xref: /qemu/hw/intc/arm_gic_kvm.c (revision 27a4a30e)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "qemu/module.h"
25 #include "cpu.h"
26 #include "hw/sysbus.h"
27 #include "migration/blocker.h"
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "gic_internal.h"
31 #include "vgic_common.h"
32 
33 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
34 #define KVM_ARM_GIC(obj) \
35      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
36 #define KVM_ARM_GIC_CLASS(klass) \
37      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
38 #define KVM_ARM_GIC_GET_CLASS(obj) \
39      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
40 
41 typedef struct KVMARMGICClass {
42     ARMGICCommonClass parent_class;
43     DeviceRealize parent_realize;
44     void (*parent_reset)(DeviceState *dev);
45 } KVMARMGICClass;
46 
47 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
48 {
49     /* Meaning of the 'irq' parameter:
50      *  [0..N-1] : external interrupts
51      *  [N..N+31] : PPI (internal) interrupts for CPU 0
52      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
53      *  ...
54      * Convert this to the kernel's desired encoding, which
55      * has separate fields in the irq number for type,
56      * CPU number and interrupt number.
57      */
58     int irqtype, cpu;
59 
60     if (irq < (num_irq - GIC_INTERNAL)) {
61         /* External interrupt. The kernel numbers these like the GIC
62          * hardware, with external interrupt IDs starting after the
63          * internal ones.
64          */
65         irqtype = KVM_ARM_IRQ_TYPE_SPI;
66         cpu = 0;
67         irq += GIC_INTERNAL;
68     } else {
69         /* Internal interrupt: decode into (cpu, interrupt id) */
70         irqtype = KVM_ARM_IRQ_TYPE_PPI;
71         irq -= (num_irq - GIC_INTERNAL);
72         cpu = irq / GIC_INTERNAL;
73         irq %= GIC_INTERNAL;
74     }
75     kvm_arm_set_irq(cpu, irqtype, irq, !!level);
76 }
77 
78 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
79 {
80     GICState *s = (GICState *)opaque;
81 
82     kvm_arm_gic_set_irq(s->num_irq, irq, level);
83 }
84 
85 static bool kvm_arm_gic_can_save_restore(GICState *s)
86 {
87     return s->dev_fd >= 0;
88 }
89 
90 #define KVM_VGIC_ATTR(offset, cpu) \
91     ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
92       KVM_DEV_ARM_VGIC_CPUID_MASK) | \
93      (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
94       KVM_DEV_ARM_VGIC_OFFSET_MASK))
95 
96 static void kvm_gicd_access(GICState *s, int offset, int cpu,
97                             uint32_t *val, bool write)
98 {
99     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
100                       KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
101 }
102 
103 static void kvm_gicc_access(GICState *s, int offset, int cpu,
104                             uint32_t *val, bool write)
105 {
106     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
107                       KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
108 }
109 
110 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
111     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
112 
113 /*
114  * Translate from the in-kernel field for an IRQ value to/from the qemu
115  * representation.
116  */
117 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
118                                   uint32_t *field, bool to_kernel);
119 
120 /* synthetic translate function used for clear/set registers to completely
121  * clear a setting using a clear-register before setting the remaining bits
122  * using a set-register */
123 static void translate_clear(GICState *s, int irq, int cpu,
124                             uint32_t *field, bool to_kernel)
125 {
126     if (to_kernel) {
127         *field = ~0;
128     } else {
129         /* does not make sense: qemu model doesn't use set/clear regs */
130         abort();
131     }
132 }
133 
134 static void translate_group(GICState *s, int irq, int cpu,
135                             uint32_t *field, bool to_kernel)
136 {
137     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
138 
139     if (to_kernel) {
140         *field = GIC_DIST_TEST_GROUP(irq, cm);
141     } else {
142         if (*field & 1) {
143             GIC_DIST_SET_GROUP(irq, cm);
144         }
145     }
146 }
147 
148 static void translate_enabled(GICState *s, int irq, int cpu,
149                               uint32_t *field, bool to_kernel)
150 {
151     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
152 
153     if (to_kernel) {
154         *field = GIC_DIST_TEST_ENABLED(irq, cm);
155     } else {
156         if (*field & 1) {
157             GIC_DIST_SET_ENABLED(irq, cm);
158         }
159     }
160 }
161 
162 static void translate_pending(GICState *s, int irq, int cpu,
163                               uint32_t *field, bool to_kernel)
164 {
165     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
166 
167     if (to_kernel) {
168         *field = gic_test_pending(s, irq, cm);
169     } else {
170         if (*field & 1) {
171             GIC_DIST_SET_PENDING(irq, cm);
172             /* TODO: Capture is level-line is held high in the kernel */
173         }
174     }
175 }
176 
177 static void translate_active(GICState *s, int irq, int cpu,
178                              uint32_t *field, bool to_kernel)
179 {
180     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
181 
182     if (to_kernel) {
183         *field = GIC_DIST_TEST_ACTIVE(irq, cm);
184     } else {
185         if (*field & 1) {
186             GIC_DIST_SET_ACTIVE(irq, cm);
187         }
188     }
189 }
190 
191 static void translate_trigger(GICState *s, int irq, int cpu,
192                               uint32_t *field, bool to_kernel)
193 {
194     if (to_kernel) {
195         *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
196     } else {
197         if (*field & 0x2) {
198             GIC_DIST_SET_EDGE_TRIGGER(irq);
199         }
200     }
201 }
202 
203 static void translate_priority(GICState *s, int irq, int cpu,
204                                uint32_t *field, bool to_kernel)
205 {
206     if (to_kernel) {
207         *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
208     } else {
209         gic_dist_set_priority(s, cpu, irq,
210                               *field & 0xff, MEMTXATTRS_UNSPECIFIED);
211     }
212 }
213 
214 static void translate_targets(GICState *s, int irq, int cpu,
215                               uint32_t *field, bool to_kernel)
216 {
217     if (to_kernel) {
218         *field = s->irq_target[irq] & 0xff;
219     } else {
220         s->irq_target[irq] = *field & 0xff;
221     }
222 }
223 
224 static void translate_sgisource(GICState *s, int irq, int cpu,
225                                 uint32_t *field, bool to_kernel)
226 {
227     if (to_kernel) {
228         *field = s->sgi_pending[irq][cpu] & 0xff;
229     } else {
230         s->sgi_pending[irq][cpu] = *field & 0xff;
231     }
232 }
233 
234 /* Read a register group from the kernel VGIC */
235 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
236                          int maxirq, vgic_translate_fn translate_fn)
237 {
238     uint32_t reg;
239     int i;
240     int j;
241     int irq;
242     int cpu;
243     int regsz = 32 / width; /* irqs per kernel register */
244     uint32_t field;
245 
246     for_each_irq_reg(i, maxirq, width) {
247         irq = i * regsz;
248         cpu = 0;
249         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
250             kvm_gicd_access(s, offset, cpu, &reg, false);
251             for (j = 0; j < regsz; j++) {
252                 field = extract32(reg, j * width, width);
253                 translate_fn(s, irq + j, cpu, &field, false);
254             }
255 
256             cpu++;
257         }
258         offset += 4;
259     }
260 }
261 
262 /* Write a register group to the kernel VGIC */
263 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
264                          int maxirq, vgic_translate_fn translate_fn)
265 {
266     uint32_t reg;
267     int i;
268     int j;
269     int irq;
270     int cpu;
271     int regsz = 32 / width; /* irqs per kernel register */
272     uint32_t field;
273 
274     for_each_irq_reg(i, maxirq, width) {
275         irq = i * regsz;
276         cpu = 0;
277         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
278             reg = 0;
279             for (j = 0; j < regsz; j++) {
280                 translate_fn(s, irq + j, cpu, &field, true);
281                 reg = deposit32(reg, j * width, width, field);
282             }
283             kvm_gicd_access(s, offset, cpu, &reg, true);
284 
285             cpu++;
286         }
287         offset += 4;
288     }
289 }
290 
291 static void kvm_arm_gic_put(GICState *s)
292 {
293     uint32_t reg;
294     int i;
295     int cpu;
296     int num_cpu;
297     int num_irq;
298 
299     /* Note: We do the restore in a slightly different order than the save
300      * (where the order doesn't matter and is simply ordered according to the
301      * register offset values */
302 
303     /*****************************************************************
304      * Distributor State
305      */
306 
307     /* s->ctlr -> GICD_CTLR */
308     reg = s->ctlr;
309     kvm_gicd_access(s, 0x0, 0, &reg, true);
310 
311     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
312     kvm_gicd_access(s, 0x4, 0, &reg, false);
313     num_irq = ((reg & 0x1f) + 1) * 32;
314     num_cpu = ((reg & 0xe0) >> 5) + 1;
315 
316     if (num_irq < s->num_irq) {
317             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
318                     s->num_irq, num_irq);
319             abort();
320     } else if (num_cpu != s->num_cpu) {
321             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
322                     s->num_cpu, num_cpu);
323             /* Did we not create the VCPUs in the kernel yet? */
324             abort();
325     }
326 
327     /* TODO: Consider checking compatibility with the IIDR ? */
328 
329     /* irq_state[n].enabled -> GICD_ISENABLERn */
330     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
331     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
332 
333     /* irq_state[n].group -> GICD_IGROUPRn */
334     kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
335 
336     /* s->irq_target[irq] -> GICD_ITARGETSRn
337      * (restore targets before pending to ensure the pending state is set on
338      * the appropriate CPU interfaces in the kernel) */
339     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
340 
341     /* irq_state[n].trigger -> GICD_ICFGRn
342      * (restore configuration registers before pending IRQs so we treat
343      * level/edge correctly) */
344     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
345 
346     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
347     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
348     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
349 
350     /* irq_state[n].active -> GICD_ISACTIVERn */
351     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
352     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
353 
354 
355     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
356     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
357 
358     /* s->sgi_pending -> ICD_CPENDSGIRn */
359     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
360     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
361 
362 
363     /*****************************************************************
364      * CPU Interface(s) State
365      */
366 
367     for (cpu = 0; cpu < s->num_cpu; cpu++) {
368         /* s->cpu_ctlr[cpu] -> GICC_CTLR */
369         reg = s->cpu_ctlr[cpu];
370         kvm_gicc_access(s, 0x00, cpu, &reg, true);
371 
372         /* s->priority_mask[cpu] -> GICC_PMR */
373         reg = (s->priority_mask[cpu] & 0xff);
374         kvm_gicc_access(s, 0x04, cpu, &reg, true);
375 
376         /* s->bpr[cpu] -> GICC_BPR */
377         reg = (s->bpr[cpu] & 0x7);
378         kvm_gicc_access(s, 0x08, cpu, &reg, true);
379 
380         /* s->abpr[cpu] -> GICC_ABPR */
381         reg = (s->abpr[cpu] & 0x7);
382         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
383 
384         /* s->apr[n][cpu] -> GICC_APRn */
385         for (i = 0; i < 4; i++) {
386             reg = s->apr[i][cpu];
387             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
388         }
389     }
390 }
391 
392 static void kvm_arm_gic_get(GICState *s)
393 {
394     uint32_t reg;
395     int i;
396     int cpu;
397 
398     /*****************************************************************
399      * Distributor State
400      */
401 
402     /* GICD_CTLR -> s->ctlr */
403     kvm_gicd_access(s, 0x0, 0, &reg, false);
404     s->ctlr = reg;
405 
406     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
407     kvm_gicd_access(s, 0x4, 0, &reg, false);
408     s->num_irq = ((reg & 0x1f) + 1) * 32;
409     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
410 
411     if (s->num_irq > GIC_MAXIRQ) {
412             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
413                     s->num_irq);
414             abort();
415     }
416 
417     /* GICD_IIDR -> ? */
418     kvm_gicd_access(s, 0x8, 0, &reg, false);
419 
420     /* Clear all the IRQ settings */
421     for (i = 0; i < s->num_irq; i++) {
422         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
423     }
424 
425     /* GICD_IGROUPRn -> irq_state[n].group */
426     kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
427 
428     /* GICD_ISENABLERn -> irq_state[n].enabled */
429     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
430 
431     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
432     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
433 
434     /* GICD_ISACTIVERn -> irq_state[n].active */
435     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
436 
437     /* GICD_ICFRn -> irq_state[n].trigger */
438     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
439 
440     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
441     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
442 
443     /* GICD_ITARGETSRn -> s->irq_target[irq] */
444     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
445 
446     /* GICD_CPENDSGIRn -> s->sgi_pending */
447     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
448 
449 
450     /*****************************************************************
451      * CPU Interface(s) State
452      */
453 
454     for (cpu = 0; cpu < s->num_cpu; cpu++) {
455         /* GICC_CTLR -> s->cpu_ctlr[cpu] */
456         kvm_gicc_access(s, 0x00, cpu, &reg, false);
457         s->cpu_ctlr[cpu] = reg;
458 
459         /* GICC_PMR -> s->priority_mask[cpu] */
460         kvm_gicc_access(s, 0x04, cpu, &reg, false);
461         s->priority_mask[cpu] = (reg & 0xff);
462 
463         /* GICC_BPR -> s->bpr[cpu] */
464         kvm_gicc_access(s, 0x08, cpu, &reg, false);
465         s->bpr[cpu] = (reg & 0x7);
466 
467         /* GICC_ABPR -> s->abpr[cpu] */
468         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
469         s->abpr[cpu] = (reg & 0x7);
470 
471         /* GICC_APRn -> s->apr[n][cpu] */
472         for (i = 0; i < 4; i++) {
473             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
474             s->apr[i][cpu] = reg;
475         }
476     }
477 }
478 
479 static void kvm_arm_gic_reset(DeviceState *dev)
480 {
481     GICState *s = ARM_GIC_COMMON(dev);
482     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
483 
484     kgc->parent_reset(dev);
485 
486     if (kvm_arm_gic_can_save_restore(s)) {
487         kvm_arm_gic_put(s);
488     }
489 }
490 
491 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
492 {
493     int i;
494     GICState *s = KVM_ARM_GIC(dev);
495     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
496     Error *local_err = NULL;
497     int ret;
498 
499     kgc->parent_realize(dev, &local_err);
500     if (local_err) {
501         error_propagate(errp, local_err);
502         return;
503     }
504 
505     if (s->security_extn) {
506         error_setg(errp, "the in-kernel VGIC does not implement the "
507                    "security extensions");
508         return;
509     }
510 
511     if (s->virt_extn) {
512         error_setg(errp, "the in-kernel VGIC does not implement the "
513                    "virtualization extensions");
514         return;
515     }
516 
517     if (!kvm_arm_gic_can_save_restore(s)) {
518         error_setg(&s->migration_blocker, "This operating system kernel does "
519                                           "not support vGICv2 migration");
520         migrate_add_blocker(s->migration_blocker, &local_err);
521         if (local_err) {
522             error_propagate(errp, local_err);
523             error_free(s->migration_blocker);
524             return;
525         }
526     }
527 
528     gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
529 
530     for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
531         qemu_irq irq = qdev_get_gpio_in(dev, i);
532         kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
533     }
534 
535     /* Try to create the device via the device control API */
536     s->dev_fd = -1;
537     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
538     if (ret >= 0) {
539         s->dev_fd = ret;
540 
541         /* Newstyle API is used, we may have attributes */
542         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
543             uint32_t numirqs = s->num_irq;
544             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
545                               &numirqs, true, &error_abort);
546         }
547         /* Tell the kernel to complete VGIC initialization now */
548         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
549                                   KVM_DEV_ARM_VGIC_CTRL_INIT)) {
550             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
551                               KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true,
552                               &error_abort);
553         }
554     } else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
555         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
556         error_append_hint(errp,
557                           "Perhaps the host CPU does not support GICv2?\n");
558     } else if (ret != -ENODEV && ret != -ENOTSUP) {
559         /*
560          * Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that
561          * ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE",
562          * and that we will get a GICv2 via KVM_CREATE_IRQCHIP.
563          */
564         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
565         return;
566     }
567 
568     /* Distributor */
569     kvm_arm_register_device(&s->iomem,
570                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
571                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
572                             KVM_DEV_ARM_VGIC_GRP_ADDR,
573                             KVM_VGIC_V2_ADDR_TYPE_DIST,
574                             s->dev_fd, 0);
575     /* CPU interface for current core. Unlike arm_gic, we don't
576      * provide the "interface for core #N" memory regions, because
577      * cores with a VGIC don't have those.
578      */
579     kvm_arm_register_device(&s->cpuiomem[0],
580                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
581                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
582                             KVM_DEV_ARM_VGIC_GRP_ADDR,
583                             KVM_VGIC_V2_ADDR_TYPE_CPU,
584                             s->dev_fd, 0);
585 
586     if (kvm_has_gsi_routing()) {
587         /* set up irq routing */
588         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
589             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
590         }
591 
592         kvm_gsi_routing_allowed = true;
593 
594         kvm_irqchip_commit_routes(kvm_state);
595     }
596 }
597 
598 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
599 {
600     DeviceClass *dc = DEVICE_CLASS(klass);
601     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
602     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
603 
604     agcc->pre_save = kvm_arm_gic_get;
605     agcc->post_load = kvm_arm_gic_put;
606     device_class_set_parent_realize(dc, kvm_arm_gic_realize,
607                                     &kgc->parent_realize);
608     device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset);
609 }
610 
611 static const TypeInfo kvm_arm_gic_info = {
612     .name = TYPE_KVM_ARM_GIC,
613     .parent = TYPE_ARM_GIC_COMMON,
614     .instance_size = sizeof(GICState),
615     .class_init = kvm_arm_gic_class_init,
616     .class_size = sizeof(KVMARMGICClass),
617 };
618 
619 static void kvm_arm_gic_register_types(void)
620 {
621     type_register_static(&kvm_arm_gic_info);
622 }
623 
624 type_init(kvm_arm_gic_register_types)
625