xref: /qemu/hw/intc/arm_gic.c (revision d656ec5e)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 
29 //#define DEBUG_GIC
30 
31 #ifdef DEBUG_GIC
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while(0)
36 #endif
37 
38 static const uint8_t gic_id_11mpcore[] = {
39     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
40 };
41 
42 static const uint8_t gic_id_gicv1[] = {
43     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
44 };
45 
46 static const uint8_t gic_id_gicv2[] = {
47     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 };
49 
50 static inline int gic_get_current_cpu(GICState *s)
51 {
52     if (s->num_cpu > 1) {
53         return current_cpu->cpu_index;
54     }
55     return 0;
56 }
57 
58 /* Return true if this GIC config has interrupt groups, which is
59  * true if we're a GICv2, or a GICv1 with the security extensions.
60  */
61 static inline bool gic_has_groups(GICState *s)
62 {
63     return s->revision == 2 || s->security_extn;
64 }
65 
66 /* TODO: Many places that call this routine could be optimized.  */
67 /* Update interrupt status after enabled or pending bits have been changed.  */
68 void gic_update(GICState *s)
69 {
70     int best_irq;
71     int best_prio;
72     int irq;
73     int irq_level, fiq_level;
74     int cpu;
75     int cm;
76 
77     for (cpu = 0; cpu < s->num_cpu; cpu++) {
78         cm = 1 << cpu;
79         s->current_pending[cpu] = 1023;
80         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
81             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
82             qemu_irq_lower(s->parent_irq[cpu]);
83             qemu_irq_lower(s->parent_fiq[cpu]);
84             continue;
85         }
86         best_prio = 0x100;
87         best_irq = 1023;
88         for (irq = 0; irq < s->num_irq; irq++) {
89             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
90                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
91                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
92                     best_prio = GIC_GET_PRIORITY(irq, cpu);
93                     best_irq = irq;
94                 }
95             }
96         }
97 
98         if (best_irq != 1023) {
99             trace_gic_update_bestirq(cpu, best_irq, best_prio,
100                 s->priority_mask[cpu], s->running_priority[cpu]);
101         }
102 
103         irq_level = fiq_level = 0;
104 
105         if (best_prio < s->priority_mask[cpu]) {
106             s->current_pending[cpu] = best_irq;
107             if (best_prio < s->running_priority[cpu]) {
108                 int group = GIC_TEST_GROUP(best_irq, cm);
109 
110                 if (extract32(s->ctlr, group, 1) &&
111                     extract32(s->cpu_ctlr[cpu], group, 1)) {
112                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
113                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
114                                 best_irq, cpu);
115                         fiq_level = 1;
116                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
117                     } else {
118                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
119                                 best_irq, cpu);
120                         irq_level = 1;
121                         trace_gic_update_set_irq(cpu, "irq", irq_level);
122                     }
123                 }
124             }
125         }
126 
127         qemu_set_irq(s->parent_irq[cpu], irq_level);
128         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
129     }
130 }
131 
132 void gic_set_pending_private(GICState *s, int cpu, int irq)
133 {
134     int cm = 1 << cpu;
135 
136     if (gic_test_pending(s, irq, cm)) {
137         return;
138     }
139 
140     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
141     GIC_SET_PENDING(irq, cm);
142     gic_update(s);
143 }
144 
145 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
146                                  int cm, int target)
147 {
148     if (level) {
149         GIC_SET_LEVEL(irq, cm);
150         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
151             DPRINTF("Set %d pending mask %x\n", irq, target);
152             GIC_SET_PENDING(irq, target);
153         }
154     } else {
155         GIC_CLEAR_LEVEL(irq, cm);
156     }
157 }
158 
159 static void gic_set_irq_generic(GICState *s, int irq, int level,
160                                 int cm, int target)
161 {
162     if (level) {
163         GIC_SET_LEVEL(irq, cm);
164         DPRINTF("Set %d pending mask %x\n", irq, target);
165         if (GIC_TEST_EDGE_TRIGGER(irq)) {
166             GIC_SET_PENDING(irq, target);
167         }
168     } else {
169         GIC_CLEAR_LEVEL(irq, cm);
170     }
171 }
172 
173 /* Process a change in an external IRQ input.  */
174 static void gic_set_irq(void *opaque, int irq, int level)
175 {
176     /* Meaning of the 'irq' parameter:
177      *  [0..N-1] : external interrupts
178      *  [N..N+31] : PPI (internal) interrupts for CPU 0
179      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
180      *  ...
181      */
182     GICState *s = (GICState *)opaque;
183     int cm, target;
184     if (irq < (s->num_irq - GIC_INTERNAL)) {
185         /* The first external input line is internal interrupt 32.  */
186         cm = ALL_CPU_MASK;
187         irq += GIC_INTERNAL;
188         target = GIC_TARGET(irq);
189     } else {
190         int cpu;
191         irq -= (s->num_irq - GIC_INTERNAL);
192         cpu = irq / GIC_INTERNAL;
193         irq %= GIC_INTERNAL;
194         cm = 1 << cpu;
195         target = cm;
196     }
197 
198     assert(irq >= GIC_NR_SGIS);
199 
200     if (level == GIC_TEST_LEVEL(irq, cm)) {
201         return;
202     }
203 
204     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
205         gic_set_irq_11mpcore(s, irq, level, cm, target);
206     } else {
207         gic_set_irq_generic(s, irq, level, cm, target);
208     }
209     trace_gic_set_irq(irq, level, cm, target);
210 
211     gic_update(s);
212 }
213 
214 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
215                                             MemTxAttrs attrs)
216 {
217     uint16_t pending_irq = s->current_pending[cpu];
218 
219     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
220         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
221         /* On a GIC without the security extensions, reading this register
222          * behaves in the same way as a secure access to a GIC with them.
223          */
224         bool secure = !s->security_extn || attrs.secure;
225 
226         if (group == 0 && !secure) {
227             /* Group0 interrupts hidden from Non-secure access */
228             return 1023;
229         }
230         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
231             /* Group1 interrupts only seen by Secure access if
232              * AckCtl bit set.
233              */
234             return 1022;
235         }
236     }
237     return pending_irq;
238 }
239 
240 static int gic_get_group_priority(GICState *s, int cpu, int irq)
241 {
242     /* Return the group priority of the specified interrupt
243      * (which is the top bits of its priority, with the number
244      * of bits masked determined by the applicable binary point register).
245      */
246     int bpr;
247     uint32_t mask;
248 
249     if (gic_has_groups(s) &&
250         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
251         GIC_TEST_GROUP(irq, (1 << cpu))) {
252         bpr = s->abpr[cpu];
253     } else {
254         bpr = s->bpr[cpu];
255     }
256 
257     /* a BPR of 0 means the group priority bits are [7:1];
258      * a BPR of 1 means they are [7:2], and so on down to
259      * a BPR of 7 meaning no group priority bits at all.
260      */
261     mask = ~0U << ((bpr & 7) + 1);
262 
263     return GIC_GET_PRIORITY(irq, cpu) & mask;
264 }
265 
266 static void gic_activate_irq(GICState *s, int cpu, int irq)
267 {
268     /* Set the appropriate Active Priority Register bit for this IRQ,
269      * and update the running priority.
270      */
271     int prio = gic_get_group_priority(s, cpu, irq);
272     int preemption_level = prio >> (GIC_MIN_BPR + 1);
273     int regno = preemption_level / 32;
274     int bitno = preemption_level % 32;
275 
276     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
277         s->nsapr[regno][cpu] |= (1 << bitno);
278     } else {
279         s->apr[regno][cpu] |= (1 << bitno);
280     }
281 
282     s->running_priority[cpu] = prio;
283     GIC_SET_ACTIVE(irq, 1 << cpu);
284 }
285 
286 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
287 {
288     /* Recalculate the current running priority for this CPU based
289      * on the set bits in the Active Priority Registers.
290      */
291     int i;
292     for (i = 0; i < GIC_NR_APRS; i++) {
293         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
294         if (!apr) {
295             continue;
296         }
297         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
298     }
299     return 0x100;
300 }
301 
302 static void gic_drop_prio(GICState *s, int cpu, int group)
303 {
304     /* Drop the priority of the currently active interrupt in the
305      * specified group.
306      *
307      * Note that we can guarantee (because of the requirement to nest
308      * GICC_IAR reads [which activate an interrupt and raise priority]
309      * with GICC_EOIR writes [which drop the priority for the interrupt])
310      * that the interrupt we're being called for is the highest priority
311      * active interrupt, meaning that it has the lowest set bit in the
312      * APR registers.
313      *
314      * If the guest does not honour the ordering constraints then the
315      * behaviour of the GIC is UNPREDICTABLE, which for us means that
316      * the values of the APR registers might become incorrect and the
317      * running priority will be wrong, so interrupts that should preempt
318      * might not do so, and interrupts that should not preempt might do so.
319      */
320     int i;
321 
322     for (i = 0; i < GIC_NR_APRS; i++) {
323         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
324         if (!*papr) {
325             continue;
326         }
327         /* Clear lowest set bit */
328         *papr &= *papr - 1;
329         break;
330     }
331 
332     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
333 }
334 
335 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
336 {
337     int ret, irq, src;
338     int cm = 1 << cpu;
339 
340     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
341      * for the case where this GIC supports grouping and the pending interrupt
342      * is in the wrong group.
343      */
344     irq = gic_get_current_pending_irq(s, cpu, attrs);
345     trace_gic_acknowledge_irq(cpu, irq);
346 
347     if (irq >= GIC_MAXIRQ) {
348         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
349         return irq;
350     }
351 
352     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
353         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
354         return 1023;
355     }
356 
357     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
358         /* Clear pending flags for both level and edge triggered interrupts.
359          * Level triggered IRQs will be reasserted once they become inactive.
360          */
361         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362         ret = irq;
363     } else {
364         if (irq < GIC_NR_SGIS) {
365             /* Lookup the source CPU for the SGI and clear this in the
366              * sgi_pending map.  Return the src and clear the overall pending
367              * state on this CPU if the SGI is not pending from any CPUs.
368              */
369             assert(s->sgi_pending[irq][cpu] != 0);
370             src = ctz32(s->sgi_pending[irq][cpu]);
371             s->sgi_pending[irq][cpu] &= ~(1 << src);
372             if (s->sgi_pending[irq][cpu] == 0) {
373                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
374             }
375             ret = irq | ((src & 0x7) << 10);
376         } else {
377             /* Clear pending state for both level and edge triggered
378              * interrupts. (level triggered interrupts with an active line
379              * remain pending, see gic_test_pending)
380              */
381             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382             ret = irq;
383         }
384     }
385 
386     gic_activate_irq(s, cpu, irq);
387     gic_update(s);
388     DPRINTF("ACK %d\n", irq);
389     return ret;
390 }
391 
392 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
393                       MemTxAttrs attrs)
394 {
395     if (s->security_extn && !attrs.secure) {
396         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
397             return; /* Ignore Non-secure access of Group0 IRQ */
398         }
399         val = 0x80 | (val >> 1); /* Non-secure view */
400     }
401 
402     if (irq < GIC_INTERNAL) {
403         s->priority1[irq][cpu] = val;
404     } else {
405         s->priority2[(irq) - GIC_INTERNAL] = val;
406     }
407 }
408 
409 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
410                                  MemTxAttrs attrs)
411 {
412     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
413 
414     if (s->security_extn && !attrs.secure) {
415         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
416             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
417         }
418         prio = (prio << 1) & 0xff; /* Non-secure view */
419     }
420     return prio;
421 }
422 
423 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
424                                   MemTxAttrs attrs)
425 {
426     if (s->security_extn && !attrs.secure) {
427         if (s->priority_mask[cpu] & 0x80) {
428             /* Priority Mask in upper half */
429             pmask = 0x80 | (pmask >> 1);
430         } else {
431             /* Non-secure write ignored if priority mask is in lower half */
432             return;
433         }
434     }
435     s->priority_mask[cpu] = pmask;
436 }
437 
438 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
439 {
440     uint32_t pmask = s->priority_mask[cpu];
441 
442     if (s->security_extn && !attrs.secure) {
443         if (pmask & 0x80) {
444             /* Priority Mask in upper half, return Non-secure view */
445             pmask = (pmask << 1) & 0xff;
446         } else {
447             /* Priority Mask in lower half, RAZ */
448             pmask = 0;
449         }
450     }
451     return pmask;
452 }
453 
454 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
455 {
456     uint32_t ret = s->cpu_ctlr[cpu];
457 
458     if (s->security_extn && !attrs.secure) {
459         /* Construct the NS banked view of GICC_CTLR from the correct
460          * bits of the S banked view. We don't need to move the bypass
461          * control bits because we don't implement that (IMPDEF) part
462          * of the GIC architecture.
463          */
464         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
465     }
466     return ret;
467 }
468 
469 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
470                                 MemTxAttrs attrs)
471 {
472     uint32_t mask;
473 
474     if (s->security_extn && !attrs.secure) {
475         /* The NS view can only write certain bits in the register;
476          * the rest are unchanged
477          */
478         mask = GICC_CTLR_EN_GRP1;
479         if (s->revision == 2) {
480             mask |= GICC_CTLR_EOIMODE_NS;
481         }
482         s->cpu_ctlr[cpu] &= ~mask;
483         s->cpu_ctlr[cpu] |= (value << 1) & mask;
484     } else {
485         if (s->revision == 2) {
486             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
487         } else {
488             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
489         }
490         s->cpu_ctlr[cpu] = value & mask;
491     }
492     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
493             "Group1 Interrupts %sabled\n", cpu,
494             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
495             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
496 }
497 
498 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
499 {
500     if (s->security_extn && !attrs.secure) {
501         if (s->running_priority[cpu] & 0x80) {
502             /* Running priority in upper half of range: return the Non-secure
503              * view of the priority.
504              */
505             return s->running_priority[cpu] << 1;
506         } else {
507             /* Running priority in lower half of range: RAZ */
508             return 0;
509         }
510     } else {
511         return s->running_priority[cpu];
512     }
513 }
514 
515 /* Return true if we should split priority drop and interrupt deactivation,
516  * ie whether the relevant EOIMode bit is set.
517  */
518 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
519 {
520     if (s->revision != 2) {
521         /* Before GICv2 prio-drop and deactivate are not separable */
522         return false;
523     }
524     if (s->security_extn && !attrs.secure) {
525         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
526     }
527     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
528 }
529 
530 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
531 {
532     int cm = 1 << cpu;
533     int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
534 
535     if (!gic_eoi_split(s, cpu, attrs)) {
536         /* This is UNPREDICTABLE; we choose to ignore it */
537         qemu_log_mask(LOG_GUEST_ERROR,
538                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
539         return;
540     }
541 
542     if (s->security_extn && !attrs.secure && !group) {
543         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
544         return;
545     }
546 
547     GIC_CLEAR_ACTIVE(irq, cm);
548 }
549 
550 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
551 {
552     int cm = 1 << cpu;
553     int group;
554 
555     DPRINTF("EOI %d\n", irq);
556     if (irq >= s->num_irq) {
557         /* This handles two cases:
558          * 1. If software writes the ID of a spurious interrupt [ie 1023]
559          * to the GICC_EOIR, the GIC ignores that write.
560          * 2. If software writes the number of a non-existent interrupt
561          * this must be a subcase of "value written does not match the last
562          * valid interrupt value read from the Interrupt Acknowledge
563          * register" and so this is UNPREDICTABLE. We choose to ignore it.
564          */
565         return;
566     }
567     if (s->running_priority[cpu] == 0x100) {
568         return; /* No active IRQ.  */
569     }
570 
571     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
572         /* Mark level triggered interrupts as pending if they are still
573            raised.  */
574         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
575             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
576             DPRINTF("Set %d pending mask %x\n", irq, cm);
577             GIC_SET_PENDING(irq, cm);
578         }
579     }
580 
581     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
582 
583     if (s->security_extn && !attrs.secure && !group) {
584         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
585         return;
586     }
587 
588     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
589      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
590      * i.e. go ahead and complete the irq anyway.
591      */
592 
593     gic_drop_prio(s, cpu, group);
594 
595     /* In GICv2 the guest can choose to split priority-drop and deactivate */
596     if (!gic_eoi_split(s, cpu, attrs)) {
597         GIC_CLEAR_ACTIVE(irq, cm);
598     }
599     gic_update(s);
600 }
601 
602 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
603 {
604     GICState *s = (GICState *)opaque;
605     uint32_t res;
606     int irq;
607     int i;
608     int cpu;
609     int cm;
610     int mask;
611 
612     cpu = gic_get_current_cpu(s);
613     cm = 1 << cpu;
614     if (offset < 0x100) {
615         if (offset == 0) {      /* GICD_CTLR */
616             if (s->security_extn && !attrs.secure) {
617                 /* The NS bank of this register is just an alias of the
618                  * EnableGrp1 bit in the S bank version.
619                  */
620                 return extract32(s->ctlr, 1, 1);
621             } else {
622                 return s->ctlr;
623             }
624         }
625         if (offset == 4)
626             /* Interrupt Controller Type Register */
627             return ((s->num_irq / 32) - 1)
628                     | ((s->num_cpu - 1) << 5)
629                     | (s->security_extn << 10);
630         if (offset < 0x08)
631             return 0;
632         if (offset >= 0x80) {
633             /* Interrupt Group Registers: these RAZ/WI if this is an NS
634              * access to a GIC with the security extensions, or if the GIC
635              * doesn't have groups at all.
636              */
637             res = 0;
638             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
639                 /* Every byte offset holds 8 group status bits */
640                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
641                 if (irq >= s->num_irq) {
642                     goto bad_reg;
643                 }
644                 for (i = 0; i < 8; i++) {
645                     if (GIC_TEST_GROUP(irq + i, cm)) {
646                         res |= (1 << i);
647                     }
648                 }
649             }
650             return res;
651         }
652         goto bad_reg;
653     } else if (offset < 0x200) {
654         /* Interrupt Set/Clear Enable.  */
655         if (offset < 0x180)
656             irq = (offset - 0x100) * 8;
657         else
658             irq = (offset - 0x180) * 8;
659         irq += GIC_BASE_IRQ;
660         if (irq >= s->num_irq)
661             goto bad_reg;
662         res = 0;
663         for (i = 0; i < 8; i++) {
664             if (GIC_TEST_ENABLED(irq + i, cm)) {
665                 res |= (1 << i);
666             }
667         }
668     } else if (offset < 0x300) {
669         /* Interrupt Set/Clear Pending.  */
670         if (offset < 0x280)
671             irq = (offset - 0x200) * 8;
672         else
673             irq = (offset - 0x280) * 8;
674         irq += GIC_BASE_IRQ;
675         if (irq >= s->num_irq)
676             goto bad_reg;
677         res = 0;
678         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
679         for (i = 0; i < 8; i++) {
680             if (gic_test_pending(s, irq + i, mask)) {
681                 res |= (1 << i);
682             }
683         }
684     } else if (offset < 0x400) {
685         /* Interrupt Active.  */
686         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
687         if (irq >= s->num_irq)
688             goto bad_reg;
689         res = 0;
690         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
691         for (i = 0; i < 8; i++) {
692             if (GIC_TEST_ACTIVE(irq + i, mask)) {
693                 res |= (1 << i);
694             }
695         }
696     } else if (offset < 0x800) {
697         /* Interrupt Priority.  */
698         irq = (offset - 0x400) + GIC_BASE_IRQ;
699         if (irq >= s->num_irq)
700             goto bad_reg;
701         res = gic_get_priority(s, cpu, irq, attrs);
702     } else if (offset < 0xc00) {
703         /* Interrupt CPU Target.  */
704         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
705             /* For uniprocessor GICs these RAZ/WI */
706             res = 0;
707         } else {
708             irq = (offset - 0x800) + GIC_BASE_IRQ;
709             if (irq >= s->num_irq) {
710                 goto bad_reg;
711             }
712             if (irq >= 29 && irq <= 31) {
713                 res = cm;
714             } else {
715                 res = GIC_TARGET(irq);
716             }
717         }
718     } else if (offset < 0xf00) {
719         /* Interrupt Configuration.  */
720         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
721         if (irq >= s->num_irq)
722             goto bad_reg;
723         res = 0;
724         for (i = 0; i < 4; i++) {
725             if (GIC_TEST_MODEL(irq + i))
726                 res |= (1 << (i * 2));
727             if (GIC_TEST_EDGE_TRIGGER(irq + i))
728                 res |= (2 << (i * 2));
729         }
730     } else if (offset < 0xf10) {
731         goto bad_reg;
732     } else if (offset < 0xf30) {
733         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
734             goto bad_reg;
735         }
736 
737         if (offset < 0xf20) {
738             /* GICD_CPENDSGIRn */
739             irq = (offset - 0xf10);
740         } else {
741             irq = (offset - 0xf20);
742             /* GICD_SPENDSGIRn */
743         }
744 
745         res = s->sgi_pending[irq][cpu];
746     } else if (offset < 0xfd0) {
747         goto bad_reg;
748     } else if (offset < 0x1000) {
749         if (offset & 3) {
750             res = 0;
751         } else {
752             switch (s->revision) {
753             case REV_11MPCORE:
754                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
755                 break;
756             case 1:
757                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
758                 break;
759             case 2:
760                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
761                 break;
762             case REV_NVIC:
763                 /* Shouldn't be able to get here */
764                 abort();
765             default:
766                 res = 0;
767             }
768         }
769     } else {
770         g_assert_not_reached();
771     }
772     return res;
773 bad_reg:
774     qemu_log_mask(LOG_GUEST_ERROR,
775                   "gic_dist_readb: Bad offset %x\n", (int)offset);
776     return 0;
777 }
778 
779 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
780                                  unsigned size, MemTxAttrs attrs)
781 {
782     switch (size) {
783     case 1:
784         *data = gic_dist_readb(opaque, offset, attrs);
785         return MEMTX_OK;
786     case 2:
787         *data = gic_dist_readb(opaque, offset, attrs);
788         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
789         return MEMTX_OK;
790     case 4:
791         *data = gic_dist_readb(opaque, offset, attrs);
792         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
793         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
794         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
795         return MEMTX_OK;
796     default:
797         return MEMTX_ERROR;
798     }
799 }
800 
801 static void gic_dist_writeb(void *opaque, hwaddr offset,
802                             uint32_t value, MemTxAttrs attrs)
803 {
804     GICState *s = (GICState *)opaque;
805     int irq;
806     int i;
807     int cpu;
808 
809     cpu = gic_get_current_cpu(s);
810     if (offset < 0x100) {
811         if (offset == 0) {
812             if (s->security_extn && !attrs.secure) {
813                 /* NS version is just an alias of the S version's bit 1 */
814                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
815             } else if (gic_has_groups(s)) {
816                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
817             } else {
818                 s->ctlr = value & GICD_CTLR_EN_GRP0;
819             }
820             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
821                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
822                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
823         } else if (offset < 4) {
824             /* ignored.  */
825         } else if (offset >= 0x80) {
826             /* Interrupt Group Registers: RAZ/WI for NS access to secure
827              * GIC, or for GICs without groups.
828              */
829             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
830                 /* Every byte offset holds 8 group status bits */
831                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
832                 if (irq >= s->num_irq) {
833                     goto bad_reg;
834                 }
835                 for (i = 0; i < 8; i++) {
836                     /* Group bits are banked for private interrupts */
837                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
838                     if (value & (1 << i)) {
839                         /* Group1 (Non-secure) */
840                         GIC_SET_GROUP(irq + i, cm);
841                     } else {
842                         /* Group0 (Secure) */
843                         GIC_CLEAR_GROUP(irq + i, cm);
844                     }
845                 }
846             }
847         } else {
848             goto bad_reg;
849         }
850     } else if (offset < 0x180) {
851         /* Interrupt Set Enable.  */
852         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
853         if (irq >= s->num_irq)
854             goto bad_reg;
855         if (irq < GIC_NR_SGIS) {
856             value = 0xff;
857         }
858 
859         for (i = 0; i < 8; i++) {
860             if (value & (1 << i)) {
861                 int mask =
862                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
863                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
864 
865                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
866                     DPRINTF("Enabled IRQ %d\n", irq + i);
867                     trace_gic_enable_irq(irq + i);
868                 }
869                 GIC_SET_ENABLED(irq + i, cm);
870                 /* If a raised level triggered IRQ enabled then mark
871                    is as pending.  */
872                 if (GIC_TEST_LEVEL(irq + i, mask)
873                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
874                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
875                     GIC_SET_PENDING(irq + i, mask);
876                 }
877             }
878         }
879     } else if (offset < 0x200) {
880         /* Interrupt Clear Enable.  */
881         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
882         if (irq >= s->num_irq)
883             goto bad_reg;
884         if (irq < GIC_NR_SGIS) {
885             value = 0;
886         }
887 
888         for (i = 0; i < 8; i++) {
889             if (value & (1 << i)) {
890                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
891 
892                 if (GIC_TEST_ENABLED(irq + i, cm)) {
893                     DPRINTF("Disabled IRQ %d\n", irq + i);
894                     trace_gic_disable_irq(irq + i);
895                 }
896                 GIC_CLEAR_ENABLED(irq + i, cm);
897             }
898         }
899     } else if (offset < 0x280) {
900         /* Interrupt Set Pending.  */
901         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
902         if (irq >= s->num_irq)
903             goto bad_reg;
904         if (irq < GIC_NR_SGIS) {
905             value = 0;
906         }
907 
908         for (i = 0; i < 8; i++) {
909             if (value & (1 << i)) {
910                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
911             }
912         }
913     } else if (offset < 0x300) {
914         /* Interrupt Clear Pending.  */
915         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
916         if (irq >= s->num_irq)
917             goto bad_reg;
918         if (irq < GIC_NR_SGIS) {
919             value = 0;
920         }
921 
922         for (i = 0; i < 8; i++) {
923             /* ??? This currently clears the pending bit for all CPUs, even
924                for per-CPU interrupts.  It's unclear whether this is the
925                corect behavior.  */
926             if (value & (1 << i)) {
927                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
928             }
929         }
930     } else if (offset < 0x400) {
931         /* Interrupt Active.  */
932         goto bad_reg;
933     } else if (offset < 0x800) {
934         /* Interrupt Priority.  */
935         irq = (offset - 0x400) + GIC_BASE_IRQ;
936         if (irq >= s->num_irq)
937             goto bad_reg;
938         gic_set_priority(s, cpu, irq, value, attrs);
939     } else if (offset < 0xc00) {
940         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
941          * annoying exception of the 11MPCore's GIC.
942          */
943         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
944             irq = (offset - 0x800) + GIC_BASE_IRQ;
945             if (irq >= s->num_irq) {
946                 goto bad_reg;
947             }
948             if (irq < 29) {
949                 value = 0;
950             } else if (irq < GIC_INTERNAL) {
951                 value = ALL_CPU_MASK;
952             }
953             s->irq_target[irq] = value & ALL_CPU_MASK;
954         }
955     } else if (offset < 0xf00) {
956         /* Interrupt Configuration.  */
957         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
958         if (irq >= s->num_irq)
959             goto bad_reg;
960         if (irq < GIC_NR_SGIS)
961             value |= 0xaa;
962         for (i = 0; i < 4; i++) {
963             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
964                 if (value & (1 << (i * 2))) {
965                     GIC_SET_MODEL(irq + i);
966                 } else {
967                     GIC_CLEAR_MODEL(irq + i);
968                 }
969             }
970             if (value & (2 << (i * 2))) {
971                 GIC_SET_EDGE_TRIGGER(irq + i);
972             } else {
973                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
974             }
975         }
976     } else if (offset < 0xf10) {
977         /* 0xf00 is only handled for 32-bit writes.  */
978         goto bad_reg;
979     } else if (offset < 0xf20) {
980         /* GICD_CPENDSGIRn */
981         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
982             goto bad_reg;
983         }
984         irq = (offset - 0xf10);
985 
986         s->sgi_pending[irq][cpu] &= ~value;
987         if (s->sgi_pending[irq][cpu] == 0) {
988             GIC_CLEAR_PENDING(irq, 1 << cpu);
989         }
990     } else if (offset < 0xf30) {
991         /* GICD_SPENDSGIRn */
992         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
993             goto bad_reg;
994         }
995         irq = (offset - 0xf20);
996 
997         GIC_SET_PENDING(irq, 1 << cpu);
998         s->sgi_pending[irq][cpu] |= value;
999     } else {
1000         goto bad_reg;
1001     }
1002     gic_update(s);
1003     return;
1004 bad_reg:
1005     qemu_log_mask(LOG_GUEST_ERROR,
1006                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1007 }
1008 
1009 static void gic_dist_writew(void *opaque, hwaddr offset,
1010                             uint32_t value, MemTxAttrs attrs)
1011 {
1012     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1013     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1014 }
1015 
1016 static void gic_dist_writel(void *opaque, hwaddr offset,
1017                             uint32_t value, MemTxAttrs attrs)
1018 {
1019     GICState *s = (GICState *)opaque;
1020     if (offset == 0xf00) {
1021         int cpu;
1022         int irq;
1023         int mask;
1024         int target_cpu;
1025 
1026         cpu = gic_get_current_cpu(s);
1027         irq = value & 0x3ff;
1028         switch ((value >> 24) & 3) {
1029         case 0:
1030             mask = (value >> 16) & ALL_CPU_MASK;
1031             break;
1032         case 1:
1033             mask = ALL_CPU_MASK ^ (1 << cpu);
1034             break;
1035         case 2:
1036             mask = 1 << cpu;
1037             break;
1038         default:
1039             DPRINTF("Bad Soft Int target filter\n");
1040             mask = ALL_CPU_MASK;
1041             break;
1042         }
1043         GIC_SET_PENDING(irq, mask);
1044         target_cpu = ctz32(mask);
1045         while (target_cpu < GIC_NCPU) {
1046             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1047             mask &= ~(1 << target_cpu);
1048             target_cpu = ctz32(mask);
1049         }
1050         gic_update(s);
1051         return;
1052     }
1053     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1054     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1055 }
1056 
1057 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1058                                   unsigned size, MemTxAttrs attrs)
1059 {
1060     switch (size) {
1061     case 1:
1062         gic_dist_writeb(opaque, offset, data, attrs);
1063         return MEMTX_OK;
1064     case 2:
1065         gic_dist_writew(opaque, offset, data, attrs);
1066         return MEMTX_OK;
1067     case 4:
1068         gic_dist_writel(opaque, offset, data, attrs);
1069         return MEMTX_OK;
1070     default:
1071         return MEMTX_ERROR;
1072     }
1073 }
1074 
1075 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1076 {
1077     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1078      * second half of GICC_NSAPR.
1079      */
1080     switch (GIC_MIN_BPR) {
1081     case 0:
1082         if (regno < 2) {
1083             return s->nsapr[regno + 2][cpu];
1084         }
1085         break;
1086     case 1:
1087         if (regno == 0) {
1088             return s->nsapr[regno + 1][cpu];
1089         }
1090         break;
1091     case 2:
1092         if (regno == 0) {
1093             return extract32(s->nsapr[0][cpu], 16, 16);
1094         }
1095         break;
1096     case 3:
1097         if (regno == 0) {
1098             return extract32(s->nsapr[0][cpu], 8, 8);
1099         }
1100         break;
1101     default:
1102         g_assert_not_reached();
1103     }
1104     return 0;
1105 }
1106 
1107 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1108                                          uint32_t value)
1109 {
1110     /* Write the Nonsecure view of GICC_APR<regno>. */
1111     switch (GIC_MIN_BPR) {
1112     case 0:
1113         if (regno < 2) {
1114             s->nsapr[regno + 2][cpu] = value;
1115         }
1116         break;
1117     case 1:
1118         if (regno == 0) {
1119             s->nsapr[regno + 1][cpu] = value;
1120         }
1121         break;
1122     case 2:
1123         if (regno == 0) {
1124             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1125         }
1126         break;
1127     case 3:
1128         if (regno == 0) {
1129             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1130         }
1131         break;
1132     default:
1133         g_assert_not_reached();
1134     }
1135 }
1136 
1137 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1138                                 uint64_t *data, MemTxAttrs attrs)
1139 {
1140     switch (offset) {
1141     case 0x00: /* Control */
1142         *data = gic_get_cpu_control(s, cpu, attrs);
1143         break;
1144     case 0x04: /* Priority mask */
1145         *data = gic_get_priority_mask(s, cpu, attrs);
1146         break;
1147     case 0x08: /* Binary Point */
1148         if (s->security_extn && !attrs.secure) {
1149             /* BPR is banked. Non-secure copy stored in ABPR. */
1150             *data = s->abpr[cpu];
1151         } else {
1152             *data = s->bpr[cpu];
1153         }
1154         break;
1155     case 0x0c: /* Acknowledge */
1156         *data = gic_acknowledge_irq(s, cpu, attrs);
1157         break;
1158     case 0x14: /* Running Priority */
1159         *data = gic_get_running_priority(s, cpu, attrs);
1160         break;
1161     case 0x18: /* Highest Pending Interrupt */
1162         *data = gic_get_current_pending_irq(s, cpu, attrs);
1163         break;
1164     case 0x1c: /* Aliased Binary Point */
1165         /* GIC v2, no security: ABPR
1166          * GIC v1, no security: not implemented (RAZ/WI)
1167          * With security extensions, secure access: ABPR (alias of NS BPR)
1168          * With security extensions, nonsecure access: RAZ/WI
1169          */
1170         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1171             *data = 0;
1172         } else {
1173             *data = s->abpr[cpu];
1174         }
1175         break;
1176     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1177     {
1178         int regno = (offset - 0xd0) / 4;
1179 
1180         if (regno >= GIC_NR_APRS || s->revision != 2) {
1181             *data = 0;
1182         } else if (s->security_extn && !attrs.secure) {
1183             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1184             *data = gic_apr_ns_view(s, regno, cpu);
1185         } else {
1186             *data = s->apr[regno][cpu];
1187         }
1188         break;
1189     }
1190     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1191     {
1192         int regno = (offset - 0xe0) / 4;
1193 
1194         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1195             (s->security_extn && !attrs.secure)) {
1196             *data = 0;
1197         } else {
1198             *data = s->nsapr[regno][cpu];
1199         }
1200         break;
1201     }
1202     default:
1203         qemu_log_mask(LOG_GUEST_ERROR,
1204                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1205         return MEMTX_ERROR;
1206     }
1207     return MEMTX_OK;
1208 }
1209 
1210 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1211                                  uint32_t value, MemTxAttrs attrs)
1212 {
1213     switch (offset) {
1214     case 0x00: /* Control */
1215         gic_set_cpu_control(s, cpu, value, attrs);
1216         break;
1217     case 0x04: /* Priority mask */
1218         gic_set_priority_mask(s, cpu, value, attrs);
1219         break;
1220     case 0x08: /* Binary Point */
1221         if (s->security_extn && !attrs.secure) {
1222             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1223         } else {
1224             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1225         }
1226         break;
1227     case 0x10: /* End Of Interrupt */
1228         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1229         return MEMTX_OK;
1230     case 0x1c: /* Aliased Binary Point */
1231         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1232             /* unimplemented, or NS access: RAZ/WI */
1233             return MEMTX_OK;
1234         } else {
1235             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1236         }
1237         break;
1238     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1239     {
1240         int regno = (offset - 0xd0) / 4;
1241 
1242         if (regno >= GIC_NR_APRS || s->revision != 2) {
1243             return MEMTX_OK;
1244         }
1245         if (s->security_extn && !attrs.secure) {
1246             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1247             gic_apr_write_ns_view(s, regno, cpu, value);
1248         } else {
1249             s->apr[regno][cpu] = value;
1250         }
1251         break;
1252     }
1253     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1254     {
1255         int regno = (offset - 0xe0) / 4;
1256 
1257         if (regno >= GIC_NR_APRS || s->revision != 2) {
1258             return MEMTX_OK;
1259         }
1260         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1261             return MEMTX_OK;
1262         }
1263         s->nsapr[regno][cpu] = value;
1264         break;
1265     }
1266     case 0x1000:
1267         /* GICC_DIR */
1268         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1269         break;
1270     default:
1271         qemu_log_mask(LOG_GUEST_ERROR,
1272                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1273         return MEMTX_ERROR;
1274     }
1275     gic_update(s);
1276     return MEMTX_OK;
1277 }
1278 
1279 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1280 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1281                                     unsigned size, MemTxAttrs attrs)
1282 {
1283     GICState *s = (GICState *)opaque;
1284     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1285 }
1286 
1287 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1288                                      uint64_t value, unsigned size,
1289                                      MemTxAttrs attrs)
1290 {
1291     GICState *s = (GICState *)opaque;
1292     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1293 }
1294 
1295 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1296  * These just decode the opaque pointer into GICState* + cpu id.
1297  */
1298 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1299                                    unsigned size, MemTxAttrs attrs)
1300 {
1301     GICState **backref = (GICState **)opaque;
1302     GICState *s = *backref;
1303     int id = (backref - s->backref);
1304     return gic_cpu_read(s, id, addr, data, attrs);
1305 }
1306 
1307 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1308                                     uint64_t value, unsigned size,
1309                                     MemTxAttrs attrs)
1310 {
1311     GICState **backref = (GICState **)opaque;
1312     GICState *s = *backref;
1313     int id = (backref - s->backref);
1314     return gic_cpu_write(s, id, addr, value, attrs);
1315 }
1316 
1317 static const MemoryRegionOps gic_ops[2] = {
1318     {
1319         .read_with_attrs = gic_dist_read,
1320         .write_with_attrs = gic_dist_write,
1321         .endianness = DEVICE_NATIVE_ENDIAN,
1322     },
1323     {
1324         .read_with_attrs = gic_thiscpu_read,
1325         .write_with_attrs = gic_thiscpu_write,
1326         .endianness = DEVICE_NATIVE_ENDIAN,
1327     }
1328 };
1329 
1330 static const MemoryRegionOps gic_cpu_ops = {
1331     .read_with_attrs = gic_do_cpu_read,
1332     .write_with_attrs = gic_do_cpu_write,
1333     .endianness = DEVICE_NATIVE_ENDIAN,
1334 };
1335 
1336 /* This function is used by nvic model */
1337 void gic_init_irqs_and_distributor(GICState *s)
1338 {
1339     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1340 }
1341 
1342 static void arm_gic_realize(DeviceState *dev, Error **errp)
1343 {
1344     /* Device instance realize function for the GIC sysbus device */
1345     int i;
1346     GICState *s = ARM_GIC(dev);
1347     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1348     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1349     Error *local_err = NULL;
1350 
1351     agc->parent_realize(dev, &local_err);
1352     if (local_err) {
1353         error_propagate(errp, local_err);
1354         return;
1355     }
1356 
1357     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1358     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1359 
1360     /* Extra core-specific regions for the CPU interfaces. This is
1361      * necessary for "franken-GIC" implementations, for example on
1362      * Exynos 4.
1363      * NB that the memory region size of 0x100 applies for the 11MPCore
1364      * and also cores following the GIC v1 spec (ie A9).
1365      * GIC v2 defines a larger memory region (0x1000) so this will need
1366      * to be extended when we implement A15.
1367      */
1368     for (i = 0; i < s->num_cpu; i++) {
1369         s->backref[i] = s;
1370         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1371                               &s->backref[i], "gic_cpu", 0x100);
1372         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1373     }
1374 }
1375 
1376 static void arm_gic_class_init(ObjectClass *klass, void *data)
1377 {
1378     DeviceClass *dc = DEVICE_CLASS(klass);
1379     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1380 
1381     agc->parent_realize = dc->realize;
1382     dc->realize = arm_gic_realize;
1383 }
1384 
1385 static const TypeInfo arm_gic_info = {
1386     .name = TYPE_ARM_GIC,
1387     .parent = TYPE_ARM_GIC_COMMON,
1388     .instance_size = sizeof(GICState),
1389     .class_init = arm_gic_class_init,
1390     .class_size = sizeof(ARMGICClass),
1391 };
1392 
1393 static void arm_gic_register_types(void)
1394 {
1395     type_register_static(&arm_gic_info);
1396 }
1397 
1398 type_init(arm_gic_register_types)
1399