xref: /qemu/hw/intc/arm_gicv3_common.c (revision 7271a819)
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30 
31 static int gicv3_pre_save(void *opaque)
32 {
33     GICv3State *s = (GICv3State *)opaque;
34     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
35 
36     if (c->pre_save) {
37         c->pre_save(s);
38     }
39 
40     return 0;
41 }
42 
43 static int gicv3_post_load(void *opaque, int version_id)
44 {
45     GICv3State *s = (GICv3State *)opaque;
46     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
47 
48     if (c->post_load) {
49         c->post_load(s);
50     }
51     return 0;
52 }
53 
54 static bool virt_state_needed(void *opaque)
55 {
56     GICv3CPUState *cs = opaque;
57 
58     return cs->num_list_regs != 0;
59 }
60 
61 static const VMStateDescription vmstate_gicv3_cpu_virt = {
62     .name = "arm_gicv3_cpu/virt",
63     .version_id = 1,
64     .minimum_version_id = 1,
65     .needed = virt_state_needed,
66     .fields = (VMStateField[]) {
67         VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
68         VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
69         VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
70         VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
71         VMSTATE_END_OF_LIST()
72     }
73 };
74 
75 static int icc_sre_el1_reg_pre_load(void *opaque)
76 {
77     GICv3CPUState *cs = opaque;
78 
79    /*
80     * If the sre_el1 subsection is not transferred this
81     * means SRE_EL1 is 0x7 (which might not be the same as
82     * our reset value).
83     */
84     cs->icc_sre_el1 = 0x7;
85     return 0;
86 }
87 
88 static bool icc_sre_el1_reg_needed(void *opaque)
89 {
90     GICv3CPUState *cs = opaque;
91 
92     return cs->icc_sre_el1 != 7;
93 }
94 
95 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
96     .name = "arm_gicv3_cpu/sre_el1",
97     .version_id = 1,
98     .minimum_version_id = 1,
99     .pre_load = icc_sre_el1_reg_pre_load,
100     .needed = icc_sre_el1_reg_needed,
101     .fields = (VMStateField[]) {
102         VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
103         VMSTATE_END_OF_LIST()
104     }
105 };
106 
107 static const VMStateDescription vmstate_gicv3_cpu = {
108     .name = "arm_gicv3_cpu",
109     .version_id = 1,
110     .minimum_version_id = 1,
111     .fields = (VMStateField[]) {
112         VMSTATE_UINT32(level, GICv3CPUState),
113         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
114         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
115         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
116         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
117         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
118         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
119         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
120         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
121         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
122         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
123         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
124         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
125         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
126         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
127         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
128         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
129         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
130         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
131         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
132         VMSTATE_END_OF_LIST()
133     },
134     .subsections = (const VMStateDescription * []) {
135         &vmstate_gicv3_cpu_virt,
136         NULL
137     },
138     .subsections = (const VMStateDescription * []) {
139         &vmstate_gicv3_cpu_sre_el1,
140         NULL
141     }
142 };
143 
144 static const VMStateDescription vmstate_gicv3 = {
145     .name = "arm_gicv3",
146     .version_id = 1,
147     .minimum_version_id = 1,
148     .pre_save = gicv3_pre_save,
149     .post_load = gicv3_post_load,
150     .priority = MIG_PRI_GICV3,
151     .fields = (VMStateField[]) {
152         VMSTATE_UINT32(gicd_ctlr, GICv3State),
153         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
154         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
155         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
156         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
157         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
158         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
159         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
160         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
161         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
162         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
163         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
164                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
165         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
166                                              vmstate_gicv3_cpu, GICv3CPUState),
167         VMSTATE_END_OF_LIST()
168     }
169 };
170 
171 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
172                               const MemoryRegionOps *ops)
173 {
174     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
175     int i;
176 
177     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
178      * GPIO array layout is thus:
179      *  [0..N-1] spi
180      *  [N..N+31] PPIs for CPU 0
181      *  [N+32..N+63] PPIs for CPU 1
182      *   ...
183      */
184     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
185     qdev_init_gpio_in(DEVICE(s), handler, i);
186 
187     for (i = 0; i < s->num_cpu; i++) {
188         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
189     }
190     for (i = 0; i < s->num_cpu; i++) {
191         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
192     }
193     for (i = 0; i < s->num_cpu; i++) {
194         sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
195     }
196     for (i = 0; i < s->num_cpu; i++) {
197         sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
198     }
199 
200     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
201                           "gicv3_dist", 0x10000);
202     memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
203                           "gicv3_redist", 0x20000 * s->num_cpu);
204 
205     sysbus_init_mmio(sbd, &s->iomem_dist);
206     sysbus_init_mmio(sbd, &s->iomem_redist);
207 }
208 
209 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
210 {
211     GICv3State *s = ARM_GICV3_COMMON(dev);
212     int i;
213 
214     /* revision property is actually reserved and currently used only in order
215      * to keep the interface compatible with GICv2 code, avoiding extra
216      * conditions. However, in future it could be used, for example, if we
217      * implement GICv4.
218      */
219     if (s->revision != 3) {
220         error_setg(errp, "unsupported GIC revision %d", s->revision);
221         return;
222     }
223 
224     if (s->num_irq > GICV3_MAXIRQ) {
225         error_setg(errp,
226                    "requested %u interrupt lines exceeds GIC maximum %d",
227                    s->num_irq, GICV3_MAXIRQ);
228         return;
229     }
230     if (s->num_irq < GIC_INTERNAL) {
231         error_setg(errp,
232                    "requested %u interrupt lines is below GIC minimum %d",
233                    s->num_irq, GIC_INTERNAL);
234         return;
235     }
236 
237     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
238      * implementation imposed restriction, not an architectural one,
239      * so we don't have to deal with bitfields where only some of the
240      * bits in a 32-bit word should be valid.
241      */
242     if (s->num_irq % 32) {
243         error_setg(errp,
244                    "%d interrupt lines unsupported: not divisible by 32",
245                    s->num_irq);
246         return;
247     }
248 
249     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
250 
251     for (i = 0; i < s->num_cpu; i++) {
252         CPUState *cpu = qemu_get_cpu(i);
253         uint64_t cpu_affid;
254         int last;
255 
256         s->cpu[i].cpu = cpu;
257         s->cpu[i].gic = s;
258         /* Store GICv3CPUState in CPUARMState gicv3state pointer */
259         gicv3_set_gicv3state(cpu, &s->cpu[i]);
260 
261         /* Pre-construct the GICR_TYPER:
262          * For our implementation:
263          *  Top 32 bits are the affinity value of the associated CPU
264          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
265          *  Processor_Number == CPU index starting from 0
266          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
267          *  Last == 1 if this is the last redistributor in a series of
268          *            contiguous redistributor pages
269          *  DirectLPI == 0 (direct injection of LPIs not supported)
270          *  VLPIS == 0 (virtual LPIs not supported)
271          *  PLPIS == 0 (physical LPIs not supported)
272          */
273         cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
274         last = (i == s->num_cpu - 1);
275 
276         /* The CPU mp-affinity property is in MPIDR register format; squash
277          * the affinity bytes into 32 bits as the GICR_TYPER has them.
278          */
279         cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
280                      (cpu_affid & 0xFFFFFF);
281         s->cpu[i].gicr_typer = (cpu_affid << 32) |
282             (1 << 24) |
283             (i << 8) |
284             (last << 4);
285     }
286 }
287 
288 static void arm_gicv3_common_reset(DeviceState *dev)
289 {
290     GICv3State *s = ARM_GICV3_COMMON(dev);
291     int i;
292 
293     for (i = 0; i < s->num_cpu; i++) {
294         GICv3CPUState *cs = &s->cpu[i];
295 
296         cs->level = 0;
297         cs->gicr_ctlr = 0;
298         cs->gicr_statusr[GICV3_S] = 0;
299         cs->gicr_statusr[GICV3_NS] = 0;
300         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
301         cs->gicr_propbaser = 0;
302         cs->gicr_pendbaser = 0;
303         /* If we're resetting a TZ-aware GIC as if secure firmware
304          * had set it up ready to start a kernel in non-secure, we
305          * need to set interrupts to group 1 so the kernel can use them.
306          * Otherwise they reset to group 0 like the hardware.
307          */
308         if (s->irq_reset_nonsecure) {
309             cs->gicr_igroupr0 = 0xffffffff;
310         } else {
311             cs->gicr_igroupr0 = 0;
312         }
313 
314         cs->gicr_ienabler0 = 0;
315         cs->gicr_ipendr0 = 0;
316         cs->gicr_iactiver0 = 0;
317         cs->edge_trigger = 0xffff;
318         cs->gicr_igrpmodr0 = 0;
319         cs->gicr_nsacr = 0;
320         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
321 
322         cs->hppi.prio = 0xff;
323 
324         /* State in the CPU interface must *not* be reset here, because it
325          * is part of the CPU's reset domain, not the GIC device's.
326          */
327     }
328 
329     /* For our implementation affinity routing is always enabled */
330     if (s->security_extn) {
331         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
332     } else {
333         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
334     }
335 
336     s->gicd_statusr[GICV3_S] = 0;
337     s->gicd_statusr[GICV3_NS] = 0;
338 
339     memset(s->group, 0, sizeof(s->group));
340     memset(s->grpmod, 0, sizeof(s->grpmod));
341     memset(s->enabled, 0, sizeof(s->enabled));
342     memset(s->pending, 0, sizeof(s->pending));
343     memset(s->active, 0, sizeof(s->active));
344     memset(s->level, 0, sizeof(s->level));
345     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
346     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
347     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
348     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
349     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
350      * write these to get sane behaviour and we need not populate the
351      * pointer cache here; however having the cache be different for
352      * "happened to be 0 from reset" and "guest wrote 0" would be
353      * too confusing.
354      */
355     gicv3_cache_all_target_cpustates(s);
356 
357     if (s->irq_reset_nonsecure) {
358         /* If we're resetting a TZ-aware GIC as if secure firmware
359          * had set it up ready to start a kernel in non-secure, we
360          * need to set interrupts to group 1 so the kernel can use them.
361          * Otherwise they reset to group 0 like the hardware.
362          */
363         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
364             gicv3_gicd_group_set(s, i);
365         }
366     }
367 }
368 
369 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
370                                       bool secure_boot)
371 {
372     GICv3State *s = ARM_GICV3_COMMON(obj);
373 
374     if (s->security_extn && !secure_boot) {
375         /* We're directly booting a kernel into NonSecure. If this GIC
376          * implements the security extensions then we must configure it
377          * to have all the interrupts be NonSecure (this is a job that
378          * is done by the Secure boot firmware in real hardware, and in
379          * this mode QEMU is acting as a minimalist firmware-and-bootloader
380          * equivalent).
381          */
382         s->irq_reset_nonsecure = true;
383     }
384 }
385 
386 static Property arm_gicv3_common_properties[] = {
387     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
388     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
389     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
390     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
391     DEFINE_PROP_END_OF_LIST(),
392 };
393 
394 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
395 {
396     DeviceClass *dc = DEVICE_CLASS(klass);
397     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
398 
399     dc->reset = arm_gicv3_common_reset;
400     dc->realize = arm_gicv3_common_realize;
401     dc->props = arm_gicv3_common_properties;
402     dc->vmsd = &vmstate_gicv3;
403     albifc->arm_linux_init = arm_gic_common_linux_init;
404 }
405 
406 static const TypeInfo arm_gicv3_common_type = {
407     .name = TYPE_ARM_GICV3_COMMON,
408     .parent = TYPE_SYS_BUS_DEVICE,
409     .instance_size = sizeof(GICv3State),
410     .class_size = sizeof(ARMGICv3CommonClass),
411     .class_init = arm_gicv3_common_class_init,
412     .abstract = true,
413     .interfaces = (InterfaceInfo []) {
414         { TYPE_ARM_LINUX_BOOT_IF },
415         { },
416     },
417 };
418 
419 static void register_types(void)
420 {
421     type_register_static(&arm_gicv3_common_type);
422 }
423 
424 type_init(register_types)
425