xref: /qemu/hw/intc/riscv_aclint.c (revision 231a90c0)
1 /*
2  * RISC-V ACLINT (Advanced Core Local Interruptor)
3  * URL: https://github.com/riscv/riscv-aclint
4  *
5  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6  * Copyright (c) 2017 SiFive, Inc.
7  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8  *
9  * This provides real-time clock, timer and interprocessor interrupts.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms and conditions of the GNU General Public License,
13  * version 2 or later, as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35 
36 typedef struct riscv_aclint_mtimer_callback {
37     RISCVAclintMTimerState *s;
38     int num;
39 } riscv_aclint_mtimer_callback;
40 
41 static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
42 {
43     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44         timebase_freq, NANOSECONDS_PER_SECOND);
45 }
46 
47 /*
48  * Called when timecmp is written to update the QEMU timer or immediately
49  * trigger timer interrupt if mtimecmp <= current timer value.
50  */
51 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
52                                               RISCVCPU *cpu,
53                                               int hartid,
54                                               uint64_t value,
55                                               uint32_t timebase_freq)
56 {
57     uint64_t next;
58     uint64_t diff;
59 
60     uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
61 
62     cpu->env.timecmp = value;
63     if (cpu->env.timecmp <= rtc_r) {
64         /*
65          * If we're setting an MTIMECMP value in the "past",
66          * immediately raise the timer interrupt
67          */
68         qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
69         return;
70     }
71 
72     /* otherwise, set up the future timer interrupt */
73     qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
74     diff = cpu->env.timecmp - rtc_r;
75     /* back to ns (note args switched in muldiv64) */
76     uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
77 
78     /*
79      * check if ns_diff overflowed and check if the addition would potentially
80      * overflow
81      */
82     if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
83         ns_diff > INT64_MAX) {
84         next = INT64_MAX;
85     } else {
86         /*
87          * as it is very unlikely qemu_clock_get_ns will return a value
88          * greater than INT64_MAX, no additional check is needed for an
89          * unsigned integer overflow.
90          */
91         next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
92         /*
93          * if ns_diff is INT64_MAX next may still be outside the range
94          * of a signed integer.
95          */
96         next = MIN(next, INT64_MAX);
97     }
98 
99     timer_mod(cpu->env.timer, next);
100 }
101 
102 /*
103  * Callback used when the timer set using timer_mod expires.
104  * Should raise the timer interrupt line
105  */
106 static void riscv_aclint_mtimer_cb(void *opaque)
107 {
108     riscv_aclint_mtimer_callback *state = opaque;
109 
110     qemu_irq_raise(state->s->timer_irqs[state->num]);
111 }
112 
113 /* CPU read MTIMER register */
114 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
115     unsigned size)
116 {
117     RISCVAclintMTimerState *mtimer = opaque;
118 
119     if (addr >= mtimer->timecmp_base &&
120         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
121         size_t hartid = mtimer->hartid_base +
122                         ((addr - mtimer->timecmp_base) >> 3);
123         CPUState *cpu = qemu_get_cpu(hartid);
124         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
125         if (!env) {
126             qemu_log_mask(LOG_GUEST_ERROR,
127                           "aclint-mtimer: invalid hartid: %zu", hartid);
128         } else if ((addr & 0x7) == 0) {
129             /* timecmp_lo */
130             uint64_t timecmp = env->timecmp;
131             return timecmp & 0xFFFFFFFF;
132         } else if ((addr & 0x7) == 4) {
133             /* timecmp_hi */
134             uint64_t timecmp = env->timecmp;
135             return (timecmp >> 32) & 0xFFFFFFFF;
136         } else {
137             qemu_log_mask(LOG_UNIMP,
138                           "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
139             return 0;
140         }
141     } else if (addr == mtimer->time_base) {
142         /* time_lo */
143         return cpu_riscv_read_rtc(mtimer->timebase_freq) & 0xFFFFFFFF;
144     } else if (addr == mtimer->time_base + 4) {
145         /* time_hi */
146         return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
147     }
148 
149     qemu_log_mask(LOG_UNIMP,
150                   "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
151     return 0;
152 }
153 
154 /* CPU write MTIMER register */
155 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
156     uint64_t value, unsigned size)
157 {
158     RISCVAclintMTimerState *mtimer = opaque;
159 
160     if (addr >= mtimer->timecmp_base &&
161         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
162         size_t hartid = mtimer->hartid_base +
163                         ((addr - mtimer->timecmp_base) >> 3);
164         CPUState *cpu = qemu_get_cpu(hartid);
165         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
166         if (!env) {
167             qemu_log_mask(LOG_GUEST_ERROR,
168                           "aclint-mtimer: invalid hartid: %zu", hartid);
169         } else if ((addr & 0x7) == 0) {
170             /* timecmp_lo */
171             uint64_t timecmp_hi = env->timecmp >> 32;
172             riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
173                 timecmp_hi << 32 | (value & 0xFFFFFFFF),
174                 mtimer->timebase_freq);
175             return;
176         } else if ((addr & 0x7) == 4) {
177             /* timecmp_hi */
178             uint64_t timecmp_lo = env->timecmp;
179             riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
180                 value << 32 | (timecmp_lo & 0xFFFFFFFF),
181                 mtimer->timebase_freq);
182         } else {
183             qemu_log_mask(LOG_UNIMP,
184                           "aclint-mtimer: invalid timecmp write: %08x",
185                           (uint32_t)addr);
186         }
187         return;
188     } else if (addr == mtimer->time_base) {
189         /* time_lo */
190         qemu_log_mask(LOG_UNIMP,
191                       "aclint-mtimer: time_lo write not implemented");
192         return;
193     } else if (addr == mtimer->time_base + 4) {
194         /* time_hi */
195         qemu_log_mask(LOG_UNIMP,
196                       "aclint-mtimer: time_hi write not implemented");
197         return;
198     }
199 
200     qemu_log_mask(LOG_UNIMP,
201                   "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
202 }
203 
204 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
205     .read = riscv_aclint_mtimer_read,
206     .write = riscv_aclint_mtimer_write,
207     .endianness = DEVICE_LITTLE_ENDIAN,
208     .valid = {
209         .min_access_size = 4,
210         .max_access_size = 8
211     },
212     .impl = {
213         .min_access_size = 4,
214         .max_access_size = 8,
215     }
216 };
217 
218 static Property riscv_aclint_mtimer_properties[] = {
219     DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
220         hartid_base, 0),
221     DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
222     DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
223         timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
224     DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
225         time_base, RISCV_ACLINT_DEFAULT_MTIME),
226     DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
227         aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
228     DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
229         timebase_freq, 0),
230     DEFINE_PROP_END_OF_LIST(),
231 };
232 
233 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
234 {
235     RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
236     int i;
237 
238     memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
239                           s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
240     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
241 
242     s->timer_irqs = g_new(qemu_irq, s->num_harts);
243     qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
244 
245     /* Claim timer interrupt bits */
246     for (i = 0; i < s->num_harts; i++) {
247         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
248         if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
249             error_report("MTIP already claimed");
250             exit(1);
251         }
252     }
253 }
254 
255 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
256 {
257     DeviceClass *dc = DEVICE_CLASS(klass);
258     dc->realize = riscv_aclint_mtimer_realize;
259     device_class_set_props(dc, riscv_aclint_mtimer_properties);
260 }
261 
262 static const TypeInfo riscv_aclint_mtimer_info = {
263     .name          = TYPE_RISCV_ACLINT_MTIMER,
264     .parent        = TYPE_SYS_BUS_DEVICE,
265     .instance_size = sizeof(RISCVAclintMTimerState),
266     .class_init    = riscv_aclint_mtimer_class_init,
267 };
268 
269 /*
270  * Create ACLINT MTIMER device.
271  */
272 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
273     uint32_t hartid_base, uint32_t num_harts,
274     uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
275     bool provide_rdtime)
276 {
277     int i;
278     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
279 
280     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
281     assert(!(addr & 0x7));
282     assert(!(timecmp_base & 0x7));
283     assert(!(time_base & 0x7));
284 
285     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
286     qdev_prop_set_uint32(dev, "num-harts", num_harts);
287     qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
288     qdev_prop_set_uint32(dev, "time-base", time_base);
289     qdev_prop_set_uint32(dev, "aperture-size", size);
290     qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
291     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
292     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
293 
294     for (i = 0; i < num_harts; i++) {
295         CPUState *cpu = qemu_get_cpu(hartid_base + i);
296         RISCVCPU *rvcpu = RISCV_CPU(cpu);
297         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
298         riscv_aclint_mtimer_callback *cb =
299             g_new0(riscv_aclint_mtimer_callback, 1);
300 
301         if (!env) {
302             g_free(cb);
303             continue;
304         }
305         if (provide_rdtime) {
306             riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
307         }
308 
309         cb->s = RISCV_ACLINT_MTIMER(dev);
310         cb->num = i;
311         env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
312                                   &riscv_aclint_mtimer_cb, cb);
313         env->timecmp = 0;
314 
315         qdev_connect_gpio_out(dev, i,
316                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
317     }
318 
319     return dev;
320 }
321 
322 /* CPU read [M|S]SWI register */
323 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
324     unsigned size)
325 {
326     RISCVAclintSwiState *swi = opaque;
327 
328     if (addr < (swi->num_harts << 2)) {
329         size_t hartid = swi->hartid_base + (addr >> 2);
330         CPUState *cpu = qemu_get_cpu(hartid);
331         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
332         if (!env) {
333             qemu_log_mask(LOG_GUEST_ERROR,
334                           "aclint-swi: invalid hartid: %zu", hartid);
335         } else if ((addr & 0x3) == 0) {
336             return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
337         }
338     }
339 
340     qemu_log_mask(LOG_UNIMP,
341                   "aclint-swi: invalid read: %08x", (uint32_t)addr);
342     return 0;
343 }
344 
345 /* CPU write [M|S]SWI register */
346 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
347         unsigned size)
348 {
349     RISCVAclintSwiState *swi = opaque;
350 
351     if (addr < (swi->num_harts << 2)) {
352         size_t hartid = swi->hartid_base + (addr >> 2);
353         CPUState *cpu = qemu_get_cpu(hartid);
354         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
355         if (!env) {
356             qemu_log_mask(LOG_GUEST_ERROR,
357                           "aclint-swi: invalid hartid: %zu", hartid);
358         } else if ((addr & 0x3) == 0) {
359             if (value & 0x1) {
360                 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
361             } else {
362                 if (!swi->sswi) {
363                     qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
364                 }
365             }
366             return;
367         }
368     }
369 
370     qemu_log_mask(LOG_UNIMP,
371                   "aclint-swi: invalid write: %08x", (uint32_t)addr);
372 }
373 
374 static const MemoryRegionOps riscv_aclint_swi_ops = {
375     .read = riscv_aclint_swi_read,
376     .write = riscv_aclint_swi_write,
377     .endianness = DEVICE_LITTLE_ENDIAN,
378     .valid = {
379         .min_access_size = 4,
380         .max_access_size = 4
381     }
382 };
383 
384 static Property riscv_aclint_swi_properties[] = {
385     DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
386     DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
387     DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
388     DEFINE_PROP_END_OF_LIST(),
389 };
390 
391 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
392 {
393     RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
394     int i;
395 
396     memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
397                           TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
398     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
399 
400     swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
401     qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
402 
403     /* Claim software interrupt bits */
404     for (i = 0; i < swi->num_harts; i++) {
405         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
406         /* We don't claim mip.SSIP because it is writeable by software */
407         if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
408             error_report("MSIP already claimed");
409             exit(1);
410         }
411     }
412 }
413 
414 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
415 {
416     DeviceClass *dc = DEVICE_CLASS(klass);
417     dc->realize = riscv_aclint_swi_realize;
418     device_class_set_props(dc, riscv_aclint_swi_properties);
419 }
420 
421 static const TypeInfo riscv_aclint_swi_info = {
422     .name          = TYPE_RISCV_ACLINT_SWI,
423     .parent        = TYPE_SYS_BUS_DEVICE,
424     .instance_size = sizeof(RISCVAclintSwiState),
425     .class_init    = riscv_aclint_swi_class_init,
426 };
427 
428 /*
429  * Create ACLINT [M|S]SWI device.
430  */
431 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
432     uint32_t num_harts, bool sswi)
433 {
434     int i;
435     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
436 
437     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
438     assert(!(addr & 0x3));
439 
440     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
441     qdev_prop_set_uint32(dev, "num-harts", num_harts);
442     qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
443     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
444     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
445 
446     for (i = 0; i < num_harts; i++) {
447         CPUState *cpu = qemu_get_cpu(hartid_base + i);
448         RISCVCPU *rvcpu = RISCV_CPU(cpu);
449 
450         qdev_connect_gpio_out(dev, i,
451                               qdev_get_gpio_in(DEVICE(rvcpu),
452                                   (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
453     }
454 
455     return dev;
456 }
457 
458 static void riscv_aclint_register_types(void)
459 {
460     type_register_static(&riscv_aclint_mtimer_info);
461     type_register_static(&riscv_aclint_swi_info);
462 }
463 
464 type_init(riscv_aclint_register_types)
465