xref: /qemu/hw/intc/arm_gicv3_kvm.c (revision e3a6e0da)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
34 #include "qom/object.h"
35 
36 #ifdef DEBUG_GICV3_KVM
37 #define DPRINTF(fmt, ...) \
38     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41     do { } while (0)
42 #endif
43 
44 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
45 typedef struct KVMARMGICv3Class KVMARMGICv3Class;
46 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
47 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
48                      KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
49 
50 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
51                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 
57 #define ICC_PMR_EL1     \
58     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1    \
60     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1    \
66     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1    \
68     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 
76 struct KVMARMGICv3Class {
77     ARMGICv3CommonClass parent_class;
78     DeviceRealize parent_realize;
79     void (*parent_reset)(DeviceState *dev);
80 };
81 
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84     GICv3State *s = (GICv3State *)opaque;
85 
86     kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88 
89 #define KVM_VGIC_ATTR(reg, typer) \
90     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93                                    uint32_t *val, bool write)
94 {
95     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96                       KVM_VGIC_ATTR(offset, 0),
97                       val, write, &error_abort);
98 }
99 
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101                                    uint32_t *val, bool write)
102 {
103     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105                       val, write, &error_abort);
106 }
107 
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109                                    uint64_t *val, bool write)
110 {
111     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113                       val, write, &error_abort);
114 }
115 
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117                                              uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
122                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123                       val, write, &error_abort);
124 }
125 
126 /* Loop through each distributor IRQ related register; since bits
127  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128  * is enabled, we skip those.
129  */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135     uint32_t reg, *field;
136     int irq;
137 
138     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
139      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
140      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
141      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
142      * offset.
143      */
144     field = (uint32_t *)(bmp + GIC_INTERNAL);
145     offset += (GIC_INTERNAL * 8) / 8;
146     for_each_dist_irq_reg(irq, s->num_irq, 8) {
147         kvm_gicd_access(s, offset, &reg, false);
148         *field = reg;
149         offset += 4;
150         field++;
151     }
152 }
153 
154 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
155 {
156     uint32_t reg, *field;
157     int irq;
158 
159     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
160      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
161      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
162      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
163      * offset.
164      */
165     field = (uint32_t *)(bmp + GIC_INTERNAL);
166     offset += (GIC_INTERNAL * 8) / 8;
167     for_each_dist_irq_reg(irq, s->num_irq, 8) {
168         reg = *field;
169         kvm_gicd_access(s, offset, &reg, true);
170         offset += 4;
171         field++;
172     }
173 }
174 
175 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
176                                       uint32_t *bmp)
177 {
178     uint32_t reg;
179     int irq;
180 
181     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
182      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
183      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
184      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
185      * This matches the for_each_dist_irq_reg() macro which also skips the
186      * first GIC_INTERNAL irqs.
187      */
188     offset += (GIC_INTERNAL * 2) / 8;
189     for_each_dist_irq_reg(irq, s->num_irq, 2) {
190         kvm_gicd_access(s, offset, &reg, false);
191         reg = half_unshuffle32(reg >> 1);
192         if (irq % 32 != 0) {
193             reg = (reg << 16);
194         }
195         *gic_bmp_ptr32(bmp, irq) |=  reg;
196         offset += 4;
197     }
198 }
199 
200 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
201                                       uint32_t *bmp)
202 {
203     uint32_t reg;
204     int irq;
205 
206     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
207      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
208      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
209      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
210      * This matches the for_each_dist_irq_reg() macro which also skips the
211      * first GIC_INTERNAL irqs.
212      */
213     offset += (GIC_INTERNAL * 2) / 8;
214     for_each_dist_irq_reg(irq, s->num_irq, 2) {
215         reg = *gic_bmp_ptr32(bmp, irq);
216         if (irq % 32 != 0) {
217             reg = (reg & 0xffff0000) >> 16;
218         } else {
219             reg = reg & 0xffff;
220         }
221         reg = half_shuffle32(reg) << 1;
222         kvm_gicd_access(s, offset, &reg, true);
223         offset += 4;
224     }
225 }
226 
227 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
228 {
229     uint32_t reg;
230     int irq;
231 
232     for_each_dist_irq_reg(irq, s->num_irq, 1) {
233         kvm_gic_line_level_access(s, irq, 0, &reg, false);
234         *gic_bmp_ptr32(bmp, irq) = reg;
235     }
236 }
237 
238 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
239 {
240     uint32_t reg;
241     int irq;
242 
243     for_each_dist_irq_reg(irq, s->num_irq, 1) {
244         reg = *gic_bmp_ptr32(bmp, irq);
245         kvm_gic_line_level_access(s, irq, 0, &reg, true);
246     }
247 }
248 
249 /* Read a bitmap register group from the kernel VGIC. */
250 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
251 {
252     uint32_t reg;
253     int irq;
254 
255     /* For the KVM GICv3, affinity routing is always enabled, and the
256      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
257      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
258      * functionality is replaced by the GICR registers. It doesn't need to sync
259      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
260      * This matches the for_each_dist_irq_reg() macro which also skips the
261      * first GIC_INTERNAL irqs.
262      */
263     offset += (GIC_INTERNAL * 1) / 8;
264     for_each_dist_irq_reg(irq, s->num_irq, 1) {
265         kvm_gicd_access(s, offset, &reg, false);
266         *gic_bmp_ptr32(bmp, irq) = reg;
267         offset += 4;
268     }
269 }
270 
271 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
272                             uint32_t clroffset, uint32_t *bmp)
273 {
274     uint32_t reg;
275     int irq;
276 
277     /* For the KVM GICv3, affinity routing is always enabled, and the
278      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
279      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
280      * functionality is replaced by the GICR registers. It doesn't need to sync
281      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
282      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
283      * first GIC_INTERNAL irqs.
284      */
285     offset += (GIC_INTERNAL * 1) / 8;
286     if (clroffset != 0) {
287         clroffset += (GIC_INTERNAL * 1) / 8;
288     }
289 
290     for_each_dist_irq_reg(irq, s->num_irq, 1) {
291         /* If this bitmap is a set/clear register pair, first write to the
292          * clear-reg to clear all bits before using the set-reg to write
293          * the 1 bits.
294          */
295         if (clroffset != 0) {
296             reg = 0;
297             kvm_gicd_access(s, clroffset, &reg, true);
298             clroffset += 4;
299         }
300         reg = *gic_bmp_ptr32(bmp, irq);
301         kvm_gicd_access(s, offset, &reg, true);
302         offset += 4;
303     }
304 }
305 
306 static void kvm_arm_gicv3_check(GICv3State *s)
307 {
308     uint32_t reg;
309     uint32_t num_irq;
310 
311     /* Sanity checking s->num_irq */
312     kvm_gicd_access(s, GICD_TYPER, &reg, false);
313     num_irq = ((reg & 0x1f) + 1) * 32;
314 
315     if (num_irq < s->num_irq) {
316         error_report("Model requests %u IRQs, but kernel supports max %u",
317                      s->num_irq, num_irq);
318         abort();
319     }
320 }
321 
322 static void kvm_arm_gicv3_put(GICv3State *s)
323 {
324     uint32_t regl, regh, reg;
325     uint64_t reg64, redist_typer;
326     int ncpu, i;
327 
328     kvm_arm_gicv3_check(s);
329 
330     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
331     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
332     redist_typer = ((uint64_t)regh << 32) | regl;
333 
334     reg = s->gicd_ctlr;
335     kvm_gicd_access(s, GICD_CTLR, &reg, true);
336 
337     if (redist_typer & GICR_TYPER_PLPIS) {
338         /*
339          * Restore base addresses before LPIs are potentially enabled by
340          * GICR_CTLR write
341          */
342         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
343             GICv3CPUState *c = &s->cpu[ncpu];
344 
345             reg64 = c->gicr_propbaser;
346             regl = (uint32_t)reg64;
347             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
348             regh = (uint32_t)(reg64 >> 32);
349             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
350 
351             reg64 = c->gicr_pendbaser;
352             regl = (uint32_t)reg64;
353             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
354             regh = (uint32_t)(reg64 >> 32);
355             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
356         }
357     }
358 
359     /* Redistributor state (one per CPU) */
360 
361     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
362         GICv3CPUState *c = &s->cpu[ncpu];
363 
364         reg = c->gicr_ctlr;
365         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
366 
367         reg = c->gicr_statusr[GICV3_NS];
368         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
369 
370         reg = c->gicr_waker;
371         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
372 
373         reg = c->gicr_igroupr0;
374         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
375 
376         reg = ~0;
377         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
378         reg = c->gicr_ienabler0;
379         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
380 
381         /* Restore config before pending so we treat level/edge correctly */
382         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
383         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
384 
385         reg = c->level;
386         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
387 
388         reg = ~0;
389         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
390         reg = c->gicr_ipendr0;
391         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
392 
393         reg = ~0;
394         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
395         reg = c->gicr_iactiver0;
396         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
397 
398         for (i = 0; i < GIC_INTERNAL; i += 4) {
399             reg = c->gicr_ipriorityr[i] |
400                 (c->gicr_ipriorityr[i + 1] << 8) |
401                 (c->gicr_ipriorityr[i + 2] << 16) |
402                 (c->gicr_ipriorityr[i + 3] << 24);
403             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
404         }
405     }
406 
407     /* Distributor state (shared between all CPUs */
408     reg = s->gicd_statusr[GICV3_NS];
409     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
410 
411     /* s->enable bitmap -> GICD_ISENABLERn */
412     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
413 
414     /* s->group bitmap -> GICD_IGROUPRn */
415     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
416 
417     /* Restore targets before pending to ensure the pending state is set on
418      * the appropriate CPU interfaces in the kernel
419      */
420 
421     /* s->gicd_irouter[irq] -> GICD_IROUTERn
422      * We can't use kvm_dist_put() here because the registers are 64-bit
423      */
424     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
425         uint32_t offset;
426 
427         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
428         reg = (uint32_t)s->gicd_irouter[i];
429         kvm_gicd_access(s, offset, &reg, true);
430 
431         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
432         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
433         kvm_gicd_access(s, offset, &reg, true);
434     }
435 
436     /* s->trigger bitmap -> GICD_ICFGRn
437      * (restore configuration registers before pending IRQs so we treat
438      * level/edge correctly)
439      */
440     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
441 
442     /* s->level bitmap ->  line_level */
443     kvm_gic_put_line_level_bmp(s, s->level);
444 
445     /* s->pending bitmap -> GICD_ISPENDRn */
446     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
447 
448     /* s->active bitmap -> GICD_ISACTIVERn */
449     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
450 
451     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
452     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
453 
454     /* CPU Interface state (one per CPU) */
455 
456     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
457         GICv3CPUState *c = &s->cpu[ncpu];
458         int num_pri_bits;
459 
460         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
461         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
462                         &c->icc_ctlr_el1[GICV3_NS], true);
463         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
464                         &c->icc_igrpen[GICV3_G0], true);
465         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
466                         &c->icc_igrpen[GICV3_G1NS], true);
467         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
468         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
469         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
470 
471         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
472                         ICC_CTLR_EL1_PRIBITS_MASK) >>
473                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
474 
475         switch (num_pri_bits) {
476         case 7:
477             reg64 = c->icc_apr[GICV3_G0][3];
478             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
479             reg64 = c->icc_apr[GICV3_G0][2];
480             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
481         case 6:
482             reg64 = c->icc_apr[GICV3_G0][1];
483             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
484         default:
485             reg64 = c->icc_apr[GICV3_G0][0];
486             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
487         }
488 
489         switch (num_pri_bits) {
490         case 7:
491             reg64 = c->icc_apr[GICV3_G1NS][3];
492             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
493             reg64 = c->icc_apr[GICV3_G1NS][2];
494             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
495         case 6:
496             reg64 = c->icc_apr[GICV3_G1NS][1];
497             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
498         default:
499             reg64 = c->icc_apr[GICV3_G1NS][0];
500             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
501         }
502     }
503 }
504 
505 static void kvm_arm_gicv3_get(GICv3State *s)
506 {
507     uint32_t regl, regh, reg;
508     uint64_t reg64, redist_typer;
509     int ncpu, i;
510 
511     kvm_arm_gicv3_check(s);
512 
513     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
514     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
515     redist_typer = ((uint64_t)regh << 32) | regl;
516 
517     kvm_gicd_access(s, GICD_CTLR, &reg, false);
518     s->gicd_ctlr = reg;
519 
520     /* Redistributor state (one per CPU) */
521 
522     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
523         GICv3CPUState *c = &s->cpu[ncpu];
524 
525         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
526         c->gicr_ctlr = reg;
527 
528         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
529         c->gicr_statusr[GICV3_NS] = reg;
530 
531         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
532         c->gicr_waker = reg;
533 
534         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
535         c->gicr_igroupr0 = reg;
536         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
537         c->gicr_ienabler0 = reg;
538         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
539         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
540         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
541         c->level = reg;
542         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
543         c->gicr_ipendr0 = reg;
544         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
545         c->gicr_iactiver0 = reg;
546 
547         for (i = 0; i < GIC_INTERNAL; i += 4) {
548             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
549             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
550             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
551             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
552             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
553         }
554     }
555 
556     if (redist_typer & GICR_TYPER_PLPIS) {
557         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
558             GICv3CPUState *c = &s->cpu[ncpu];
559 
560             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
561             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
562             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
563 
564             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
565             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
566             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
567         }
568     }
569 
570     /* Distributor state (shared between all CPUs */
571 
572     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
573     s->gicd_statusr[GICV3_NS] = reg;
574 
575     /* GICD_IGROUPRn -> s->group bitmap */
576     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
577 
578     /* GICD_ISENABLERn -> s->enabled bitmap */
579     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
580 
581     /* Line level of irq */
582     kvm_gic_get_line_level_bmp(s, s->level);
583     /* GICD_ISPENDRn -> s->pending bitmap */
584     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
585 
586     /* GICD_ISACTIVERn -> s->active bitmap */
587     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
588 
589     /* GICD_ICFGRn -> s->trigger bitmap */
590     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
591 
592     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
593     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
594 
595     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
596     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
597         uint32_t offset;
598 
599         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
600         kvm_gicd_access(s, offset, &regl, false);
601         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
602         kvm_gicd_access(s, offset, &regh, false);
603         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
604     }
605 
606     /*****************************************************************
607      * CPU Interface(s) State
608      */
609 
610     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
611         GICv3CPUState *c = &s->cpu[ncpu];
612         int num_pri_bits;
613 
614         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
615         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
616                         &c->icc_ctlr_el1[GICV3_NS], false);
617         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
618                         &c->icc_igrpen[GICV3_G0], false);
619         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
620                         &c->icc_igrpen[GICV3_G1NS], false);
621         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
622         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
623         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
624         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
625                         ICC_CTLR_EL1_PRIBITS_MASK) >>
626                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
627 
628         switch (num_pri_bits) {
629         case 7:
630             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
631             c->icc_apr[GICV3_G0][3] = reg64;
632             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
633             c->icc_apr[GICV3_G0][2] = reg64;
634         case 6:
635             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
636             c->icc_apr[GICV3_G0][1] = reg64;
637         default:
638             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
639             c->icc_apr[GICV3_G0][0] = reg64;
640         }
641 
642         switch (num_pri_bits) {
643         case 7:
644             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
645             c->icc_apr[GICV3_G1NS][3] = reg64;
646             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
647             c->icc_apr[GICV3_G1NS][2] = reg64;
648         case 6:
649             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
650             c->icc_apr[GICV3_G1NS][1] = reg64;
651         default:
652             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
653             c->icc_apr[GICV3_G1NS][0] = reg64;
654         }
655     }
656 }
657 
658 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
659 {
660     GICv3State *s;
661     GICv3CPUState *c;
662 
663     c = (GICv3CPUState *)env->gicv3state;
664     s = c->gic;
665 
666     c->icc_pmr_el1 = 0;
667     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
668     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
669     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
670 
671     c->icc_sre_el1 = 0x7;
672     memset(c->icc_apr, 0, sizeof(c->icc_apr));
673     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
674 
675     if (s->migration_blocker) {
676         return;
677     }
678 
679     /* Initialize to actual HW supported configuration */
680     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
681                       KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
682                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
683 
684     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
685 }
686 
687 static void kvm_arm_gicv3_reset(DeviceState *dev)
688 {
689     GICv3State *s = ARM_GICV3_COMMON(dev);
690     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
691 
692     DPRINTF("Reset\n");
693 
694     kgc->parent_reset(dev);
695 
696     if (s->migration_blocker) {
697         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
698         return;
699     }
700 
701     kvm_arm_gicv3_put(s);
702 }
703 
704 /*
705  * CPU interface registers of GIC needs to be reset on CPU reset.
706  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
707  * below ARMCPRegInfo. As we reset the whole cpu interface under single
708  * register reset, we define only one register of CPU interface instead
709  * of defining all the registers.
710  */
711 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
712     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
713       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
714       /*
715        * If ARM_CP_NOP is used, resetfn is not called,
716        * So ARM_CP_NO_RAW is appropriate type.
717        */
718       .type = ARM_CP_NO_RAW,
719       .access = PL1_RW,
720       .readfn = arm_cp_read_zero,
721       .writefn = arm_cp_write_ignore,
722       /*
723        * We hang the whole cpu interface reset routine off here
724        * rather than parcelling it out into one little function
725        * per register
726        */
727       .resetfn = arm_gicv3_icc_reset,
728     },
729     REGINFO_SENTINEL
730 };
731 
732 /**
733  * vm_change_state_handler - VM change state callback aiming at flushing
734  * RDIST pending tables into guest RAM
735  *
736  * The tables get flushed to guest RAM whenever the VM gets stopped.
737  */
738 static void vm_change_state_handler(void *opaque, int running,
739                                     RunState state)
740 {
741     GICv3State *s = (GICv3State *)opaque;
742     Error *err = NULL;
743     int ret;
744 
745     if (running) {
746         return;
747     }
748 
749     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
750                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
751                            NULL, true, &err);
752     if (err) {
753         error_report_err(err);
754     }
755     if (ret < 0 && ret != -EFAULT) {
756         abort();
757     }
758 }
759 
760 
761 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
762 {
763     GICv3State *s = KVM_ARM_GICV3(dev);
764     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
765     bool multiple_redist_region_allowed;
766     Error *local_err = NULL;
767     int i;
768 
769     DPRINTF("kvm_arm_gicv3_realize\n");
770 
771     kgc->parent_realize(dev, &local_err);
772     if (local_err) {
773         error_propagate(errp, local_err);
774         return;
775     }
776 
777     if (s->security_extn) {
778         error_setg(errp, "the in-kernel VGICv3 does not implement the "
779                    "security extensions");
780         return;
781     }
782 
783     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
784     if (local_err) {
785         error_propagate(errp, local_err);
786         return;
787     }
788 
789     for (i = 0; i < s->num_cpu; i++) {
790         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
791 
792         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
793     }
794 
795     /* Try to create the device via the device control API */
796     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
797     if (s->dev_fd < 0) {
798         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
799         return;
800     }
801 
802     multiple_redist_region_allowed =
803         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
804                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
805 
806     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
807         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
808                    "supported by this host kernel");
809         error_append_hint(errp, "A maximum of %d VCPUs can be used",
810                           s->redist_region_count[0]);
811         return;
812     }
813 
814     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
815                       0, &s->num_irq, true, &error_abort);
816 
817     /* Tell the kernel to complete VGIC initialization now */
818     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
819                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
820 
821     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
822                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
823 
824     if (!multiple_redist_region_allowed) {
825         kvm_arm_register_device(&s->iomem_redist[0], -1,
826                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
827                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
828     } else {
829         /* we register regions in reverse order as "devices" are inserted at
830          * the head of a QSLIST and the list is then popped from the head
831          * onwards by kvm_arm_machine_init_done()
832          */
833         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
834             /* Address mask made of the rdist region index and count */
835             uint64_t addr_ormask =
836                         i | ((uint64_t)s->redist_region_count[i] << 52);
837 
838             kvm_arm_register_device(&s->iomem_redist[i], -1,
839                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
840                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
841                                     s->dev_fd, addr_ormask);
842         }
843     }
844 
845     if (kvm_has_gsi_routing()) {
846         /* set up irq routing */
847         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
848             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
849         }
850 
851         kvm_gsi_routing_allowed = true;
852 
853         kvm_irqchip_commit_routes(kvm_state);
854     }
855 
856     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
857                                GICD_CTLR)) {
858         error_setg(&s->migration_blocker, "This operating system kernel does "
859                                           "not support vGICv3 migration");
860         if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
861             error_free(s->migration_blocker);
862             return;
863         }
864     }
865     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
866                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
867         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
868     }
869 }
870 
871 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
872 {
873     DeviceClass *dc = DEVICE_CLASS(klass);
874     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
875     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
876 
877     agcc->pre_save = kvm_arm_gicv3_get;
878     agcc->post_load = kvm_arm_gicv3_put;
879     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
880                                     &kgc->parent_realize);
881     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
882 }
883 
884 static const TypeInfo kvm_arm_gicv3_info = {
885     .name = TYPE_KVM_ARM_GICV3,
886     .parent = TYPE_ARM_GICV3_COMMON,
887     .instance_size = sizeof(GICv3State),
888     .class_init = kvm_arm_gicv3_class_init,
889     .class_size = sizeof(KVMARMGICv3Class),
890 };
891 
892 static void kvm_arm_gicv3_register_types(void)
893 {
894     type_register_static(&kvm_arm_gicv3_info);
895 }
896 
897 type_init(kvm_arm_gicv3_register_types)
898