xref: /qemu/hw/intc/arm_gicv3_redist.c (revision f9734d5d)
1 /*
2  * ARM GICv3 emulation: Redistributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
18 {
19     /* Return a 32-bit mask which should be applied for this set of 32
20      * interrupts; each bit is 1 if access is permitted by the
21      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22      * not affect config register accesses, unlike GICD_NSACR.)
23      */
24     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26         return cs->gicr_igroupr0;
27     }
28     return 0xFFFFFFFFU;
29 }
30 
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
32 {
33     /* Return the 2 bit NSACR.NS_access field for this SGI */
34     assert(irq < 16);
35     return extract32(cs->gicr_nsacr, irq * 2, 2);
36 }
37 
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39                                       uint32_t *reg, uint32_t val)
40 {
41     /* Helper routine to implement writing to a "set-bitmap" register */
42     val &= mask_group(cs, attrs);
43     *reg |= val;
44     gicv3_redist_update(cs);
45 }
46 
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48                                         uint32_t *reg, uint32_t val)
49 {
50     /* Helper routine to implement writing to a "clear-bitmap" register */
51     val &= mask_group(cs, attrs);
52     *reg &= ~val;
53     gicv3_redist_update(cs);
54 }
55 
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57                                      uint32_t reg)
58 {
59     reg &= mask_group(cs, attrs);
60     return reg;
61 }
62 
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64                                     int irq)
65 {
66     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67      * honouring security state (these are RAZ/WI for Group 0 or Secure
68      * Group 1 interrupts).
69      */
70     uint32_t prio;
71 
72     prio = cs->gicr_ipriorityr[irq];
73 
74     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75         if (!(cs->gicr_igroupr0 & (1U << irq))) {
76             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77             return 0;
78         }
79         /* NS view of the interrupt priority */
80         prio = (prio << 1) & 0xff;
81     }
82     return prio;
83 }
84 
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86                                   uint8_t value)
87 {
88     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89      * honouring security state (these are RAZ/WI for Group 0 or Secure
90      * Group 1 interrupts).
91      */
92     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93         if (!(cs->gicr_igroupr0 & (1U << irq))) {
94             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95             return;
96         }
97         /* NS view of the interrupt priority */
98         value = 0x80 | (value >> 1);
99     }
100     cs->gicr_ipriorityr[irq] = value;
101 }
102 
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104                               uint64_t *data, MemTxAttrs attrs)
105 {
106     switch (offset) {
107     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109         return MEMTX_OK;
110     default:
111         return MEMTX_ERROR;
112     }
113 }
114 
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116                                uint64_t value, MemTxAttrs attrs)
117 {
118     switch (offset) {
119     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121         gicv3_redist_update(cs);
122         return MEMTX_OK;
123     default:
124         return MEMTX_ERROR;
125     }
126 }
127 
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129                               uint64_t *data, MemTxAttrs attrs)
130 {
131     switch (offset) {
132     case GICR_CTLR:
133         *data = cs->gicr_ctlr;
134         return MEMTX_OK;
135     case GICR_IIDR:
136         *data = gicv3_iidr();
137         return MEMTX_OK;
138     case GICR_TYPER:
139         *data = extract64(cs->gicr_typer, 0, 32);
140         return MEMTX_OK;
141     case GICR_TYPER + 4:
142         *data = extract64(cs->gicr_typer, 32, 32);
143         return MEMTX_OK;
144     case GICR_STATUSR:
145         /* RAZ/WI for us (this is an optional register and our implementation
146          * does not track RO/WO/reserved violations to report them to the guest)
147          */
148         *data = 0;
149         return MEMTX_OK;
150     case GICR_WAKER:
151         *data = cs->gicr_waker;
152         return MEMTX_OK;
153     case GICR_PROPBASER:
154         *data = extract64(cs->gicr_propbaser, 0, 32);
155         return MEMTX_OK;
156     case GICR_PROPBASER + 4:
157         *data = extract64(cs->gicr_propbaser, 32, 32);
158         return MEMTX_OK;
159     case GICR_PENDBASER:
160         *data = extract64(cs->gicr_pendbaser, 0, 32);
161         return MEMTX_OK;
162     case GICR_PENDBASER + 4:
163         *data = extract64(cs->gicr_pendbaser, 32, 32);
164         return MEMTX_OK;
165     case GICR_IGROUPR0:
166         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167             *data = 0;
168             return MEMTX_OK;
169         }
170         *data = cs->gicr_igroupr0;
171         return MEMTX_OK;
172     case GICR_ISENABLER0:
173     case GICR_ICENABLER0:
174         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175         return MEMTX_OK;
176     case GICR_ISPENDR0:
177     case GICR_ICPENDR0:
178     {
179         /* The pending register reads as the logical OR of the pending
180          * latch and the input line level for level-triggered interrupts.
181          */
182         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183         *data = gicr_read_bitmap_reg(cs, attrs, val);
184         return MEMTX_OK;
185     }
186     case GICR_ISACTIVER0:
187     case GICR_ICACTIVER0:
188         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189         return MEMTX_OK;
190     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
191     {
192         int i, irq = offset - GICR_IPRIORITYR;
193         uint32_t value = 0;
194 
195         for (i = irq + 3; i >= irq; i--) {
196             value <<= 8;
197             value |= gicr_read_ipriorityr(cs, attrs, i);
198         }
199         *data = value;
200         return MEMTX_OK;
201     }
202     case GICR_ICFGR0:
203     case GICR_ICFGR1:
204     {
205         /* Our edge_trigger bitmap is one bit per irq; take the correct
206          * half of it, and spread it out into the odd bits.
207          */
208         uint32_t value;
209 
210         value = cs->edge_trigger & mask_group(cs, attrs);
211         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
212         value = half_shuffle32(value) << 1;
213         *data = value;
214         return MEMTX_OK;
215     }
216     case GICR_IGRPMODR0:
217         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
218             /* RAZ/WI if security disabled, or if
219              * security enabled and this is an NS access
220              */
221             *data = 0;
222             return MEMTX_OK;
223         }
224         *data = cs->gicr_igrpmodr0;
225         return MEMTX_OK;
226     case GICR_NSACR:
227         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
228             /* RAZ/WI if security disabled, or if
229              * security enabled and this is an NS access
230              */
231             *data = 0;
232             return MEMTX_OK;
233         }
234         *data = cs->gicr_nsacr;
235         return MEMTX_OK;
236     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
237         *data = gicv3_idreg(offset - GICR_IDREGS);
238         return MEMTX_OK;
239     default:
240         return MEMTX_ERROR;
241     }
242 }
243 
244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
245                                uint64_t value, MemTxAttrs attrs)
246 {
247     switch (offset) {
248     case GICR_CTLR:
249         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
250          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
251          * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
252          * implement LPIs) so Enable_LPIs is RES0. So there are no writable
253          * bits for us.
254          */
255         return MEMTX_OK;
256     case GICR_STATUSR:
257         /* RAZ/WI for our implementation */
258         return MEMTX_OK;
259     case GICR_WAKER:
260         /* Only the ProcessorSleep bit is writeable. When the guest sets
261          * it it requests that we transition the channel between the
262          * redistributor and the cpu interface to quiescent, and that
263          * we set the ChildrenAsleep bit once the inteface has reached the
264          * quiescent state.
265          * Setting the ProcessorSleep to 0 reverses the quiescing, and
266          * ChildrenAsleep is cleared once the transition is complete.
267          * Since our interface is not asynchronous, we complete these
268          * transitions instantaneously, so we set ChildrenAsleep to the
269          * same value as ProcessorSleep here.
270          */
271         value &= GICR_WAKER_ProcessorSleep;
272         if (value & GICR_WAKER_ProcessorSleep) {
273             value |= GICR_WAKER_ChildrenAsleep;
274         }
275         cs->gicr_waker = value;
276         return MEMTX_OK;
277     case GICR_PROPBASER:
278         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
279         return MEMTX_OK;
280     case GICR_PROPBASER + 4:
281         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
282         return MEMTX_OK;
283     case GICR_PENDBASER:
284         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
285         return MEMTX_OK;
286     case GICR_PENDBASER + 4:
287         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
288         return MEMTX_OK;
289     case GICR_IGROUPR0:
290         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
291             return MEMTX_OK;
292         }
293         cs->gicr_igroupr0 = value;
294         gicv3_redist_update(cs);
295         return MEMTX_OK;
296     case GICR_ISENABLER0:
297         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
298         return MEMTX_OK;
299     case GICR_ICENABLER0:
300         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
301         return MEMTX_OK;
302     case GICR_ISPENDR0:
303         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
304         return MEMTX_OK;
305     case GICR_ICPENDR0:
306         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
307         return MEMTX_OK;
308     case GICR_ISACTIVER0:
309         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
310         return MEMTX_OK;
311     case GICR_ICACTIVER0:
312         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
313         return MEMTX_OK;
314     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
315     {
316         int i, irq = offset - GICR_IPRIORITYR;
317 
318         for (i = irq; i < irq + 4; i++, value >>= 8) {
319             gicr_write_ipriorityr(cs, attrs, i, value);
320         }
321         gicv3_redist_update(cs);
322         return MEMTX_OK;
323     }
324     case GICR_ICFGR0:
325         /* Register is all RAZ/WI or RAO/WI bits */
326         return MEMTX_OK;
327     case GICR_ICFGR1:
328     {
329         uint32_t mask;
330 
331         /* Since our edge_trigger bitmap is one bit per irq, our input
332          * 32-bits will compress down into 16 bits which we need
333          * to write into the bitmap.
334          */
335         value = half_unshuffle32(value >> 1) << 16;
336         mask = mask_group(cs, attrs) & 0xffff0000U;
337 
338         cs->edge_trigger &= ~mask;
339         cs->edge_trigger |= (value & mask);
340 
341         gicv3_redist_update(cs);
342         return MEMTX_OK;
343     }
344     case GICR_IGRPMODR0:
345         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
346             /* RAZ/WI if security disabled, or if
347              * security enabled and this is an NS access
348              */
349             return MEMTX_OK;
350         }
351         cs->gicr_igrpmodr0 = value;
352         gicv3_redist_update(cs);
353         return MEMTX_OK;
354     case GICR_NSACR:
355         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
356             /* RAZ/WI if security disabled, or if
357              * security enabled and this is an NS access
358              */
359             return MEMTX_OK;
360         }
361         cs->gicr_nsacr = value;
362         /* no update required as this only affects access permission checks */
363         return MEMTX_OK;
364     case GICR_IIDR:
365     case GICR_TYPER:
366     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
367         /* RO registers, ignore the write */
368         qemu_log_mask(LOG_GUEST_ERROR,
369                       "%s: invalid guest write to RO register at offset "
370                       TARGET_FMT_plx "\n", __func__, offset);
371         return MEMTX_OK;
372     default:
373         return MEMTX_ERROR;
374     }
375 }
376 
377 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
378                                uint64_t *data, MemTxAttrs attrs)
379 {
380     switch (offset) {
381     case GICR_TYPER:
382         *data = cs->gicr_typer;
383         return MEMTX_OK;
384     case GICR_PROPBASER:
385         *data = cs->gicr_propbaser;
386         return MEMTX_OK;
387     case GICR_PENDBASER:
388         *data = cs->gicr_pendbaser;
389         return MEMTX_OK;
390     default:
391         return MEMTX_ERROR;
392     }
393 }
394 
395 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
396                                 uint64_t value, MemTxAttrs attrs)
397 {
398     switch (offset) {
399     case GICR_PROPBASER:
400         cs->gicr_propbaser = value;
401         return MEMTX_OK;
402     case GICR_PENDBASER:
403         cs->gicr_pendbaser = value;
404         return MEMTX_OK;
405     case GICR_TYPER:
406         /* RO register, ignore the write */
407         qemu_log_mask(LOG_GUEST_ERROR,
408                       "%s: invalid guest write to RO register at offset "
409                       TARGET_FMT_plx "\n", __func__, offset);
410         return MEMTX_OK;
411     default:
412         return MEMTX_ERROR;
413     }
414 }
415 
416 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
417                               unsigned size, MemTxAttrs attrs)
418 {
419     GICv3State *s = opaque;
420     GICv3CPUState *cs;
421     MemTxResult r;
422     int cpuidx;
423 
424     assert((offset & (size - 1)) == 0);
425 
426     /* This region covers all the redistributor pages; there are
427      * (for GICv3) two 64K pages per CPU. At the moment they are
428      * all contiguous (ie in this one region), though we might later
429      * want to allow splitting of redistributor pages into several
430      * blocks so we can support more CPUs.
431      */
432     cpuidx = offset / 0x20000;
433     offset %= 0x20000;
434     assert(cpuidx < s->num_cpu);
435 
436     cs = &s->cpu[cpuidx];
437 
438     switch (size) {
439     case 1:
440         r = gicr_readb(cs, offset, data, attrs);
441         break;
442     case 4:
443         r = gicr_readl(cs, offset, data, attrs);
444         break;
445     case 8:
446         r = gicr_readll(cs, offset, data, attrs);
447         break;
448     default:
449         r = MEMTX_ERROR;
450         break;
451     }
452 
453     if (r == MEMTX_ERROR) {
454         qemu_log_mask(LOG_GUEST_ERROR,
455                       "%s: invalid guest read at offset " TARGET_FMT_plx
456                       " size %u\n", __func__, offset, size);
457         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
458                                    size, attrs.secure);
459         /* The spec requires that reserved registers are RAZ/WI;
460          * so use MEMTX_ERROR returns from leaf functions as a way to
461          * trigger the guest-error logging but don't return it to
462          * the caller, or we'll cause a spurious guest data abort.
463          */
464         r = MEMTX_OK;
465         *data = 0;
466     } else {
467         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
468                                 size, attrs.secure);
469     }
470     return r;
471 }
472 
473 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
474                                unsigned size, MemTxAttrs attrs)
475 {
476     GICv3State *s = opaque;
477     GICv3CPUState *cs;
478     MemTxResult r;
479     int cpuidx;
480 
481     assert((offset & (size - 1)) == 0);
482 
483     /* This region covers all the redistributor pages; there are
484      * (for GICv3) two 64K pages per CPU. At the moment they are
485      * all contiguous (ie in this one region), though we might later
486      * want to allow splitting of redistributor pages into several
487      * blocks so we can support more CPUs.
488      */
489     cpuidx = offset / 0x20000;
490     offset %= 0x20000;
491     assert(cpuidx < s->num_cpu);
492 
493     cs = &s->cpu[cpuidx];
494 
495     switch (size) {
496     case 1:
497         r = gicr_writeb(cs, offset, data, attrs);
498         break;
499     case 4:
500         r = gicr_writel(cs, offset, data, attrs);
501         break;
502     case 8:
503         r = gicr_writell(cs, offset, data, attrs);
504         break;
505     default:
506         r = MEMTX_ERROR;
507         break;
508     }
509 
510     if (r == MEMTX_ERROR) {
511         qemu_log_mask(LOG_GUEST_ERROR,
512                       "%s: invalid guest write at offset " TARGET_FMT_plx
513                       " size %u\n", __func__, offset, size);
514         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
515                                     size, attrs.secure);
516         /* The spec requires that reserved registers are RAZ/WI;
517          * so use MEMTX_ERROR returns from leaf functions as a way to
518          * trigger the guest-error logging but don't return it to
519          * the caller, or we'll cause a spurious guest data abort.
520          */
521         r = MEMTX_OK;
522     } else {
523         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
524                                  size, attrs.secure);
525     }
526     return r;
527 }
528 
529 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
530 {
531     /* Update redistributor state for a change in an external PPI input line */
532     if (level == extract32(cs->level, irq, 1)) {
533         return;
534     }
535 
536     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
537 
538     cs->level = deposit32(cs->level, irq, 1, level);
539 
540     if (level) {
541         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
542         if (extract32(cs->edge_trigger, irq, 1)) {
543             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
544         }
545     }
546 
547     gicv3_redist_update(cs);
548 }
549 
550 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
551 {
552     /* Update redistributor state for a generated SGI */
553     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
554 
555     /* If we are asked for a Secure Group 1 SGI and it's actually
556      * configured as Secure Group 0 this is OK (subject to the usual
557      * NSACR checks).
558      */
559     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
560         grp = GICV3_G0;
561     }
562 
563     if (grp != irqgrp) {
564         return;
565     }
566 
567     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
568         /* If security is enabled we must test the NSACR bits */
569         int nsaccess = gicr_ns_access(cs, irq);
570 
571         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
572             (irqgrp == GICV3_G1 && nsaccess < 2)) {
573             return;
574         }
575     }
576 
577     /* OK, we can accept the SGI */
578     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
579     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
580     gicv3_redist_update(cs);
581 }
582