask);
1131         }
1132         gic_update(s);
1133         return;
1134     }
1135     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1136     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1137 }
1138 
1139 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1140                                   unsigned size, MemTxAttrs attrs)
1141 {
1142     switch (size) {
1143     case 1:
1144         gic_dist_writeb(opaque, offset, data, attrs);
1145         return MEMTX_OK;
1146     case 2:
1147         gic_dist_writew(opaque, offset, data, attrs);
1148         return MEMTX_OK;
1149     case 4:
1150         gic_dist_writel(opaque, offset, data, attrs);
1151         return MEMTX_OK;
1152     default:
1153         return MEMTX_ERROR;
1154     }
1155 }
1156 
1157 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1158 {
1159     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1160      * second half of GICC_NSAPR.
1161      */
1162     switch (GIC_MIN_BPR) {
1163     case 0:
1164         if (regno < 2) {
1165             return s->nsapr[regno + 2][cpu];
1166         }
1167         break;
1168     case 1:
1169         if (regno == 0) {
1170             return s->nsapr[regno + 1][cpu];
1171         }
1172         break;
1173     case 2:
1174         if (regno == 0) {
1175             return extract32(s->nsapr[0][cpu], 16, 16);
1176         }
1177         break;
1178     case 3:
1179         if (regno == 0) {
1180             return extract32(s->nsapr[0][cpu], 8, 8);
1181         }
1182         break;
1183     default:
1184         g_assert_not_reached();
1185     }
1186     return 0;
1187 }
1188 
1189 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1190                                          uint32_t value)
1191 {
1192     /* Write the Nonsecure view of GICC_APR<regno>. */
1193     switch (GIC_MIN_BPR) {
1194     case 0:
1195         if (regno < 2) {
1196             s->nsapr[regno + 2][cpu] = value;
1197         }
1198         break;
1199     case 1:
1200         if (regno == 0) {
1201             s->nsapr[regno + 1][cpu] = value;
1202         }
1203         break;
1204     case 2:
1205         if (regno == 0) {
1206             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1207         }
1208         break;
1209     case 3:
1210         if (regno == 0) {
1211             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1212         }
1213         break;
1214     default:
1215         g_assert_not_reached();
1216     }
1217 }
1218 
1219 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1220                                 uint64_t *data, MemTxAttrs attrs)
1221 {
1222     switch (offset) {
1223     case 0x00: /* Control */
1224         *data = gic_get_cpu_control(s, cpu, attrs);
1225         break;
1226     case 0x04: /* Priority mask */
1227         *data = gic_get_priority_mask(s, cpu, attrs);
1228         break;
1229     case 0x08: /* Binary Point */
1230         if (s->security_extn && !attrs.secure) {
1231             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1232                 /* NS view of BPR when CBPR is 1 */
1233                 *data = MIN(s->bpr[cpu] + 1, 7);
1234             } else {
1235                 /* BPR is banked. Non-secure copy stored in ABPR. */
1236                 *data = s->abpr[cpu];
1237             }
1238         } else {
1239             *data = s->bpr[cpu];
1240         }
1241         break;
1242     case 0x0c: /* Acknowledge */
1243         *data = gic_acknowledge_irq(s, cpu, attrs);
1244         break;
1245     case 0x14: /* Running Priority */
1246         *data = gic_get_running_priority(s, cpu, attrs);
1247         break;
1248     case 0x18: /* Highest Pending Interrupt */
1249         *data = gic_get_current_pending_irq(s, cpu, attrs);
1250         break;
1251     case 0x1c: /* Aliased Binary Point */
1252         /* GIC v2, no security: ABPR
1253          * GIC v1, no security: not implemented (RAZ/WI)
1254          * With security extensions, secure access: ABPR (alias of NS BPR)
1255          * With security extensions, nonsecure access: RAZ/WI
1256          */
1257         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1258             *data = 0;
1259         } else {
1260             *data = s->abpr[cpu];
1261         }
1262         break;
1263     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1264     {
1265         int regno = (offset - 0xd0) / 4;
1266 
1267         if (regno >= GIC_NR_APRS || s->revision != 2) {
1268             *data = 0;
1269         } else if (s->security_extn && !attrs.secure) {
1270             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1271             *data = gic_apr_ns_view(s, regno, cpu);
1272         } else {
1273             *data = s->apr[regno][cpu];
1274         }
1275         break;
1276     }
1277     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1278     {
1279         int regno = (offset - 0xe0) / 4;
1280 
1281         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1282             (s->security_extn && !attrs.secure)) {
1283             *data = 0;
1284         } else {
1285             *data = s->nsapr[regno][cpu];
1286         }
1287         break;
1288     }
1289     default:
1290         qemu_log_mask(LOG_GUEST_ERROR,
1291                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1292         *data = 0;
1293         break;
1294     }
1295     return MEMTX_OK;
1296 }
1297 
1298 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1299                                  uint32_t value, MemTxAttrs attrs)
1300 {
1301     switch (offset) {
1302     case 0x00: /* Control */
1303         gic_set_cpu_control(s, cpu, value, attrs);
1304         break;
1305     case 0x04: /* Priority mask */
1306         gic_set_priority_mask(s, cpu, value, attrs);
1307         break;
1308     case 0x08: /* Binary Point */
1309         if (s->security_extn && !attrs.secure) {
1310             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1311                 /* WI when CBPR is 1 */
1312                 return MEMTX_OK;
1313             } else {
1314                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1315             }
1316         } else {
1317             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1318         }
1319         break;
1320     case 0x10: /* End Of Interrupt */
1321         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1322         return MEMTX_OK;
1323     case 0x1c: /* Aliased Binary Point */
1324         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1325             /* unimplemented, or NS access: RAZ/WI */
1326             return MEMTX_OK;
1327         } else {
1328             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1329         }
1330         break;
1331     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1332     {
1333         int regno = (offset - 0xd0) / 4;
1334 
1335         if (regno >= GIC_NR_APRS || s->revision != 2) {
1336             return MEMTX_OK;
1337         }
1338         if (s->security_extn && !attrs.secure) {
1339             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1340             gic_apr_write_ns_view(s, regno, cpu, value);
1341         } else {
1342             s->apr[regno][cpu] = value;
1343         }
1344         break;
1345     }
1346     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1347     {
1348         int regno = (offset - 0xe0) / 4;
1349 
1350         if (regno >= GIC_NR_APRS || s->revision != 2) {
1351             return MEMTX_OK;
1352         }
1353         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1354             return MEMTX_OK;
1355         }
1356         s->nsapr[regno][cpu] = value;
1357         break;
1358     }
1359     case 0x1000:
1360         /* GICC_DIR */
1361         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1362         break;
1363     default:
1364         qemu_log_mask(LOG_GUEST_ERROR,
1365                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1366         return MEMTX_OK;
1367     }
1368     gic_update(s);
1369     return MEMTX_OK;
1370 }
1371 
1372 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1373 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1374                                     unsigned size, MemTxAttrs attrs)
1375 {
1376     GICState *s = (GICState *)opaque;
1377     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1378 }
1379 
1380 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1381                                      uint64_t value, unsigned size,
1382                                      MemTxAttrs attrs)
1383 {
1384     GICState *s = (GICState *)opaque;
1385     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1386 }
1387 
1388 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1389  * These just decode the opaque pointer into GICState* + cpu id.
1390  */
1391 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1392                                    unsigned size, MemTxAttrs attrs)
1393 {
1394     GICState **backref = (GICState **)opaque;
1395     GICState *s = *backref;
1396     int id = (backref - s->backref);
1397     return gic_cpu_read(s, id, addr, data, attrs);
1398 }
1399 
1400 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1401                                     uint64_t value, unsigned size,
1402                                     MemTxAttrs attrs)
1403 {
1404     GICState **backref = (GICState **)opaque;
1405     GICState *s = *backref;
1406     int id = (backref - s->backref);
1407     return gic_cpu_write(s, id, addr, value, attrs);
1408 }
1409 
1410 static const MemoryRegionOps gic_ops[2] = {
1411     {
1412         .read_with_attrs = gic_dist_read,
1413         .write_with_attrs = gic_dist_write,
1414         .endianness = DEVICE_NATIVE_ENDIAN,
1415     },
1416     {
1417         .read_with_attrs = gic_thiscpu_read,
1418         .write_with_attrs = gic_thiscpu_write,
1419         .endianness = DEVICE_NATIVE_ENDIAN,
1420     }
1421 };
1422 
1423 static const MemoryRegionOps gic_cpu_ops = {
1424     .read_with_attrs = gic_do_cpu_read,
1425     .write_with_attrs = gic_do_cpu_write,
1426     .endianness = DEVICE_NATIVE_ENDIAN,
1427 };
1428 
1429 /* This function is used by nvic model */
1430 void gic_init_irqs_and_distributor(GICState *s)
1431 {
1432     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1433 }
1434 
1435 static void arm_gic_realize(DeviceState *dev, Error **errp)
1436 {
1437     /* Device instance realize function for the GIC sysbus device */
1438     int i;
1439     GICState *s = ARM_GIC(dev);
1440     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1441     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1442     Error *local_err = NULL;
1443 
1444     agc->parent_realize(dev, &local_err);
1445     if (local_err) {
1446         error_propagate(errp, local_err);
1447         return;
1448     }
1449 
1450     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1451         error_setg(errp, "KVM with user space irqchip only works when the "
1452                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1453         return;
1454     }
1455 
1456     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1457     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1458 
1459     /* Extra core-specific regions for the CPU interfaces. This is
1460      * necessary for "franken-GIC" implementations, for example on
1461      * Exynos 4.
1462      * NB that the memory region size of 0x100 applies for the 11MPCore
1463      * and also cores following the GIC v1 spec (ie A9).
1464      * GIC v2 defines a larger memory region (0x1000) so this will need
1465      * to be extended when we implement A15.
1466      */
1467     for (i = 0; i < s->num_cpu; i++) {
1468         s->backref[i] = s;
1469         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1470                               &s->backref[i], "gic_cpu", 0x100);
1471         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1472     }
1473 }
1474 
1475 static void arm_gic_class_init(ObjectClass *klass, void *data)
1476 {
1477     DeviceClass *dc = DEVICE_CLASS(klass);
1478     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1479 
1480     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1481 }
1482 
1483 static const TypeInfo arm_gic_info = {
1484     .name = TYPE_ARM_GIC,
1485     .parent = TYPE_ARM_GIC_COMMON,
1486     .instance_size = sizeof(GICState),
1487     .class_init = arm_gic_class_init,
1488     .class_size = sizeof(ARMGICClass),
1489 };
1490 
1491 static void arm_gic_register_types(void)
1492 {
1493     type_register_static(&arm_gic_info);
1494 }
1495 
1496 type_init(arm_gic_register_types)
1497