xref: /qemu/hw/intc/riscv_aclint.c (revision d42df0ea)
1 /*
2  * RISC-V ACLINT (Advanced Core Local Interruptor)
3  * URL: https://github.com/riscv/riscv-aclint
4  *
5  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6  * Copyright (c) 2017 SiFive, Inc.
7  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8  *
9  * This provides real-time clock, timer and interprocessor interrupts.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms and conditions of the GNU General Public License,
13  * version 2 or later, as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35 
36 typedef struct riscv_aclint_mtimer_callback {
37     RISCVAclintMTimerState *s;
38     int num;
39 } riscv_aclint_mtimer_callback;
40 
41 static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
42 {
43     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44         timebase_freq, NANOSECONDS_PER_SECOND);
45 }
46 
47 /*
48  * Called when timecmp is written to update the QEMU timer or immediately
49  * trigger timer interrupt if mtimecmp <= current timer value.
50  */
51 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
52                                               RISCVCPU *cpu,
53                                               int hartid,
54                                               uint64_t value,
55                                               uint32_t timebase_freq)
56 {
57     uint64_t next;
58     uint64_t diff;
59 
60     uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
61 
62     cpu->env.timecmp = value;
63     if (cpu->env.timecmp <= rtc_r) {
64         /*
65          * If we're setting an MTIMECMP value in the "past",
66          * immediately raise the timer interrupt
67          */
68         qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
69         return;
70     }
71 
72     /* otherwise, set up the future timer interrupt */
73     qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
74     diff = cpu->env.timecmp - rtc_r;
75     /* back to ns (note args switched in muldiv64) */
76     uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
77 
78     /*
79      * check if ns_diff overflowed and check if the addition would potentially
80      * overflow
81      */
82     if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
83         ns_diff > INT64_MAX) {
84         next = INT64_MAX;
85     } else {
86         /*
87          * as it is very unlikely qemu_clock_get_ns will return a value
88          * greater than INT64_MAX, no additional check is needed for an
89          * unsigned integer overflow.
90          */
91         next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
92         /*
93          * if ns_diff is INT64_MAX next may still be outside the range
94          * of a signed integer.
95          */
96         next = MIN(next, INT64_MAX);
97     }
98 
99     timer_mod(cpu->env.timer, next);
100 }
101 
102 /*
103  * Callback used when the timer set using timer_mod expires.
104  * Should raise the timer interrupt line
105  */
106 static void riscv_aclint_mtimer_cb(void *opaque)
107 {
108     riscv_aclint_mtimer_callback *state = opaque;
109 
110     qemu_irq_raise(state->s->timer_irqs[state->num]);
111 }
112 
113 /* CPU read MTIMER register */
114 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
115     unsigned size)
116 {
117     RISCVAclintMTimerState *mtimer = opaque;
118 
119     if (addr >= mtimer->timecmp_base &&
120         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
121         size_t hartid = mtimer->hartid_base +
122                         ((addr - mtimer->timecmp_base) >> 3);
123         CPUState *cpu = qemu_get_cpu(hartid);
124         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
125         if (!env) {
126             qemu_log_mask(LOG_GUEST_ERROR,
127                           "aclint-mtimer: invalid hartid: %zu", hartid);
128         } else if ((addr & 0x7) == 0) {
129             /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
130             uint64_t timecmp = env->timecmp;
131             return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
132         } else if ((addr & 0x7) == 4) {
133             /* timecmp_hi */
134             uint64_t timecmp = env->timecmp;
135             return (timecmp >> 32) & 0xFFFFFFFF;
136         } else {
137             qemu_log_mask(LOG_UNIMP,
138                           "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
139             return 0;
140         }
141     } else if (addr == mtimer->time_base) {
142         /* time_lo for RV32/RV64 or timecmp for RV64 */
143         uint64_t rtc = cpu_riscv_read_rtc(mtimer->timebase_freq);
144         return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
145     } else if (addr == mtimer->time_base + 4) {
146         /* time_hi */
147         return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
148     }
149 
150     qemu_log_mask(LOG_UNIMP,
151                   "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
152     return 0;
153 }
154 
155 /* CPU write MTIMER register */
156 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
157     uint64_t value, unsigned size)
158 {
159     RISCVAclintMTimerState *mtimer = opaque;
160 
161     if (addr >= mtimer->timecmp_base &&
162         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
163         size_t hartid = mtimer->hartid_base +
164                         ((addr - mtimer->timecmp_base) >> 3);
165         CPUState *cpu = qemu_get_cpu(hartid);
166         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
167         if (!env) {
168             qemu_log_mask(LOG_GUEST_ERROR,
169                           "aclint-mtimer: invalid hartid: %zu", hartid);
170         } else if ((addr & 0x7) == 0) {
171             if (size == 4) {
172                 /* timecmp_lo for RV32/RV64 */
173                 uint64_t timecmp_hi = env->timecmp >> 32;
174                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
175                     timecmp_hi << 32 | (value & 0xFFFFFFFF),
176                     mtimer->timebase_freq);
177             } else {
178                 /* timecmp for RV64 */
179                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
180                                                   value, mtimer->timebase_freq);
181             }
182         } else if ((addr & 0x7) == 4) {
183             if (size == 4) {
184                 /* timecmp_hi for RV32/RV64 */
185                 uint64_t timecmp_lo = env->timecmp;
186                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
187                     value << 32 | (timecmp_lo & 0xFFFFFFFF),
188                     mtimer->timebase_freq);
189             } else {
190                 qemu_log_mask(LOG_GUEST_ERROR,
191                               "aclint-mtimer: invalid timecmp_hi write: %08x",
192                               (uint32_t)addr);
193             }
194         } else {
195             qemu_log_mask(LOG_UNIMP,
196                           "aclint-mtimer: invalid timecmp write: %08x",
197                           (uint32_t)addr);
198         }
199         return;
200     } else if (addr == mtimer->time_base) {
201         /* time_lo */
202         qemu_log_mask(LOG_UNIMP,
203                       "aclint-mtimer: time_lo write not implemented");
204         return;
205     } else if (addr == mtimer->time_base + 4) {
206         /* time_hi */
207         qemu_log_mask(LOG_UNIMP,
208                       "aclint-mtimer: time_hi write not implemented");
209         return;
210     }
211 
212     qemu_log_mask(LOG_UNIMP,
213                   "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
214 }
215 
216 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
217     .read = riscv_aclint_mtimer_read,
218     .write = riscv_aclint_mtimer_write,
219     .endianness = DEVICE_LITTLE_ENDIAN,
220     .valid = {
221         .min_access_size = 4,
222         .max_access_size = 8
223     },
224     .impl = {
225         .min_access_size = 4,
226         .max_access_size = 8,
227     }
228 };
229 
230 static Property riscv_aclint_mtimer_properties[] = {
231     DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
232         hartid_base, 0),
233     DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
234     DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
235         timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
236     DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
237         time_base, RISCV_ACLINT_DEFAULT_MTIME),
238     DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
239         aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
240     DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
241         timebase_freq, 0),
242     DEFINE_PROP_END_OF_LIST(),
243 };
244 
245 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
246 {
247     RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
248     int i;
249 
250     memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
251                           s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
252     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
253 
254     s->timer_irqs = g_new(qemu_irq, s->num_harts);
255     qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
256 
257     /* Claim timer interrupt bits */
258     for (i = 0; i < s->num_harts; i++) {
259         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
260         if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
261             error_report("MTIP already claimed");
262             exit(1);
263         }
264     }
265 }
266 
267 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
268 {
269     DeviceClass *dc = DEVICE_CLASS(klass);
270     dc->realize = riscv_aclint_mtimer_realize;
271     device_class_set_props(dc, riscv_aclint_mtimer_properties);
272 }
273 
274 static const TypeInfo riscv_aclint_mtimer_info = {
275     .name          = TYPE_RISCV_ACLINT_MTIMER,
276     .parent        = TYPE_SYS_BUS_DEVICE,
277     .instance_size = sizeof(RISCVAclintMTimerState),
278     .class_init    = riscv_aclint_mtimer_class_init,
279 };
280 
281 /*
282  * Create ACLINT MTIMER device.
283  */
284 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
285     uint32_t hartid_base, uint32_t num_harts,
286     uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
287     bool provide_rdtime)
288 {
289     int i;
290     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
291 
292     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
293     assert(!(addr & 0x7));
294     assert(!(timecmp_base & 0x7));
295     assert(!(time_base & 0x7));
296 
297     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
298     qdev_prop_set_uint32(dev, "num-harts", num_harts);
299     qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
300     qdev_prop_set_uint32(dev, "time-base", time_base);
301     qdev_prop_set_uint32(dev, "aperture-size", size);
302     qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
303     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
304     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
305 
306     for (i = 0; i < num_harts; i++) {
307         CPUState *cpu = qemu_get_cpu(hartid_base + i);
308         RISCVCPU *rvcpu = RISCV_CPU(cpu);
309         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
310         riscv_aclint_mtimer_callback *cb =
311             g_new0(riscv_aclint_mtimer_callback, 1);
312 
313         if (!env) {
314             g_free(cb);
315             continue;
316         }
317         if (provide_rdtime) {
318             riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
319         }
320 
321         cb->s = RISCV_ACLINT_MTIMER(dev);
322         cb->num = i;
323         env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
324                                   &riscv_aclint_mtimer_cb, cb);
325         env->timecmp = 0;
326 
327         qdev_connect_gpio_out(dev, i,
328                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
329     }
330 
331     return dev;
332 }
333 
334 /* CPU read [M|S]SWI register */
335 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
336     unsigned size)
337 {
338     RISCVAclintSwiState *swi = opaque;
339 
340     if (addr < (swi->num_harts << 2)) {
341         size_t hartid = swi->hartid_base + (addr >> 2);
342         CPUState *cpu = qemu_get_cpu(hartid);
343         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
344         if (!env) {
345             qemu_log_mask(LOG_GUEST_ERROR,
346                           "aclint-swi: invalid hartid: %zu", hartid);
347         } else if ((addr & 0x3) == 0) {
348             return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
349         }
350     }
351 
352     qemu_log_mask(LOG_UNIMP,
353                   "aclint-swi: invalid read: %08x", (uint32_t)addr);
354     return 0;
355 }
356 
357 /* CPU write [M|S]SWI register */
358 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
359         unsigned size)
360 {
361     RISCVAclintSwiState *swi = opaque;
362 
363     if (addr < (swi->num_harts << 2)) {
364         size_t hartid = swi->hartid_base + (addr >> 2);
365         CPUState *cpu = qemu_get_cpu(hartid);
366         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
367         if (!env) {
368             qemu_log_mask(LOG_GUEST_ERROR,
369                           "aclint-swi: invalid hartid: %zu", hartid);
370         } else if ((addr & 0x3) == 0) {
371             if (value & 0x1) {
372                 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
373             } else {
374                 if (!swi->sswi) {
375                     qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
376                 }
377             }
378             return;
379         }
380     }
381 
382     qemu_log_mask(LOG_UNIMP,
383                   "aclint-swi: invalid write: %08x", (uint32_t)addr);
384 }
385 
386 static const MemoryRegionOps riscv_aclint_swi_ops = {
387     .read = riscv_aclint_swi_read,
388     .write = riscv_aclint_swi_write,
389     .endianness = DEVICE_LITTLE_ENDIAN,
390     .valid = {
391         .min_access_size = 4,
392         .max_access_size = 4
393     }
394 };
395 
396 static Property riscv_aclint_swi_properties[] = {
397     DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
398     DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
399     DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
400     DEFINE_PROP_END_OF_LIST(),
401 };
402 
403 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
404 {
405     RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
406     int i;
407 
408     memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
409                           TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
410     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
411 
412     swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
413     qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
414 
415     /* Claim software interrupt bits */
416     for (i = 0; i < swi->num_harts; i++) {
417         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
418         /* We don't claim mip.SSIP because it is writeable by software */
419         if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
420             error_report("MSIP already claimed");
421             exit(1);
422         }
423     }
424 }
425 
426 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
427 {
428     DeviceClass *dc = DEVICE_CLASS(klass);
429     dc->realize = riscv_aclint_swi_realize;
430     device_class_set_props(dc, riscv_aclint_swi_properties);
431 }
432 
433 static const TypeInfo riscv_aclint_swi_info = {
434     .name          = TYPE_RISCV_ACLINT_SWI,
435     .parent        = TYPE_SYS_BUS_DEVICE,
436     .instance_size = sizeof(RISCVAclintSwiState),
437     .class_init    = riscv_aclint_swi_class_init,
438 };
439 
440 /*
441  * Create ACLINT [M|S]SWI device.
442  */
443 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
444     uint32_t num_harts, bool sswi)
445 {
446     int i;
447     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
448 
449     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
450     assert(!(addr & 0x3));
451 
452     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
453     qdev_prop_set_uint32(dev, "num-harts", num_harts);
454     qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
455     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
456     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
457 
458     for (i = 0; i < num_harts; i++) {
459         CPUState *cpu = qemu_get_cpu(hartid_base + i);
460         RISCVCPU *rvcpu = RISCV_CPU(cpu);
461 
462         qdev_connect_gpio_out(dev, i,
463                               qdev_get_gpio_in(DEVICE(rvcpu),
464                                   (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
465     }
466 
467     return dev;
468 }
469 
470 static void riscv_aclint_register_types(void)
471 {
472     type_register_static(&riscv_aclint_mtimer_info);
473     type_register_static(&riscv_aclint_swi_info);
474 }
475 
476 type_init(riscv_aclint_register_types)
477