xref: /qemu/hw/intc/arm_gicv3_cpuif.c (revision c23a9563)
1 /*
2  * ARM Generic Interrupt Controller v3 (emulation)
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
24 
25 /*
26  * Special case return value from hppvi_index(); must be larger than
27  * the architecturally maximum possible list register index (which is 15)
28  */
29 #define HPPVI_INDEX_VLPI 16
30 
31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
32 {
33     return env->gicv3state;
34 }
35 
36 static bool gicv3_use_ns_bank(CPUARMState *env)
37 {
38     /* Return true if we should use the NonSecure bank for a banked GIC
39      * CPU interface register. Note that this differs from the
40      * access_secure_reg() function because GICv3 banked registers are
41      * banked even for AArch64, unlike the other CPU system registers.
42      */
43     return !arm_is_secure_below_el3(env);
44 }
45 
46 /* The minimum BPR for the virtual interface is a configurable property */
47 static inline int icv_min_vbpr(GICv3CPUState *cs)
48 {
49     return 7 - cs->vprebits;
50 }
51 
52 static inline int ich_num_aprs(GICv3CPUState *cs)
53 {
54     /* Return the number of virtual APR registers (1, 2, or 4) */
55     int aprmax = 1 << (cs->vprebits - 5);
56     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
57     return aprmax;
58 }
59 
60 /* Simple accessor functions for LR fields */
61 static uint32_t ich_lr_vintid(uint64_t lr)
62 {
63     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
64 }
65 
66 static uint32_t ich_lr_pintid(uint64_t lr)
67 {
68     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
69 }
70 
71 static uint32_t ich_lr_prio(uint64_t lr)
72 {
73     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
74 }
75 
76 static int ich_lr_state(uint64_t lr)
77 {
78     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
79 }
80 
81 static bool icv_access(CPUARMState *env, int hcr_flags)
82 {
83     /* Return true if this ICC_ register access should really be
84      * directed to an ICV_ access. hcr_flags is a mask of
85      * HCR_EL2 bits to check: we treat this as an ICV_ access
86      * if we are in NS EL1 and at least one of the specified
87      * HCR_EL2 bits is set.
88      *
89      * ICV registers fall into four categories:
90      *  * access if NS EL1 and HCR_EL2.FMO == 1:
91      *    all ICV regs with '0' in their name
92      *  * access if NS EL1 and HCR_EL2.IMO == 1:
93      *    all ICV regs with '1' in their name
94      *  * access if NS EL1 and either IMO or FMO == 1:
95      *    CTLR, DIR, PMR, RPR
96      */
97     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
98     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
99 
100     return flagmatch && arm_current_el(env) == 1
101         && !arm_is_secure_below_el3(env);
102 }
103 
104 static int read_vbpr(GICv3CPUState *cs, int grp)
105 {
106     /* Read VBPR value out of the VMCR field (caller must handle
107      * VCBPR effects if required)
108      */
109     if (grp == GICV3_G0) {
110         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
111                      ICH_VMCR_EL2_VBPR0_LENGTH);
112     } else {
113         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
114                          ICH_VMCR_EL2_VBPR1_LENGTH);
115     }
116 }
117 
118 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
119 {
120     /* Write new VBPR1 value, handling the "writing a value less than
121      * the minimum sets it to the minimum" semantics.
122      */
123     int min = icv_min_vbpr(cs);
124 
125     if (grp != GICV3_G0) {
126         min++;
127     }
128 
129     value = MAX(value, min);
130 
131     if (grp == GICV3_G0) {
132         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
133                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
134     } else {
135         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
136                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
137     }
138 }
139 
140 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
141 {
142     /* Return a mask word which clears the unimplemented priority bits
143      * from a priority value for a virtual interrupt. (Not to be confused
144      * with the group priority, whose mask depends on the value of VBPR
145      * for the interrupt group.)
146      */
147     return ~0U << (8 - cs->vpribits);
148 }
149 
150 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
151 {
152     /* Calculate the current running priority based on the set bits
153      * in the ICH Active Priority Registers.
154      */
155     int i;
156     int aprmax = ich_num_aprs(cs);
157 
158     for (i = 0; i < aprmax; i++) {
159         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
160             cs->ich_apr[GICV3_G1NS][i];
161 
162         if (!apr) {
163             continue;
164         }
165         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
166     }
167     /* No current active interrupts: return idle priority */
168     return 0xff;
169 }
170 
171 static int hppvi_index(GICv3CPUState *cs)
172 {
173     /*
174      * Return the list register index of the highest priority pending
175      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
176      * pseudocode. If no pending virtual interrupts, return -1.
177      * If the highest priority pending virtual interrupt is a vLPI,
178      * return HPPVI_INDEX_VLPI.
179      * (The pseudocode handles checking whether the vLPI is higher
180      * priority than the highest priority list register at every
181      * callsite of HighestPriorityVirtualInterrupt; we check it here.)
182      */
183     ARMCPU *cpu = ARM_CPU(cs->cpu);
184     CPUARMState *env = &cpu->env;
185     int idx = -1;
186     int i;
187     /* Note that a list register entry with a priority of 0xff will
188      * never be reported by this function; this is the architecturally
189      * correct behaviour.
190      */
191     int prio = 0xff;
192 
193     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
194         /* Both groups disabled, definitely nothing to do */
195         return idx;
196     }
197 
198     for (i = 0; i < cs->num_list_regs; i++) {
199         uint64_t lr = cs->ich_lr_el2[i];
200         int thisprio;
201 
202         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
203             /* Not Pending */
204             continue;
205         }
206 
207         /* Ignore interrupts if relevant group enable not set */
208         if (lr & ICH_LR_EL2_GROUP) {
209             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
210                 continue;
211             }
212         } else {
213             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
214                 continue;
215             }
216         }
217 
218         thisprio = ich_lr_prio(lr);
219 
220         if (thisprio < prio) {
221             prio = thisprio;
222             idx = i;
223         }
224     }
225 
226     /*
227      * "no pending vLPI" is indicated with prio = 0xff, which always
228      * fails the priority check here. vLPIs are only considered
229      * when we are in Non-Secure state.
230      */
231     if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
232         if (cs->hppvlpi.grp == GICV3_G0) {
233             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
234                 return HPPVI_INDEX_VLPI;
235             }
236         } else {
237             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
238                 return HPPVI_INDEX_VLPI;
239             }
240         }
241     }
242 
243     return idx;
244 }
245 
246 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
247 {
248     /* Return a mask word which clears the subpriority bits from
249      * a priority value for a virtual interrupt in the specified group.
250      * This depends on the VBPR value.
251      * If using VBPR0 then:
252      *  a BPR of 0 means the group priority bits are [7:1];
253      *  a BPR of 1 means they are [7:2], and so on down to
254      *  a BPR of 7 meaning no group priority bits at all.
255      * If using VBPR1 then:
256      *  a BPR of 0 is impossible (the minimum value is 1)
257      *  a BPR of 1 means the group priority bits are [7:1];
258      *  a BPR of 2 means they are [7:2], and so on down to
259      *  a BPR of 7 meaning the group priority is [7].
260      *
261      * Which BPR to use depends on the group of the interrupt and
262      * the current ICH_VMCR_EL2.VCBPR settings.
263      *
264      * This corresponds to the VGroupBits() pseudocode.
265      */
266     int bpr;
267 
268     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
269         group = GICV3_G0;
270     }
271 
272     bpr = read_vbpr(cs, group);
273     if (group == GICV3_G1NS) {
274         assert(bpr > 0);
275         bpr--;
276     }
277 
278     return ~0U << (bpr + 1);
279 }
280 
281 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
282 {
283     /* Return true if we can signal this virtual interrupt defined by
284      * the given list register value; see the pseudocode functions
285      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
286      * Compare also icc_hppi_can_preempt() which is the non-virtual
287      * equivalent of these checks.
288      */
289     int grp;
290     uint32_t mask, prio, rprio, vpmr;
291 
292     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
293         /* Virtual interface disabled */
294         return false;
295     }
296 
297     /* We don't need to check that this LR is in Pending state because
298      * that has already been done in hppvi_index().
299      */
300 
301     prio = ich_lr_prio(lr);
302     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
303                      ICH_VMCR_EL2_VPMR_LENGTH);
304 
305     if (prio >= vpmr) {
306         /* Priority mask masks this interrupt */
307         return false;
308     }
309 
310     rprio = ich_highest_active_virt_prio(cs);
311     if (rprio == 0xff) {
312         /* No running interrupt so we can preempt */
313         return true;
314     }
315 
316     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
317 
318     mask = icv_gprio_mask(cs, grp);
319 
320     /* We only preempt a running interrupt if the pending interrupt's
321      * group priority is sufficient (the subpriorities are not considered).
322      */
323     if ((prio & mask) < (rprio & mask)) {
324         return true;
325     }
326 
327     return false;
328 }
329 
330 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
331 {
332     /*
333      * Return true if we can signal the highest priority pending vLPI.
334      * We can assume we're Non-secure because hppvi_index() already
335      * tested for that.
336      */
337     uint32_t mask, rprio, vpmr;
338 
339     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
340         /* Virtual interface disabled */
341         return false;
342     }
343 
344     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
345                      ICH_VMCR_EL2_VPMR_LENGTH);
346 
347     if (cs->hppvlpi.prio >= vpmr) {
348         /* Priority mask masks this interrupt */
349         return false;
350     }
351 
352     rprio = ich_highest_active_virt_prio(cs);
353     if (rprio == 0xff) {
354         /* No running interrupt so we can preempt */
355         return true;
356     }
357 
358     mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
359 
360     /*
361      * We only preempt a running interrupt if the pending interrupt's
362      * group priority is sufficient (the subpriorities are not considered).
363      */
364     if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
365         return true;
366     }
367 
368     return false;
369 }
370 
371 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
372                                                 uint32_t *misr)
373 {
374     /* Return a set of bits indicating the EOI maintenance interrupt status
375      * for each list register. The EOI maintenance interrupt status is
376      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
377      * (see the GICv3 spec for the ICH_EISR_EL2 register).
378      * If misr is not NULL then we should also collect the information
379      * about the MISR.EOI, MISR.NP and MISR.U bits.
380      */
381     uint32_t value = 0;
382     int validcount = 0;
383     bool seenpending = false;
384     int i;
385 
386     for (i = 0; i < cs->num_list_regs; i++) {
387         uint64_t lr = cs->ich_lr_el2[i];
388 
389         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
390             == ICH_LR_EL2_EOI) {
391             value |= (1 << i);
392         }
393         if ((lr & ICH_LR_EL2_STATE_MASK)) {
394             validcount++;
395         }
396         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
397             seenpending = true;
398         }
399     }
400 
401     if (misr) {
402         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
403             *misr |= ICH_MISR_EL2_U;
404         }
405         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
406             *misr |= ICH_MISR_EL2_NP;
407         }
408         if (value) {
409             *misr |= ICH_MISR_EL2_EOI;
410         }
411     }
412     return value;
413 }
414 
415 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
416 {
417     /* Return a set of bits indicating the maintenance interrupt status
418      * (as seen in the ICH_MISR_EL2 register).
419      */
420     uint32_t value = 0;
421 
422     /* Scan list registers and fill in the U, NP and EOI bits */
423     eoi_maintenance_interrupt_state(cs, &value);
424 
425     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
426         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
427         value |= ICH_MISR_EL2_LRENP;
428     }
429 
430     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
431         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
432         value |= ICH_MISR_EL2_VGRP0E;
433     }
434 
435     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
436         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
437         value |= ICH_MISR_EL2_VGRP0D;
438     }
439     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
440         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
441         value |= ICH_MISR_EL2_VGRP1E;
442     }
443 
444     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
445         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
446         value |= ICH_MISR_EL2_VGRP1D;
447     }
448 
449     return value;
450 }
451 
452 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
453 {
454     /*
455      * Tell the CPU about any pending virtual interrupts.
456      * This should only be called for changes that affect the
457      * vIRQ and vFIQ status and do not change the maintenance
458      * interrupt status. This means that unlike gicv3_cpuif_virt_update()
459      * this function won't recursively call back into the GIC code.
460      * The main use of this is when the redistributor has changed the
461      * highest priority pending virtual LPI.
462      */
463     int idx;
464     int irqlevel = 0;
465     int fiqlevel = 0;
466 
467     idx = hppvi_index(cs);
468     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
469                                   cs->hppvlpi.irq, cs->hppvlpi.grp,
470                                   cs->hppvlpi.prio);
471     if (idx == HPPVI_INDEX_VLPI) {
472         if (icv_hppvlpi_can_preempt(cs)) {
473             if (cs->hppvlpi.grp == GICV3_G0) {
474                 fiqlevel = 1;
475             } else {
476                 irqlevel = 1;
477             }
478         }
479     } else if (idx >= 0) {
480         uint64_t lr = cs->ich_lr_el2[idx];
481 
482         if (icv_hppi_can_preempt(cs, lr)) {
483             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
484             if (lr & ICH_LR_EL2_GROUP) {
485                 irqlevel = 1;
486             } else {
487                 fiqlevel = 1;
488             }
489         }
490     }
491 
492     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
493     qemu_set_irq(cs->parent_vfiq, fiqlevel);
494     qemu_set_irq(cs->parent_virq, irqlevel);
495 }
496 
497 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
498 {
499     /*
500      * Tell the CPU about any pending virtual interrupts or
501      * maintenance interrupts, following a change to the state
502      * of the CPU interface relevant to virtual interrupts.
503      *
504      * CAUTION: this function will call qemu_set_irq() on the
505      * CPU maintenance IRQ line, which is typically wired up
506      * to the GIC as a per-CPU interrupt. This means that it
507      * will recursively call back into the GIC code via
508      * gicv3_redist_set_irq() and thus into the CPU interface code's
509      * gicv3_cpuif_update(). It is therefore important that this
510      * function is only called as the final action of a CPU interface
511      * register write implementation, after all the GIC state
512      * fields have been updated. gicv3_cpuif_update() also must
513      * not cause this function to be called, but that happens
514      * naturally as a result of there being no architectural
515      * linkage between the physical and virtual GIC logic.
516      */
517     ARMCPU *cpu = ARM_CPU(cs->cpu);
518     int maintlevel = 0;
519 
520     gicv3_cpuif_virt_irq_fiq_update(cs);
521 
522     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
523         maintenance_interrupt_state(cs) != 0) {
524         maintlevel = 1;
525     }
526 
527     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
528     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
529 }
530 
531 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
532 {
533     GICv3CPUState *cs = icc_cs_from_env(env);
534     int regno = ri->opc2 & 3;
535     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
536     uint64_t value = cs->ich_apr[grp][regno];
537 
538     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
539     return value;
540 }
541 
542 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
543                          uint64_t value)
544 {
545     GICv3CPUState *cs = icc_cs_from_env(env);
546     int regno = ri->opc2 & 3;
547     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
548 
549     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
550 
551     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
552 
553     gicv3_cpuif_virt_irq_fiq_update(cs);
554     return;
555 }
556 
557 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
558 {
559     GICv3CPUState *cs = icc_cs_from_env(env);
560     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
561     uint64_t bpr;
562     bool satinc = false;
563 
564     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
565         /* reads return bpr0 + 1 saturated to 7, writes ignored */
566         grp = GICV3_G0;
567         satinc = true;
568     }
569 
570     bpr = read_vbpr(cs, grp);
571 
572     if (satinc) {
573         bpr++;
574         bpr = MIN(bpr, 7);
575     }
576 
577     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
578 
579     return bpr;
580 }
581 
582 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                           uint64_t value)
584 {
585     GICv3CPUState *cs = icc_cs_from_env(env);
586     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
587 
588     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
589                               gicv3_redist_affid(cs), value);
590 
591     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
592         /* reads return bpr0 + 1 saturated to 7, writes ignored */
593         return;
594     }
595 
596     write_vbpr(cs, grp, value);
597 
598     gicv3_cpuif_virt_irq_fiq_update(cs);
599 }
600 
601 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
602 {
603     GICv3CPUState *cs = icc_cs_from_env(env);
604     uint64_t value;
605 
606     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
607                       ICH_VMCR_EL2_VPMR_LENGTH);
608 
609     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
610     return value;
611 }
612 
613 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                           uint64_t value)
615 {
616     GICv3CPUState *cs = icc_cs_from_env(env);
617 
618     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
619 
620     value &= icv_fullprio_mask(cs);
621 
622     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
623                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
624 
625     gicv3_cpuif_virt_irq_fiq_update(cs);
626 }
627 
628 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
629 {
630     GICv3CPUState *cs = icc_cs_from_env(env);
631     int enbit;
632     uint64_t value;
633 
634     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
635     value = extract64(cs->ich_vmcr_el2, enbit, 1);
636 
637     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
638                                 gicv3_redist_affid(cs), value);
639     return value;
640 }
641 
642 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
643                              uint64_t value)
644 {
645     GICv3CPUState *cs = icc_cs_from_env(env);
646     int enbit;
647 
648     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
649                                  gicv3_redist_affid(cs), value);
650 
651     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
652 
653     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
654     gicv3_cpuif_virt_update(cs);
655 }
656 
657 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
658 {
659     GICv3CPUState *cs = icc_cs_from_env(env);
660     uint64_t value;
661 
662     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
663      * should match the ones reported in ich_vtr_read().
664      */
665     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
666         ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
667 
668     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
669         value |= ICC_CTLR_EL1_EOIMODE;
670     }
671 
672     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
673         value |= ICC_CTLR_EL1_CBPR;
674     }
675 
676     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
677     return value;
678 }
679 
680 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                uint64_t value)
682 {
683     GICv3CPUState *cs = icc_cs_from_env(env);
684 
685     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
686 
687     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
688                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
689     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
690                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
691 
692     gicv3_cpuif_virt_irq_fiq_update(cs);
693 }
694 
695 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
696 {
697     GICv3CPUState *cs = icc_cs_from_env(env);
698     int prio = ich_highest_active_virt_prio(cs);
699 
700     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
701     return prio;
702 }
703 
704 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
705 {
706     GICv3CPUState *cs = icc_cs_from_env(env);
707     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
708     int idx = hppvi_index(cs);
709     uint64_t value = INTID_SPURIOUS;
710 
711     if (idx == HPPVI_INDEX_VLPI) {
712         if (cs->hppvlpi.grp == grp) {
713             value = cs->hppvlpi.irq;
714         }
715     } else if (idx >= 0) {
716         uint64_t lr = cs->ich_lr_el2[idx];
717         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
718 
719         if (grp == thisgrp) {
720             value = ich_lr_vintid(lr);
721         }
722     }
723 
724     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
725                                gicv3_redist_affid(cs), value);
726     return value;
727 }
728 
729 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
730 {
731     /* Activate the interrupt in the specified list register
732      * by moving it from Pending to Active state, and update the
733      * Active Priority Registers.
734      */
735     uint32_t mask = icv_gprio_mask(cs, grp);
736     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
737     int aprbit = prio >> (8 - cs->vprebits);
738     int regno = aprbit / 32;
739     int regbit = aprbit % 32;
740 
741     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
742     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
743     cs->ich_apr[grp][regno] |= (1 << regbit);
744 }
745 
746 static void icv_activate_vlpi(GICv3CPUState *cs)
747 {
748     uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
749     int prio = cs->hppvlpi.prio & mask;
750     int aprbit = prio >> (8 - cs->vprebits);
751     int regno = aprbit / 32;
752     int regbit = aprbit % 32;
753 
754     cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
755     gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
756 }
757 
758 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
759 {
760     GICv3CPUState *cs = icc_cs_from_env(env);
761     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
762     int idx = hppvi_index(cs);
763     uint64_t intid = INTID_SPURIOUS;
764 
765     if (idx == HPPVI_INDEX_VLPI) {
766         if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
767             intid = cs->hppvlpi.irq;
768             icv_activate_vlpi(cs);
769         }
770     } else if (idx >= 0) {
771         uint64_t lr = cs->ich_lr_el2[idx];
772         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
773 
774         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
775             intid = ich_lr_vintid(lr);
776             if (!gicv3_intid_is_special(intid)) {
777                 icv_activate_irq(cs, idx, grp);
778             } else {
779                 /* Interrupt goes from Pending to Invalid */
780                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
781                 /* We will now return the (bogus) ID from the list register,
782                  * as per the pseudocode.
783                  */
784             }
785         }
786     }
787 
788     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
789                              gicv3_redist_affid(cs), intid);
790 
791     gicv3_cpuif_virt_update(cs);
792 
793     return intid;
794 }
795 
796 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
797 {
798     /*
799      * Return a mask word which clears the unimplemented priority bits
800      * from a priority value for a physical interrupt. (Not to be confused
801      * with the group priority, whose mask depends on the value of BPR
802      * for the interrupt group.)
803      */
804     return ~0U << (8 - cs->pribits);
805 }
806 
807 static inline int icc_min_bpr(GICv3CPUState *cs)
808 {
809     /* The minimum BPR for the physical interface. */
810     return 7 - cs->prebits;
811 }
812 
813 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
814 {
815     return icc_min_bpr(cs) + 1;
816 }
817 
818 static inline int icc_num_aprs(GICv3CPUState *cs)
819 {
820     /* Return the number of APR registers (1, 2, or 4) */
821     int aprmax = 1 << MAX(cs->prebits - 5, 0);
822     assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
823     return aprmax;
824 }
825 
826 static int icc_highest_active_prio(GICv3CPUState *cs)
827 {
828     /* Calculate the current running priority based on the set bits
829      * in the Active Priority Registers.
830      */
831     int i;
832 
833     for (i = 0; i < icc_num_aprs(cs); i++) {
834         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
835             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
836 
837         if (!apr) {
838             continue;
839         }
840         return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
841     }
842     /* No current active interrupts: return idle priority */
843     return 0xff;
844 }
845 
846 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
847 {
848     /* Return a mask word which clears the subpriority bits from
849      * a priority value for an interrupt in the specified group.
850      * This depends on the BPR value. For CBPR0 (S or NS):
851      *  a BPR of 0 means the group priority bits are [7:1];
852      *  a BPR of 1 means they are [7:2], and so on down to
853      *  a BPR of 7 meaning no group priority bits at all.
854      * For CBPR1 NS:
855      *  a BPR of 0 is impossible (the minimum value is 1)
856      *  a BPR of 1 means the group priority bits are [7:1];
857      *  a BPR of 2 means they are [7:2], and so on down to
858      *  a BPR of 7 meaning the group priority is [7].
859      *
860      * Which BPR to use depends on the group of the interrupt and
861      * the current ICC_CTLR.CBPR settings.
862      *
863      * This corresponds to the GroupBits() pseudocode.
864      */
865     int bpr;
866 
867     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
868         (group == GICV3_G1NS &&
869          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
870         group = GICV3_G0;
871     }
872 
873     bpr = cs->icc_bpr[group] & 7;
874 
875     if (group == GICV3_G1NS) {
876         assert(bpr > 0);
877         bpr--;
878     }
879 
880     return ~0U << (bpr + 1);
881 }
882 
883 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
884 {
885     /* Return true if there is no pending interrupt, or the
886      * highest priority pending interrupt is in a group which has been
887      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
888      */
889     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
890 }
891 
892 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
893 {
894     /* Return true if we have a pending interrupt of sufficient
895      * priority to preempt.
896      */
897     int rprio;
898     uint32_t mask;
899 
900     if (icc_no_enabled_hppi(cs)) {
901         return false;
902     }
903 
904     if (cs->hppi.prio >= cs->icc_pmr_el1) {
905         /* Priority mask masks this interrupt */
906         return false;
907     }
908 
909     rprio = icc_highest_active_prio(cs);
910     if (rprio == 0xff) {
911         /* No currently running interrupt so we can preempt */
912         return true;
913     }
914 
915     mask = icc_gprio_mask(cs, cs->hppi.grp);
916 
917     /* We only preempt a running interrupt if the pending interrupt's
918      * group priority is sufficient (the subpriorities are not considered).
919      */
920     if ((cs->hppi.prio & mask) < (rprio & mask)) {
921         return true;
922     }
923 
924     return false;
925 }
926 
927 void gicv3_cpuif_update(GICv3CPUState *cs)
928 {
929     /* Tell the CPU about its highest priority pending interrupt */
930     int irqlevel = 0;
931     int fiqlevel = 0;
932     ARMCPU *cpu = ARM_CPU(cs->cpu);
933     CPUARMState *env = &cpu->env;
934 
935     g_assert(qemu_mutex_iothread_locked());
936 
937     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
938                              cs->hppi.grp, cs->hppi.prio);
939 
940     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
941         /* If a Security-enabled GIC sends a G1S interrupt to a
942          * Security-disabled CPU, we must treat it as if it were G0.
943          */
944         cs->hppi.grp = GICV3_G0;
945     }
946 
947     if (icc_hppi_can_preempt(cs)) {
948         /* We have an interrupt: should we signal it as IRQ or FIQ?
949          * This is described in the GICv3 spec section 4.6.2.
950          */
951         bool isfiq;
952 
953         switch (cs->hppi.grp) {
954         case GICV3_G0:
955             isfiq = true;
956             break;
957         case GICV3_G1:
958             isfiq = (!arm_is_secure(env) ||
959                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
960             break;
961         case GICV3_G1NS:
962             isfiq = arm_is_secure(env);
963             break;
964         default:
965             g_assert_not_reached();
966         }
967 
968         if (isfiq) {
969             fiqlevel = 1;
970         } else {
971             irqlevel = 1;
972         }
973     }
974 
975     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
976 
977     qemu_set_irq(cs->parent_fiq, fiqlevel);
978     qemu_set_irq(cs->parent_irq, irqlevel);
979 }
980 
981 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
982 {
983     GICv3CPUState *cs = icc_cs_from_env(env);
984     uint32_t value = cs->icc_pmr_el1;
985 
986     if (icv_access(env, HCR_FMO | HCR_IMO)) {
987         return icv_pmr_read(env, ri);
988     }
989 
990     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
991         (env->cp15.scr_el3 & SCR_FIQ)) {
992         /* NS access and Group 0 is inaccessible to NS: return the
993          * NS view of the current priority
994          */
995         if ((value & 0x80) == 0) {
996             /* Secure priorities not visible to NS */
997             value = 0;
998         } else if (value != 0xff) {
999             value = (value << 1) & 0xff;
1000         }
1001     }
1002 
1003     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1004 
1005     return value;
1006 }
1007 
1008 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1009                           uint64_t value)
1010 {
1011     GICv3CPUState *cs = icc_cs_from_env(env);
1012 
1013     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1014         return icv_pmr_write(env, ri, value);
1015     }
1016 
1017     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1018 
1019     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1020         (env->cp15.scr_el3 & SCR_FIQ)) {
1021         /* NS access and Group 0 is inaccessible to NS: return the
1022          * NS view of the current priority
1023          */
1024         if (!(cs->icc_pmr_el1 & 0x80)) {
1025             /* Current PMR in the secure range, don't allow NS to change it */
1026             return;
1027         }
1028         value = (value >> 1) | 0x80;
1029     }
1030     value &= icc_fullprio_mask(cs);
1031     cs->icc_pmr_el1 = value;
1032     gicv3_cpuif_update(cs);
1033 }
1034 
1035 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1036 {
1037     /* Move the interrupt from the Pending state to Active, and update
1038      * the Active Priority Registers
1039      */
1040     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1041     int prio = cs->hppi.prio & mask;
1042     int aprbit = prio >> (8 - cs->prebits);
1043     int regno = aprbit / 32;
1044     int regbit = aprbit % 32;
1045 
1046     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1047 
1048     if (irq < GIC_INTERNAL) {
1049         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1050         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1051         gicv3_redist_update(cs);
1052     } else if (irq < GICV3_LPI_INTID_START) {
1053         gicv3_gicd_active_set(cs->gic, irq);
1054         gicv3_gicd_pending_clear(cs->gic, irq);
1055         gicv3_update(cs->gic, irq, 1);
1056     } else {
1057         gicv3_redist_lpi_pending(cs, irq, 0);
1058     }
1059 }
1060 
1061 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1062 {
1063     /* Return the highest priority pending interrupt register value
1064      * for group 0.
1065      */
1066     bool irq_is_secure;
1067 
1068     if (cs->hppi.prio == 0xff) {
1069         return INTID_SPURIOUS;
1070     }
1071 
1072     /* Check whether we can return the interrupt or if we should return
1073      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1074      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1075      * is always zero.)
1076      */
1077     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1078                      (cs->hppi.grp != GICV3_G1NS));
1079 
1080     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1081         return INTID_SPURIOUS;
1082     }
1083     if (irq_is_secure && !arm_is_secure(env)) {
1084         /* Secure interrupts not visible to Nonsecure */
1085         return INTID_SPURIOUS;
1086     }
1087 
1088     if (cs->hppi.grp != GICV3_G0) {
1089         /* Indicate to EL3 that there's a Group 1 interrupt for the other
1090          * state pending.
1091          */
1092         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1093     }
1094 
1095     return cs->hppi.irq;
1096 }
1097 
1098 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1099 {
1100     /* Return the highest priority pending interrupt register value
1101      * for group 1.
1102      */
1103     bool irq_is_secure;
1104 
1105     if (cs->hppi.prio == 0xff) {
1106         return INTID_SPURIOUS;
1107     }
1108 
1109     /* Check whether we can return the interrupt or if we should return
1110      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1111      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1112      * is always zero.)
1113      */
1114     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1115                      (cs->hppi.grp != GICV3_G1NS));
1116 
1117     if (cs->hppi.grp == GICV3_G0) {
1118         /* Group 0 interrupts not visible via HPPIR1 */
1119         return INTID_SPURIOUS;
1120     }
1121     if (irq_is_secure) {
1122         if (!arm_is_secure(env)) {
1123             /* Secure interrupts not visible in Non-secure */
1124             return INTID_SPURIOUS;
1125         }
1126     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1127         /* Group 1 non-secure interrupts not visible in Secure EL1 */
1128         return INTID_SPURIOUS;
1129     }
1130 
1131     return cs->hppi.irq;
1132 }
1133 
1134 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1135 {
1136     GICv3CPUState *cs = icc_cs_from_env(env);
1137     uint64_t intid;
1138 
1139     if (icv_access(env, HCR_FMO)) {
1140         return icv_iar_read(env, ri);
1141     }
1142 
1143     if (!icc_hppi_can_preempt(cs)) {
1144         intid = INTID_SPURIOUS;
1145     } else {
1146         intid = icc_hppir0_value(cs, env);
1147     }
1148 
1149     if (!gicv3_intid_is_special(intid)) {
1150         icc_activate_irq(cs, intid);
1151     }
1152 
1153     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1154     return intid;
1155 }
1156 
1157 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1158 {
1159     GICv3CPUState *cs = icc_cs_from_env(env);
1160     uint64_t intid;
1161 
1162     if (icv_access(env, HCR_IMO)) {
1163         return icv_iar_read(env, ri);
1164     }
1165 
1166     if (!icc_hppi_can_preempt(cs)) {
1167         intid = INTID_SPURIOUS;
1168     } else {
1169         intid = icc_hppir1_value(cs, env);
1170     }
1171 
1172     if (!gicv3_intid_is_special(intid)) {
1173         icc_activate_irq(cs, intid);
1174     }
1175 
1176     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1177     return intid;
1178 }
1179 
1180 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1181 {
1182     /* Drop the priority of the currently active interrupt in
1183      * the specified group.
1184      *
1185      * Note that we can guarantee (because of the requirement to nest
1186      * ICC_IAR reads [which activate an interrupt and raise priority]
1187      * with ICC_EOIR writes [which drop the priority for the interrupt])
1188      * that the interrupt we're being called for is the highest priority
1189      * active interrupt, meaning that it has the lowest set bit in the
1190      * APR registers.
1191      *
1192      * If the guest does not honour the ordering constraints then the
1193      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1194      * the values of the APR registers might become incorrect and the
1195      * running priority will be wrong, so interrupts that should preempt
1196      * might not do so, and interrupts that should not preempt might do so.
1197      */
1198     int i;
1199 
1200     for (i = 0; i < icc_num_aprs(cs); i++) {
1201         uint64_t *papr = &cs->icc_apr[grp][i];
1202 
1203         if (!*papr) {
1204             continue;
1205         }
1206         /* Clear the lowest set bit */
1207         *papr &= *papr - 1;
1208         break;
1209     }
1210 
1211     /* running priority change means we need an update for this cpu i/f */
1212     gicv3_cpuif_update(cs);
1213 }
1214 
1215 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1216 {
1217     /* Return true if we should split priority drop and interrupt
1218      * deactivation, ie whether the relevant EOIMode bit is set.
1219      */
1220     if (arm_is_el3_or_mon(env)) {
1221         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1222     }
1223     if (arm_is_secure_below_el3(env)) {
1224         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1225     } else {
1226         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1227     }
1228 }
1229 
1230 static int icc_highest_active_group(GICv3CPUState *cs)
1231 {
1232     /* Return the group with the highest priority active interrupt.
1233      * We can do this by just comparing the APRs to see which one
1234      * has the lowest set bit.
1235      * (If more than one group is active at the same priority then
1236      * we're in UNPREDICTABLE territory.)
1237      */
1238     int i;
1239 
1240     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1241         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1242         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1243         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1244 
1245         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1246             return GICV3_G1NS;
1247         }
1248         if (g1ctz < g0ctz) {
1249             return GICV3_G1;
1250         }
1251         if (g0ctz < 32) {
1252             return GICV3_G0;
1253         }
1254     }
1255     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1256      * ignores the spurious EOI attempt.
1257      */
1258     return -1;
1259 }
1260 
1261 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1262 {
1263     if (irq < GIC_INTERNAL) {
1264         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1265         gicv3_redist_update(cs);
1266     } else {
1267         gicv3_gicd_active_clear(cs->gic, irq);
1268         gicv3_update(cs->gic, irq, 1);
1269     }
1270 }
1271 
1272 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1273 {
1274     /* Return true if we should split priority drop and interrupt
1275      * deactivation, ie whether the virtual EOIMode bit is set.
1276      */
1277     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1278 }
1279 
1280 static int icv_find_active(GICv3CPUState *cs, int irq)
1281 {
1282     /* Given an interrupt number for an active interrupt, return the index
1283      * of the corresponding list register, or -1 if there is no match.
1284      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1285      */
1286     int i;
1287 
1288     for (i = 0; i < cs->num_list_regs; i++) {
1289         uint64_t lr = cs->ich_lr_el2[i];
1290 
1291         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1292             return i;
1293         }
1294     }
1295 
1296     return -1;
1297 }
1298 
1299 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1300 {
1301     /* Deactivate the interrupt in the specified list register index */
1302     uint64_t lr = cs->ich_lr_el2[idx];
1303 
1304     if (lr & ICH_LR_EL2_HW) {
1305         /* Deactivate the associated physical interrupt */
1306         int pirq = ich_lr_pintid(lr);
1307 
1308         if (pirq < INTID_SECURE) {
1309             icc_deactivate_irq(cs, pirq);
1310         }
1311     }
1312 
1313     /* Clear the 'active' part of the state, so ActivePending->Pending
1314      * and Active->Invalid.
1315      */
1316     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1317     cs->ich_lr_el2[idx] = lr;
1318 }
1319 
1320 static void icv_increment_eoicount(GICv3CPUState *cs)
1321 {
1322     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1323     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1324                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1325 
1326     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1327                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1328 }
1329 
1330 static int icv_drop_prio(GICv3CPUState *cs)
1331 {
1332     /* Drop the priority of the currently active virtual interrupt
1333      * (favouring group 0 if there is a set active bit at
1334      * the same priority for both group 0 and group 1).
1335      * Return the priority value for the bit we just cleared,
1336      * or 0xff if no bits were set in the AP registers at all.
1337      * Note that though the ich_apr[] are uint64_t only the low
1338      * 32 bits are actually relevant.
1339      */
1340     int i;
1341     int aprmax = ich_num_aprs(cs);
1342 
1343     for (i = 0; i < aprmax; i++) {
1344         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1345         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1346         int apr0count, apr1count;
1347 
1348         if (!*papr0 && !*papr1) {
1349             continue;
1350         }
1351 
1352         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1353          * because we need to return the bit number we cleared so
1354          * it can be compared against the list register's priority field.
1355          */
1356         apr0count = ctz32(*papr0);
1357         apr1count = ctz32(*papr1);
1358 
1359         if (apr0count <= apr1count) {
1360             *papr0 &= *papr0 - 1;
1361             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1362         } else {
1363             *papr1 &= *papr1 - 1;
1364             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1365         }
1366     }
1367     return 0xff;
1368 }
1369 
1370 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1371                           uint64_t value)
1372 {
1373     /* Deactivate interrupt */
1374     GICv3CPUState *cs = icc_cs_from_env(env);
1375     int idx;
1376     int irq = value & 0xffffff;
1377 
1378     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1379 
1380     if (irq >= GICV3_MAXIRQ) {
1381         /* Also catches special interrupt numbers and LPIs */
1382         return;
1383     }
1384 
1385     if (!icv_eoi_split(env, cs)) {
1386         return;
1387     }
1388 
1389     idx = icv_find_active(cs, irq);
1390 
1391     if (idx < 0) {
1392         /* No list register matching this, so increment the EOI count
1393          * (might trigger a maintenance interrupt)
1394          */
1395         icv_increment_eoicount(cs);
1396     } else {
1397         icv_deactivate_irq(cs, idx);
1398     }
1399 
1400     gicv3_cpuif_virt_update(cs);
1401 }
1402 
1403 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1404                            uint64_t value)
1405 {
1406     /* End of Interrupt */
1407     GICv3CPUState *cs = icc_cs_from_env(env);
1408     int irq = value & 0xffffff;
1409     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1410     int idx, dropprio;
1411 
1412     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1413                                gicv3_redist_affid(cs), value);
1414 
1415     if (gicv3_intid_is_special(irq)) {
1416         return;
1417     }
1418 
1419     /* We implement the IMPDEF choice of "drop priority before doing
1420      * error checks" (because that lets us avoid scanning the AP
1421      * registers twice).
1422      */
1423     dropprio = icv_drop_prio(cs);
1424     if (dropprio == 0xff) {
1425         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1426          * whether the list registers are checked in this
1427          * situation; we choose not to.
1428          */
1429         return;
1430     }
1431 
1432     idx = icv_find_active(cs, irq);
1433 
1434     if (idx < 0) {
1435         /* No valid list register corresponding to EOI ID */
1436         icv_increment_eoicount(cs);
1437     } else {
1438         uint64_t lr = cs->ich_lr_el2[idx];
1439         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1440         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1441 
1442         if (thisgrp == grp && lr_gprio == dropprio) {
1443             if (!icv_eoi_split(env, cs)) {
1444                 /* Priority drop and deactivate not split: deactivate irq now */
1445                 icv_deactivate_irq(cs, idx);
1446             }
1447         }
1448     }
1449 
1450     gicv3_cpuif_virt_update(cs);
1451 }
1452 
1453 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1454                            uint64_t value)
1455 {
1456     /* End of Interrupt */
1457     GICv3CPUState *cs = icc_cs_from_env(env);
1458     int irq = value & 0xffffff;
1459     int grp;
1460     bool is_eoir0 = ri->crm == 8;
1461 
1462     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1463         icv_eoir_write(env, ri, value);
1464         return;
1465     }
1466 
1467     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1468                                gicv3_redist_affid(cs), value);
1469 
1470     if ((irq >= cs->gic->num_irq) &&
1471         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1472         /* This handles two cases:
1473          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1474          * to the GICC_EOIR, the GIC ignores that write.
1475          * 2. If software writes the number of a non-existent interrupt
1476          * this must be a subcase of "value written does not match the last
1477          * valid interrupt value read from the Interrupt Acknowledge
1478          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1479          */
1480         return;
1481     }
1482 
1483     grp = icc_highest_active_group(cs);
1484     switch (grp) {
1485     case GICV3_G0:
1486         if (!is_eoir0) {
1487             return;
1488         }
1489         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1490             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1491             return;
1492         }
1493         break;
1494     case GICV3_G1:
1495         if (is_eoir0) {
1496             return;
1497         }
1498         if (!arm_is_secure(env)) {
1499             return;
1500         }
1501         break;
1502     case GICV3_G1NS:
1503         if (is_eoir0) {
1504             return;
1505         }
1506         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1507             return;
1508         }
1509         break;
1510     default:
1511         qemu_log_mask(LOG_GUEST_ERROR,
1512                       "%s: IRQ %d isn't active\n", __func__, irq);
1513         return;
1514     }
1515 
1516     icc_drop_prio(cs, grp);
1517 
1518     if (!icc_eoi_split(env, cs)) {
1519         /* Priority drop and deactivate not split: deactivate irq now */
1520         icc_deactivate_irq(cs, irq);
1521     }
1522 }
1523 
1524 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1525 {
1526     GICv3CPUState *cs = icc_cs_from_env(env);
1527     uint64_t value;
1528 
1529     if (icv_access(env, HCR_FMO)) {
1530         return icv_hppir_read(env, ri);
1531     }
1532 
1533     value = icc_hppir0_value(cs, env);
1534     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1535     return value;
1536 }
1537 
1538 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1539 {
1540     GICv3CPUState *cs = icc_cs_from_env(env);
1541     uint64_t value;
1542 
1543     if (icv_access(env, HCR_IMO)) {
1544         return icv_hppir_read(env, ri);
1545     }
1546 
1547     value = icc_hppir1_value(cs, env);
1548     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1549     return value;
1550 }
1551 
1552 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1553 {
1554     GICv3CPUState *cs = icc_cs_from_env(env);
1555     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1556     bool satinc = false;
1557     uint64_t bpr;
1558 
1559     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1560         return icv_bpr_read(env, ri);
1561     }
1562 
1563     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1564         grp = GICV3_G1NS;
1565     }
1566 
1567     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1568         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1569         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1570          * modify BPR0
1571          */
1572         grp = GICV3_G0;
1573     }
1574 
1575     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1576         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1577         /* reads return bpr0 + 1 sat to 7, writes ignored */
1578         grp = GICV3_G0;
1579         satinc = true;
1580     }
1581 
1582     bpr = cs->icc_bpr[grp];
1583     if (satinc) {
1584         bpr++;
1585         bpr = MIN(bpr, 7);
1586     }
1587 
1588     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1589 
1590     return bpr;
1591 }
1592 
1593 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                           uint64_t value)
1595 {
1596     GICv3CPUState *cs = icc_cs_from_env(env);
1597     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1598     uint64_t minval;
1599 
1600     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1601         icv_bpr_write(env, ri, value);
1602         return;
1603     }
1604 
1605     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1606                               gicv3_redist_affid(cs), value);
1607 
1608     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1609         grp = GICV3_G1NS;
1610     }
1611 
1612     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1613         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1614         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1615          * modify BPR0
1616          */
1617         grp = GICV3_G0;
1618     }
1619 
1620     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1621         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1622         /* reads return bpr0 + 1 sat to 7, writes ignored */
1623         return;
1624     }
1625 
1626     minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1627     if (value < minval) {
1628         value = minval;
1629     }
1630 
1631     cs->icc_bpr[grp] = value & 7;
1632     gicv3_cpuif_update(cs);
1633 }
1634 
1635 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1636 {
1637     GICv3CPUState *cs = icc_cs_from_env(env);
1638     uint64_t value;
1639 
1640     int regno = ri->opc2 & 3;
1641     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1642 
1643     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1644         return icv_ap_read(env, ri);
1645     }
1646 
1647     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1648         grp = GICV3_G1NS;
1649     }
1650 
1651     value = cs->icc_apr[grp][regno];
1652 
1653     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1654     return value;
1655 }
1656 
1657 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658                          uint64_t value)
1659 {
1660     GICv3CPUState *cs = icc_cs_from_env(env);
1661 
1662     int regno = ri->opc2 & 3;
1663     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1664 
1665     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1666         icv_ap_write(env, ri, value);
1667         return;
1668     }
1669 
1670     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1671 
1672     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1673         grp = GICV3_G1NS;
1674     }
1675 
1676     /* It's not possible to claim that a Non-secure interrupt is active
1677      * at a priority outside the Non-secure range (128..255), since this
1678      * would otherwise allow malicious NS code to block delivery of S interrupts
1679      * by writing a bad value to these registers.
1680      */
1681     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1682         return;
1683     }
1684 
1685     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1686     gicv3_cpuif_update(cs);
1687 }
1688 
1689 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1690                           uint64_t value)
1691 {
1692     /* Deactivate interrupt */
1693     GICv3CPUState *cs = icc_cs_from_env(env);
1694     int irq = value & 0xffffff;
1695     bool irq_is_secure, single_sec_state, irq_is_grp0;
1696     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1697 
1698     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1699         icv_dir_write(env, ri, value);
1700         return;
1701     }
1702 
1703     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1704 
1705     if (irq >= cs->gic->num_irq) {
1706         /* Also catches special interrupt numbers and LPIs */
1707         return;
1708     }
1709 
1710     if (!icc_eoi_split(env, cs)) {
1711         return;
1712     }
1713 
1714     int grp = gicv3_irq_group(cs->gic, cs, irq);
1715 
1716     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1717     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1718     irq_is_grp0 = grp == GICV3_G0;
1719 
1720     /* Check whether we're allowed to deactivate this interrupt based
1721      * on its group and the current CPU state.
1722      * These checks are laid out to correspond to the spec's pseudocode.
1723      */
1724     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1725     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1726     /* No need to include !IsSecure in route_*_to_el2 as it's only
1727      * tested in cases where we know !IsSecure is true.
1728      */
1729     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1730     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1731     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1732 
1733     switch (arm_current_el(env)) {
1734     case 3:
1735         break;
1736     case 2:
1737         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1738             break;
1739         }
1740         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1741             break;
1742         }
1743         return;
1744     case 1:
1745         if (!arm_is_secure_below_el3(env)) {
1746             if (single_sec_state && irq_is_grp0 &&
1747                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1748                 break;
1749             }
1750             if (!irq_is_secure && !irq_is_grp0 &&
1751                 !route_irq_to_el3 && !route_irq_to_el2) {
1752                 break;
1753             }
1754         } else {
1755             if (irq_is_grp0 && !route_fiq_to_el3) {
1756                 break;
1757             }
1758             if (!irq_is_grp0 &&
1759                 (!irq_is_secure || !single_sec_state) &&
1760                 !route_irq_to_el3) {
1761                 break;
1762             }
1763         }
1764         return;
1765     default:
1766         g_assert_not_reached();
1767     }
1768 
1769     icc_deactivate_irq(cs, irq);
1770 }
1771 
1772 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1773 {
1774     GICv3CPUState *cs = icc_cs_from_env(env);
1775     int prio;
1776 
1777     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1778         return icv_rpr_read(env, ri);
1779     }
1780 
1781     prio = icc_highest_active_prio(cs);
1782 
1783     if (arm_feature(env, ARM_FEATURE_EL3) &&
1784         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1785         /* NS GIC access and Group 0 is inaccessible to NS */
1786         if ((prio & 0x80) == 0) {
1787             /* NS mustn't see priorities in the Secure half of the range */
1788             prio = 0;
1789         } else if (prio != 0xff) {
1790             /* Non-idle priority: show the Non-secure view of it */
1791             prio = (prio << 1) & 0xff;
1792         }
1793     }
1794 
1795     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1796     return prio;
1797 }
1798 
1799 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1800                              uint64_t value, int grp, bool ns)
1801 {
1802     GICv3State *s = cs->gic;
1803 
1804     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1805     uint64_t aff = extract64(value, 48, 8) << 16 |
1806         extract64(value, 32, 8) << 8 |
1807         extract64(value, 16, 8);
1808     uint32_t targetlist = extract64(value, 0, 16);
1809     uint32_t irq = extract64(value, 24, 4);
1810     bool irm = extract64(value, 40, 1);
1811     int i;
1812 
1813     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1814         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1815          * interrupts as Group 0 interrupts and must send Secure Group 0
1816          * interrupts to the target CPUs.
1817          */
1818         grp = GICV3_G0;
1819     }
1820 
1821     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1822                                  aff, targetlist);
1823 
1824     for (i = 0; i < s->num_cpu; i++) {
1825         GICv3CPUState *ocs = &s->cpu[i];
1826 
1827         if (irm) {
1828             /* IRM == 1 : route to all CPUs except self */
1829             if (cs == ocs) {
1830                 continue;
1831             }
1832         } else {
1833             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1834              * where the corresponding bit is set in targetlist
1835              */
1836             int aff0;
1837 
1838             if (ocs->gicr_typer >> 40 != aff) {
1839                 continue;
1840             }
1841             aff0 = extract64(ocs->gicr_typer, 32, 8);
1842             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1843                 continue;
1844             }
1845         }
1846 
1847         /* The redistributor will check against its own GICR_NSACR as needed */
1848         gicv3_redist_send_sgi(ocs, grp, irq, ns);
1849     }
1850 }
1851 
1852 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853                            uint64_t value)
1854 {
1855     /* Generate Secure Group 0 SGI. */
1856     GICv3CPUState *cs = icc_cs_from_env(env);
1857     bool ns = !arm_is_secure(env);
1858 
1859     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1860 }
1861 
1862 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863                            uint64_t value)
1864 {
1865     /* Generate Group 1 SGI for the current Security state */
1866     GICv3CPUState *cs = icc_cs_from_env(env);
1867     int grp;
1868     bool ns = !arm_is_secure(env);
1869 
1870     grp = ns ? GICV3_G1NS : GICV3_G1;
1871     icc_generate_sgi(env, cs, value, grp, ns);
1872 }
1873 
1874 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                              uint64_t value)
1876 {
1877     /* Generate Group 1 SGI for the Security state that is not
1878      * the current state
1879      */
1880     GICv3CPUState *cs = icc_cs_from_env(env);
1881     int grp;
1882     bool ns = !arm_is_secure(env);
1883 
1884     grp = ns ? GICV3_G1 : GICV3_G1NS;
1885     icc_generate_sgi(env, cs, value, grp, ns);
1886 }
1887 
1888 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1889 {
1890     GICv3CPUState *cs = icc_cs_from_env(env);
1891     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1892     uint64_t value;
1893 
1894     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1895         return icv_igrpen_read(env, ri);
1896     }
1897 
1898     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1899         grp = GICV3_G1NS;
1900     }
1901 
1902     value = cs->icc_igrpen[grp];
1903     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1904                                 gicv3_redist_affid(cs), value);
1905     return value;
1906 }
1907 
1908 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1909                              uint64_t value)
1910 {
1911     GICv3CPUState *cs = icc_cs_from_env(env);
1912     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1913 
1914     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1915         icv_igrpen_write(env, ri, value);
1916         return;
1917     }
1918 
1919     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1920                                  gicv3_redist_affid(cs), value);
1921 
1922     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1923         grp = GICV3_G1NS;
1924     }
1925 
1926     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1927     gicv3_cpuif_update(cs);
1928 }
1929 
1930 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1931 {
1932     GICv3CPUState *cs = icc_cs_from_env(env);
1933     uint64_t value;
1934 
1935     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1936     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1937     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1938     return value;
1939 }
1940 
1941 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1942                                   uint64_t value)
1943 {
1944     GICv3CPUState *cs = icc_cs_from_env(env);
1945 
1946     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1947 
1948     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1949     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1950     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1951     gicv3_cpuif_update(cs);
1952 }
1953 
1954 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1955 {
1956     GICv3CPUState *cs = icc_cs_from_env(env);
1957     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1958     uint64_t value;
1959 
1960     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1961         return icv_ctlr_read(env, ri);
1962     }
1963 
1964     value = cs->icc_ctlr_el1[bank];
1965     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1966     return value;
1967 }
1968 
1969 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970                                uint64_t value)
1971 {
1972     GICv3CPUState *cs = icc_cs_from_env(env);
1973     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1974     uint64_t mask;
1975 
1976     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1977         icv_ctlr_write(env, ri, value);
1978         return;
1979     }
1980 
1981     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1982 
1983     /* Only CBPR and EOIMODE can be RW;
1984      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1985      * the asseciated priority-based routing of them);
1986      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1987      */
1988     if (arm_feature(env, ARM_FEATURE_EL3) &&
1989         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1990         mask = ICC_CTLR_EL1_EOIMODE;
1991     } else {
1992         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1993     }
1994 
1995     cs->icc_ctlr_el1[bank] &= ~mask;
1996     cs->icc_ctlr_el1[bank] |= (value & mask);
1997     gicv3_cpuif_update(cs);
1998 }
1999 
2000 
2001 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2002 {
2003     GICv3CPUState *cs = icc_cs_from_env(env);
2004     uint64_t value;
2005 
2006     value = cs->icc_ctlr_el3;
2007     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2008         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2009     }
2010     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2011         value |= ICC_CTLR_EL3_CBPR_EL1NS;
2012     }
2013     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2014         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2015     }
2016     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2017         value |= ICC_CTLR_EL3_CBPR_EL1S;
2018     }
2019 
2020     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2021     return value;
2022 }
2023 
2024 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2025                                uint64_t value)
2026 {
2027     GICv3CPUState *cs = icc_cs_from_env(env);
2028     uint64_t mask;
2029 
2030     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2031 
2032     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2033     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2034     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2035         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2036     }
2037     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2038         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2039     }
2040 
2041     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2042     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2043         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2044     }
2045     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2046         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2047     }
2048 
2049     /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2050     mask = ICC_CTLR_EL3_EOIMODE_EL3;
2051 
2052     cs->icc_ctlr_el3 &= ~mask;
2053     cs->icc_ctlr_el3 |= (value & mask);
2054     gicv3_cpuif_update(cs);
2055 }
2056 
2057 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2058                                           const ARMCPRegInfo *ri, bool isread)
2059 {
2060     CPAccessResult r = CP_ACCESS_OK;
2061     GICv3CPUState *cs = icc_cs_from_env(env);
2062     int el = arm_current_el(env);
2063 
2064     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2065         el == 1 && !arm_is_secure_below_el3(env)) {
2066         /* Takes priority over a possible EL3 trap */
2067         return CP_ACCESS_TRAP_EL2;
2068     }
2069 
2070     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2071         switch (el) {
2072         case 1:
2073             /* Note that arm_hcr_el2_eff takes secure state into account.  */
2074             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2075                 r = CP_ACCESS_TRAP_EL3;
2076             }
2077             break;
2078         case 2:
2079             r = CP_ACCESS_TRAP_EL3;
2080             break;
2081         case 3:
2082             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2083                 r = CP_ACCESS_TRAP_EL3;
2084             }
2085             break;
2086         default:
2087             g_assert_not_reached();
2088         }
2089     }
2090 
2091     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2092         r = CP_ACCESS_TRAP;
2093     }
2094     return r;
2095 }
2096 
2097 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2098                                        const ARMCPRegInfo *ri, bool isread)
2099 {
2100     GICv3CPUState *cs = icc_cs_from_env(env);
2101 
2102     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2103         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2104         /* Takes priority over a possible EL3 trap */
2105         return CP_ACCESS_TRAP_EL2;
2106     }
2107 
2108     return gicv3_irqfiq_access(env, ri, isread);
2109 }
2110 
2111 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2112                                        const ARMCPRegInfo *ri, bool isread)
2113 {
2114     if (arm_current_el(env) == 1 &&
2115         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2116         /* Takes priority over a possible EL3 trap */
2117         return CP_ACCESS_TRAP_EL2;
2118     }
2119 
2120     return gicv3_irqfiq_access(env, ri, isread);
2121 }
2122 
2123 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2124                                        const ARMCPRegInfo *ri, bool isread)
2125 {
2126     CPAccessResult r = CP_ACCESS_OK;
2127     GICv3CPUState *cs = icc_cs_from_env(env);
2128     int el = arm_current_el(env);
2129 
2130     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2131         el == 1 && !arm_is_secure_below_el3(env)) {
2132         /* Takes priority over a possible EL3 trap */
2133         return CP_ACCESS_TRAP_EL2;
2134     }
2135 
2136     if (env->cp15.scr_el3 & SCR_FIQ) {
2137         switch (el) {
2138         case 1:
2139             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2140                 r = CP_ACCESS_TRAP_EL3;
2141             }
2142             break;
2143         case 2:
2144             r = CP_ACCESS_TRAP_EL3;
2145             break;
2146         case 3:
2147             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2148                 r = CP_ACCESS_TRAP_EL3;
2149             }
2150             break;
2151         default:
2152             g_assert_not_reached();
2153         }
2154     }
2155 
2156     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2157         r = CP_ACCESS_TRAP;
2158     }
2159     return r;
2160 }
2161 
2162 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2163                                        const ARMCPRegInfo *ri, bool isread)
2164 {
2165     CPAccessResult r = CP_ACCESS_OK;
2166     GICv3CPUState *cs = icc_cs_from_env(env);
2167     int el = arm_current_el(env);
2168 
2169     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2170         el == 1 && !arm_is_secure_below_el3(env)) {
2171         /* Takes priority over a possible EL3 trap */
2172         return CP_ACCESS_TRAP_EL2;
2173     }
2174 
2175     if (env->cp15.scr_el3 & SCR_IRQ) {
2176         switch (el) {
2177         case 1:
2178             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2179                 r = CP_ACCESS_TRAP_EL3;
2180             }
2181             break;
2182         case 2:
2183             r = CP_ACCESS_TRAP_EL3;
2184             break;
2185         case 3:
2186             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2187                 r = CP_ACCESS_TRAP_EL3;
2188             }
2189             break;
2190         default:
2191             g_assert_not_reached();
2192         }
2193     }
2194 
2195     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2196         r = CP_ACCESS_TRAP;
2197     }
2198     return r;
2199 }
2200 
2201 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2202 {
2203     GICv3CPUState *cs = icc_cs_from_env(env);
2204 
2205     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2206         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2207         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2208     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2209         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2210         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2211     cs->icc_pmr_el1 = 0;
2212     cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2213     cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2214     cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2215     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2216     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2217     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2218         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2219         ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2220 
2221     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2222     cs->ich_hcr_el2 = 0;
2223     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2224     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2225         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2226         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2227 }
2228 
2229 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2230     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2231       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2232       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2233       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2234       .readfn = icc_pmr_read,
2235       .writefn = icc_pmr_write,
2236       /* We hang the whole cpu interface reset routine off here
2237        * rather than parcelling it out into one little function
2238        * per register
2239        */
2240       .resetfn = icc_reset,
2241     },
2242     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2243       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2244       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2245       .access = PL1_R, .accessfn = gicv3_fiq_access,
2246       .readfn = icc_iar0_read,
2247     },
2248     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2249       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2250       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2251       .access = PL1_W, .accessfn = gicv3_fiq_access,
2252       .writefn = icc_eoir_write,
2253     },
2254     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2255       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2256       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2257       .access = PL1_R, .accessfn = gicv3_fiq_access,
2258       .readfn = icc_hppir0_read,
2259     },
2260     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2261       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2262       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2263       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2264       .readfn = icc_bpr_read,
2265       .writefn = icc_bpr_write,
2266     },
2267     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2268       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2269       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2271       .readfn = icc_ap_read,
2272       .writefn = icc_ap_write,
2273     },
2274     /* All the ICC_AP1R*_EL1 registers are banked */
2275     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2276       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2277       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2278       .access = PL1_RW, .accessfn = gicv3_irq_access,
2279       .readfn = icc_ap_read,
2280       .writefn = icc_ap_write,
2281     },
2282     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2283       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2284       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2285       .access = PL1_W, .accessfn = gicv3_dir_access,
2286       .writefn = icc_dir_write,
2287     },
2288     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2289       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2290       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2291       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2292       .readfn = icc_rpr_read,
2293     },
2294     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2295       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2296       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2297       .access = PL1_W, .accessfn = gicv3_sgi_access,
2298       .writefn = icc_sgi1r_write,
2299     },
2300     { .name = "ICC_SGI1R",
2301       .cp = 15, .opc1 = 0, .crm = 12,
2302       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2303       .access = PL1_W, .accessfn = gicv3_sgi_access,
2304       .writefn = icc_sgi1r_write,
2305     },
2306     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2307       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2308       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2309       .access = PL1_W, .accessfn = gicv3_sgi_access,
2310       .writefn = icc_asgi1r_write,
2311     },
2312     { .name = "ICC_ASGI1R",
2313       .cp = 15, .opc1 = 1, .crm = 12,
2314       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2315       .access = PL1_W, .accessfn = gicv3_sgi_access,
2316       .writefn = icc_asgi1r_write,
2317     },
2318     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2319       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2320       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2321       .access = PL1_W, .accessfn = gicv3_sgi_access,
2322       .writefn = icc_sgi0r_write,
2323     },
2324     { .name = "ICC_SGI0R",
2325       .cp = 15, .opc1 = 2, .crm = 12,
2326       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2327       .access = PL1_W, .accessfn = gicv3_sgi_access,
2328       .writefn = icc_sgi0r_write,
2329     },
2330     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2331       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2332       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2333       .access = PL1_R, .accessfn = gicv3_irq_access,
2334       .readfn = icc_iar1_read,
2335     },
2336     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2337       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2338       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2339       .access = PL1_W, .accessfn = gicv3_irq_access,
2340       .writefn = icc_eoir_write,
2341     },
2342     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2343       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2344       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2345       .access = PL1_R, .accessfn = gicv3_irq_access,
2346       .readfn = icc_hppir1_read,
2347     },
2348     /* This register is banked */
2349     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2350       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2351       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2352       .access = PL1_RW, .accessfn = gicv3_irq_access,
2353       .readfn = icc_bpr_read,
2354       .writefn = icc_bpr_write,
2355     },
2356     /* This register is banked */
2357     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2358       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2359       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2360       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2361       .readfn = icc_ctlr_el1_read,
2362       .writefn = icc_ctlr_el1_write,
2363     },
2364     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2365       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2366       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2367       .access = PL1_RW,
2368       /* We don't support IRQ/FIQ bypass and system registers are
2369        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2370        * This register is banked but since it's constant we don't
2371        * need to do anything special.
2372        */
2373       .resetvalue = 0x7,
2374     },
2375     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2376       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2377       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2378       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2379       .readfn = icc_igrpen_read,
2380       .writefn = icc_igrpen_write,
2381     },
2382     /* This register is banked */
2383     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2384       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2385       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2386       .access = PL1_RW, .accessfn = gicv3_irq_access,
2387       .readfn = icc_igrpen_read,
2388       .writefn = icc_igrpen_write,
2389     },
2390     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2391       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2392       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2393       .access = PL2_RW,
2394       /* We don't support IRQ/FIQ bypass and system registers are
2395        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2396        */
2397       .resetvalue = 0xf,
2398     },
2399     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2400       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2401       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2402       .access = PL3_RW,
2403       .readfn = icc_ctlr_el3_read,
2404       .writefn = icc_ctlr_el3_write,
2405     },
2406     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2407       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2408       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2409       .access = PL3_RW,
2410       /* We don't support IRQ/FIQ bypass and system registers are
2411        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2412        */
2413       .resetvalue = 0xf,
2414     },
2415     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2416       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2417       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2418       .access = PL3_RW,
2419       .readfn = icc_igrpen1_el3_read,
2420       .writefn = icc_igrpen1_el3_write,
2421     },
2422 };
2423 
2424 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2425     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2426       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2427       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2428       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2429       .readfn = icc_ap_read,
2430       .writefn = icc_ap_write,
2431     },
2432     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2433       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2434       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2435       .access = PL1_RW, .accessfn = gicv3_irq_access,
2436       .readfn = icc_ap_read,
2437       .writefn = icc_ap_write,
2438     },
2439 };
2440 
2441 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2442     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2443       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2444       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2445       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2446       .readfn = icc_ap_read,
2447       .writefn = icc_ap_write,
2448     },
2449     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2450       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2451       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2452       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2453       .readfn = icc_ap_read,
2454       .writefn = icc_ap_write,
2455     },
2456     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2457       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2458       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2459       .access = PL1_RW, .accessfn = gicv3_irq_access,
2460       .readfn = icc_ap_read,
2461       .writefn = icc_ap_write,
2462     },
2463     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2464       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2465       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2466       .access = PL1_RW, .accessfn = gicv3_irq_access,
2467       .readfn = icc_ap_read,
2468       .writefn = icc_ap_write,
2469     },
2470 };
2471 
2472 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2473 {
2474     GICv3CPUState *cs = icc_cs_from_env(env);
2475     int regno = ri->opc2 & 3;
2476     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2477     uint64_t value;
2478 
2479     value = cs->ich_apr[grp][regno];
2480     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2481     return value;
2482 }
2483 
2484 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2485                          uint64_t value)
2486 {
2487     GICv3CPUState *cs = icc_cs_from_env(env);
2488     int regno = ri->opc2 & 3;
2489     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2490 
2491     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2492 
2493     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2494     gicv3_cpuif_virt_irq_fiq_update(cs);
2495 }
2496 
2497 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2498 {
2499     GICv3CPUState *cs = icc_cs_from_env(env);
2500     uint64_t value = cs->ich_hcr_el2;
2501 
2502     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2503     return value;
2504 }
2505 
2506 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507                           uint64_t value)
2508 {
2509     GICv3CPUState *cs = icc_cs_from_env(env);
2510 
2511     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2512 
2513     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2514         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2515         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2516         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2517         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2518 
2519     cs->ich_hcr_el2 = value;
2520     gicv3_cpuif_virt_update(cs);
2521 }
2522 
2523 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2524 {
2525     GICv3CPUState *cs = icc_cs_from_env(env);
2526     uint64_t value = cs->ich_vmcr_el2;
2527 
2528     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2529     return value;
2530 }
2531 
2532 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2533                          uint64_t value)
2534 {
2535     GICv3CPUState *cs = icc_cs_from_env(env);
2536 
2537     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2538 
2539     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2540         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2541         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2542     value |= ICH_VMCR_EL2_VFIQEN;
2543 
2544     cs->ich_vmcr_el2 = value;
2545     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2546      * by reading and writing back the fields.
2547      */
2548     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2549     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2550 
2551     gicv3_cpuif_virt_update(cs);
2552 }
2553 
2554 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2555 {
2556     GICv3CPUState *cs = icc_cs_from_env(env);
2557     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2558     uint64_t value;
2559 
2560     /* This read function handles all of:
2561      * 64-bit reads of the whole LR
2562      * 32-bit reads of the low half of the LR
2563      * 32-bit reads of the high half of the LR
2564      */
2565     if (ri->state == ARM_CP_STATE_AA32) {
2566         if (ri->crm >= 14) {
2567             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2568             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2569         } else {
2570             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2571             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2572         }
2573     } else {
2574         value = cs->ich_lr_el2[regno];
2575         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2576     }
2577 
2578     return value;
2579 }
2580 
2581 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582                          uint64_t value)
2583 {
2584     GICv3CPUState *cs = icc_cs_from_env(env);
2585     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2586 
2587     /* This write function handles all of:
2588      * 64-bit writes to the whole LR
2589      * 32-bit writes to the low half of the LR
2590      * 32-bit writes to the high half of the LR
2591      */
2592     if (ri->state == ARM_CP_STATE_AA32) {
2593         if (ri->crm >= 14) {
2594             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2595             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2596         } else {
2597             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2598             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2599         }
2600     } else {
2601         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2602     }
2603 
2604     /* Enforce RES0 bits in priority field */
2605     if (cs->vpribits < 8) {
2606         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2607                           8 - cs->vpribits, 0);
2608     }
2609 
2610     cs->ich_lr_el2[regno] = value;
2611     gicv3_cpuif_virt_update(cs);
2612 }
2613 
2614 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2615 {
2616     GICv3CPUState *cs = icc_cs_from_env(env);
2617     uint64_t value;
2618 
2619     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2620         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2621         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2622         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2623         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2624 
2625     if (cs->gic->revision < 4) {
2626         value |= ICH_VTR_EL2_NV4;
2627     }
2628 
2629     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2630     return value;
2631 }
2632 
2633 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2634 {
2635     GICv3CPUState *cs = icc_cs_from_env(env);
2636     uint64_t value = maintenance_interrupt_state(cs);
2637 
2638     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2639     return value;
2640 }
2641 
2642 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2643 {
2644     GICv3CPUState *cs = icc_cs_from_env(env);
2645     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2646 
2647     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2648     return value;
2649 }
2650 
2651 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2652 {
2653     GICv3CPUState *cs = icc_cs_from_env(env);
2654     uint64_t value = 0;
2655     int i;
2656 
2657     for (i = 0; i < cs->num_list_regs; i++) {
2658         uint64_t lr = cs->ich_lr_el2[i];
2659 
2660         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2661             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2662             value |= (1 << i);
2663         }
2664     }
2665 
2666     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2667     return value;
2668 }
2669 
2670 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2671     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2672       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2673       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2674       .access = PL2_RW,
2675       .readfn = ich_ap_read,
2676       .writefn = ich_ap_write,
2677     },
2678     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2679       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2680       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2681       .access = PL2_RW,
2682       .readfn = ich_ap_read,
2683       .writefn = ich_ap_write,
2684     },
2685     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2686       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2687       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2688       .access = PL2_RW,
2689       .readfn = ich_hcr_read,
2690       .writefn = ich_hcr_write,
2691     },
2692     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2693       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2694       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2695       .access = PL2_R,
2696       .readfn = ich_vtr_read,
2697     },
2698     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2699       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2700       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2701       .access = PL2_R,
2702       .readfn = ich_misr_read,
2703     },
2704     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2705       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2706       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2707       .access = PL2_R,
2708       .readfn = ich_eisr_read,
2709     },
2710     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2711       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2712       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2713       .access = PL2_R,
2714       .readfn = ich_elrsr_read,
2715     },
2716     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2717       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2718       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2719       .access = PL2_RW,
2720       .readfn = ich_vmcr_read,
2721       .writefn = ich_vmcr_write,
2722     },
2723 };
2724 
2725 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2726     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2727       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2728       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2729       .access = PL2_RW,
2730       .readfn = ich_ap_read,
2731       .writefn = ich_ap_write,
2732     },
2733     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2734       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2735       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2736       .access = PL2_RW,
2737       .readfn = ich_ap_read,
2738       .writefn = ich_ap_write,
2739     },
2740 };
2741 
2742 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2743     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2744       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2745       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2746       .access = PL2_RW,
2747       .readfn = ich_ap_read,
2748       .writefn = ich_ap_write,
2749     },
2750     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2751       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2752       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2753       .access = PL2_RW,
2754       .readfn = ich_ap_read,
2755       .writefn = ich_ap_write,
2756     },
2757     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2758       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2759       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2760       .access = PL2_RW,
2761       .readfn = ich_ap_read,
2762       .writefn = ich_ap_write,
2763     },
2764     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2765       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2766       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2767       .access = PL2_RW,
2768       .readfn = ich_ap_read,
2769       .writefn = ich_ap_write,
2770     },
2771 };
2772 
2773 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2774 {
2775     GICv3CPUState *cs = opaque;
2776 
2777     gicv3_cpuif_update(cs);
2778     /*
2779      * Because vLPIs are only pending in NonSecure state,
2780      * an EL change can change the VIRQ/VFIQ status (but
2781      * cannot affect the maintenance interrupt state)
2782      */
2783     gicv3_cpuif_virt_irq_fiq_update(cs);
2784 }
2785 
2786 void gicv3_init_cpuif(GICv3State *s)
2787 {
2788     /* Called from the GICv3 realize function; register our system
2789      * registers with the CPU
2790      */
2791     int i;
2792 
2793     for (i = 0; i < s->num_cpu; i++) {
2794         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2795         GICv3CPUState *cs = &s->cpu[i];
2796 
2797         /*
2798          * If the CPU doesn't define a GICv3 configuration, probably because
2799          * in real hardware it doesn't have one, then we use default values
2800          * matching the one used by most Arm CPUs. This applies to:
2801          *  cpu->gic_num_lrs
2802          *  cpu->gic_vpribits
2803          *  cpu->gic_vprebits
2804          *  cpu->gic_pribits
2805          */
2806 
2807         /* Note that we can't just use the GICv3CPUState as an opaque pointer
2808          * in define_arm_cp_regs_with_opaque(), because when we're called back
2809          * it might be with code translated by CPU 0 but run by CPU 1, in
2810          * which case we'd get the wrong value.
2811          * So instead we define the regs with no ri->opaque info, and
2812          * get back to the GICv3CPUState from the CPUARMState.
2813          */
2814         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2815 
2816         /*
2817          * The CPU implementation specifies the number of supported
2818          * bits of physical priority. For backwards compatibility
2819          * of migration, we have a compat property that forces use
2820          * of 8 priority bits regardless of what the CPU really has.
2821          */
2822         if (s->force_8bit_prio) {
2823             cs->pribits = 8;
2824         } else {
2825             cs->pribits = cpu->gic_pribits ?: 5;
2826         }
2827 
2828         /*
2829          * The GICv3 has separate ID register fields for virtual priority
2830          * and preemption bit values, but only a single ID register field
2831          * for the physical priority bits. The preemption bit count is
2832          * always the same as the priority bit count, except that 8 bits
2833          * of priority means 7 preemption bits. We precalculate the
2834          * preemption bits because it simplifies the code and makes the
2835          * parallels between the virtual and physical bits of the GIC
2836          * a bit clearer.
2837          */
2838         cs->prebits = cs->pribits;
2839         if (cs->prebits == 8) {
2840             cs->prebits--;
2841         }
2842         /*
2843          * Check that CPU code defining pribits didn't violate
2844          * architectural constraints our implementation relies on.
2845          */
2846         g_assert(cs->pribits >= 4 && cs->pribits <= 8);
2847 
2848         /*
2849          * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
2850          * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
2851          */
2852         if (cs->prebits >= 6) {
2853             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
2854         }
2855         if (cs->prebits == 7) {
2856             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
2857         }
2858 
2859         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
2860             int j;
2861 
2862             cs->num_list_regs = cpu->gic_num_lrs ?: 4;
2863             cs->vpribits = cpu->gic_vpribits ?: 5;
2864             cs->vprebits = cpu->gic_vprebits ?: 5;
2865 
2866             /* Check against architectural constraints: getting these
2867              * wrong would be a bug in the CPU code defining these,
2868              * and the implementation relies on them holding.
2869              */
2870             g_assert(cs->vprebits <= cs->vpribits);
2871             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2872             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2873 
2874             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2875 
2876             for (j = 0; j < cs->num_list_regs; j++) {
2877                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2878                  * are split into two cp15 regs, LR (the low part, with the
2879                  * same encoding as the AArch64 LR) and LRC (the high part).
2880                  */
2881                 ARMCPRegInfo lr_regset[] = {
2882                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2883                       .opc0 = 3, .opc1 = 4, .crn = 12,
2884                       .crm = 12 + (j >> 3), .opc2 = j & 7,
2885                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2886                       .access = PL2_RW,
2887                       .readfn = ich_lr_read,
2888                       .writefn = ich_lr_write,
2889                     },
2890                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2891                       .cp = 15, .opc1 = 4, .crn = 12,
2892                       .crm = 14 + (j >> 3), .opc2 = j & 7,
2893                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2894                       .access = PL2_RW,
2895                       .readfn = ich_lr_read,
2896                       .writefn = ich_lr_write,
2897                     },
2898                 };
2899                 define_arm_cp_regs(cpu, lr_regset);
2900             }
2901             if (cs->vprebits >= 6) {
2902                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2903             }
2904             if (cs->vprebits == 7) {
2905                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2906             }
2907         }
2908         arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2909     }
2910 }
2911