xref: /qemu/hw/intc/spapr_xive_kvm.c (revision 8760366c)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23 
24 #include <sys/ioctl.h>
25 
26 /*
27  * Helpers for CPU hotplug
28  *
29  * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
30  */
31 typedef struct KVMEnabledCPU {
32     unsigned long vcpu_id;
33     QLIST_ENTRY(KVMEnabledCPU) node;
34 } KVMEnabledCPU;
35 
36 static QLIST_HEAD(, KVMEnabledCPU)
37     kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
38 
39 static bool kvm_cpu_is_enabled(unsigned long vcpu_id)
40 {
41     KVMEnabledCPU *enabled_cpu;
42 
43     QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
44         if (enabled_cpu->vcpu_id == vcpu_id) {
45             return true;
46         }
47     }
48     return false;
49 }
50 
51 static void kvm_cpu_enable(CPUState *cs)
52 {
53     KVMEnabledCPU *enabled_cpu;
54     unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
55 
56     enabled_cpu = g_malloc(sizeof(*enabled_cpu));
57     enabled_cpu->vcpu_id = vcpu_id;
58     QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
59 }
60 
61 static void kvm_cpu_disable_all(void)
62 {
63     KVMEnabledCPU *enabled_cpu, *next;
64 
65     QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
66         QLIST_REMOVE(enabled_cpu, node);
67         g_free(enabled_cpu);
68     }
69 }
70 
71 /*
72  * XIVE Thread Interrupt Management context (KVM)
73  */
74 
75 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
76 {
77     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
78     uint64_t state[2];
79     int ret;
80 
81     assert(xive->fd != -1);
82 
83     /* word0 and word1 of the OS ring. */
84     state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
85 
86     ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
87     if (ret != 0) {
88         error_setg_errno(errp, -ret,
89                          "XIVE: could not restore KVM state of CPU %ld",
90                          kvm_arch_vcpu_id(tctx->cs));
91         return ret;
92     }
93 
94     return 0;
95 }
96 
97 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
98 {
99     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
100     uint64_t state[2] = { 0 };
101     int ret;
102 
103     assert(xive->fd != -1);
104 
105     ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
106     if (ret != 0) {
107         error_setg_errno(errp, -ret,
108                          "XIVE: could not capture KVM state of CPU %ld",
109                          kvm_arch_vcpu_id(tctx->cs));
110         return ret;
111     }
112 
113     /* word0 and word1 of the OS ring. */
114     *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
115 
116     return 0;
117 }
118 
119 typedef struct {
120     XiveTCTX *tctx;
121     Error **errp;
122     int ret;
123 } XiveCpuGetState;
124 
125 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
126                                                  run_on_cpu_data arg)
127 {
128     XiveCpuGetState *s = arg.host_ptr;
129 
130     s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
131 }
132 
133 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
134 {
135     XiveCpuGetState s = {
136         .tctx = tctx,
137         .errp = errp,
138     };
139 
140     /*
141      * Kick the vCPU to make sure they are available for the KVM ioctl.
142      */
143     run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
144                RUN_ON_CPU_HOST_PTR(&s));
145 
146     return s.ret;
147 }
148 
149 /*
150  * Allocate the vCPU IPIs from the vCPU context. This will allocate
151  * the XIVE IPI interrupt on the chip on which the vCPU is running.
152  * This gives a better distribution of IPIs when the guest has a lot
153  * of vCPUs. When the vCPUs are pinned, this will make the IPI local
154  * to the chip of the vCPU. It will reduce rerouting between interrupt
155  * controllers and gives better performance.
156  */
157 typedef struct {
158     SpaprXive *xive;
159     Error *err;
160     int rc;
161 } XiveInitIPI;
162 
163 static void kvmppc_xive_reset_ipi_on_cpu(CPUState *cs, run_on_cpu_data arg)
164 {
165     unsigned long ipi = kvm_arch_vcpu_id(cs);
166     XiveInitIPI *s = arg.host_ptr;
167     uint64_t state = 0;
168 
169     s->rc = kvm_device_access(s->xive->fd, KVM_DEV_XIVE_GRP_SOURCE, ipi,
170                               &state, true, &s->err);
171 }
172 
173 static int kvmppc_xive_reset_ipi(SpaprXive *xive, CPUState *cs, Error **errp)
174 {
175     XiveInitIPI s = {
176         .xive = xive,
177         .err  = NULL,
178         .rc   = 0,
179     };
180 
181     run_on_cpu(cs, kvmppc_xive_reset_ipi_on_cpu, RUN_ON_CPU_HOST_PTR(&s));
182     if (s.err) {
183         error_propagate(errp, s.err);
184     }
185     return s.rc;
186 }
187 
188 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
189 {
190     ERRP_GUARD();
191     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
192     unsigned long vcpu_id;
193     int ret;
194 
195     assert(xive->fd != -1);
196 
197     /* Check if CPU was hot unplugged and replugged. */
198     if (kvm_cpu_is_enabled(kvm_arch_vcpu_id(tctx->cs))) {
199         return 0;
200     }
201 
202     vcpu_id = kvm_arch_vcpu_id(tctx->cs);
203 
204     ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
205                               vcpu_id, 0);
206     if (ret < 0) {
207         error_setg_errno(errp, -ret,
208                          "XIVE: unable to connect CPU%ld to KVM device",
209                          vcpu_id);
210         if (ret == -ENOSPC) {
211             error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
212                               MACHINE(qdev_get_machine())->smp.max_cpus);
213         }
214         return ret;
215     }
216 
217     /* Create/reset the vCPU IPI */
218     ret = kvmppc_xive_reset_ipi(xive, tctx->cs, errp);
219     if (ret < 0) {
220         return ret;
221     }
222 
223     kvm_cpu_enable(tctx->cs);
224     return 0;
225 }
226 
227 /*
228  * XIVE Interrupt Source (KVM)
229  */
230 
231 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
232                                   Error **errp)
233 {
234     uint32_t end_idx;
235     uint32_t end_blk;
236     uint8_t priority;
237     uint32_t server;
238     bool masked;
239     uint32_t eisn;
240     uint64_t kvm_src;
241 
242     assert(xive_eas_is_valid(eas));
243 
244     end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
245     end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
246     eisn = xive_get_field64(EAS_END_DATA, eas->w);
247     masked = xive_eas_is_masked(eas);
248 
249     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
250 
251     kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
252         KVM_XIVE_SOURCE_PRIORITY_MASK;
253     kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
254         KVM_XIVE_SOURCE_SERVER_MASK;
255     kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
256         KVM_XIVE_SOURCE_MASKED_MASK;
257     kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
258         KVM_XIVE_SOURCE_EISN_MASK;
259 
260     return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
261                              &kvm_src, true, errp);
262 }
263 
264 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
265 {
266     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
267                       NULL, true, errp);
268 }
269 
270 /*
271  * At reset, the interrupt sources are simply created and MASKED. We
272  * only need to inform the KVM XIVE device about their type: LSI or
273  * MSI.
274  */
275 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
276 {
277     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
278     uint64_t state = 0;
279 
280     assert(xive->fd != -1);
281 
282     /*
283      * The vCPU IPIs are now allocated in kvmppc_xive_cpu_connect()
284      * and not with all sources in kvmppc_xive_source_reset()
285      */
286     assert(srcno >= SPAPR_XIRQ_BASE);
287 
288     if (xive_source_irq_is_lsi(xsrc, srcno)) {
289         state |= KVM_XIVE_LEVEL_SENSITIVE;
290         if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
291             state |= KVM_XIVE_LEVEL_ASSERTED;
292         }
293     }
294 
295     return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
296                              true, errp);
297 }
298 
299 /*
300  * To be valid, a source must have been claimed by the machine (valid
301  * entry in the EAS table) and if it is a vCPU IPI, the vCPU should
302  * have been enabled, which means the IPI has been allocated in
303  * kvmppc_xive_cpu_connect().
304  */
305 static bool xive_source_is_valid(SpaprXive *xive, int i)
306 {
307     return xive_eas_is_valid(&xive->eat[i]) &&
308         (i >= SPAPR_XIRQ_BASE || kvm_cpu_is_enabled(i));
309 }
310 
311 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
312 {
313     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
314     int i;
315 
316     /*
317      * Skip the vCPU IPIs. These are created/reset when the vCPUs are
318      * connected in kvmppc_xive_cpu_connect()
319      */
320     for (i = SPAPR_XIRQ_BASE; i < xsrc->nr_irqs; i++) {
321         int ret;
322 
323         if (!xive_eas_is_valid(&xive->eat[i])) {
324             continue;
325         }
326 
327         ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
328         if (ret < 0) {
329             return ret;
330         }
331     }
332 
333     return 0;
334 }
335 
336 /*
337  * This is used to perform the magic loads on the ESB pages, described
338  * in xive.h.
339  *
340  * Memory barriers should not be needed for loads (no store for now).
341  */
342 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
343                             uint64_t data, bool write)
344 {
345     uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
346         offset;
347 
348     if (write) {
349         *addr = cpu_to_be64(data);
350         return -1;
351     } else {
352         /* Prevent the compiler from optimizing away the load */
353         volatile uint64_t value = be64_to_cpu(*addr);
354         return value;
355     }
356 }
357 
358 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
359 {
360     return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
361 }
362 
363 static void xive_esb_trigger(XiveSource *xsrc, int srcno)
364 {
365     uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
366 
367     *addr = 0x0;
368 }
369 
370 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
371                             uint64_t data, bool write)
372 {
373     if (write) {
374         return xive_esb_rw(xsrc, srcno, offset, data, 1);
375     }
376 
377     /*
378      * Special Load EOI handling for LSI sources. Q bit is never set
379      * and the interrupt should be re-triggered if the level is still
380      * asserted.
381      */
382     if (xive_source_irq_is_lsi(xsrc, srcno) &&
383         offset == XIVE_ESB_LOAD_EOI) {
384         xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
385         if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
386             xive_esb_trigger(xsrc, srcno);
387         }
388         return 0;
389     } else {
390         return xive_esb_rw(xsrc, srcno, offset, 0, 0);
391     }
392 }
393 
394 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
395 {
396     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
397     int i;
398 
399     for (i = 0; i < xsrc->nr_irqs; i++) {
400         uint8_t pq;
401 
402         if (!xive_source_is_valid(xive, i)) {
403             continue;
404         }
405 
406         /* Perform a load without side effect to retrieve the PQ bits */
407         pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
408 
409         /* and save PQ locally */
410         xive_source_esb_set(xsrc, i, pq);
411     }
412 }
413 
414 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
415 {
416     XiveSource *xsrc = opaque;
417 
418     if (!xive_source_irq_is_lsi(xsrc, srcno)) {
419         if (!val) {
420             return;
421         }
422     } else {
423         if (val) {
424             xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
425         } else {
426             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
427         }
428     }
429 
430     xive_esb_trigger(xsrc, srcno);
431 }
432 
433 /*
434  * sPAPR XIVE interrupt controller (KVM)
435  */
436 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
437                                  uint32_t end_idx, XiveEND *end,
438                                  Error **errp)
439 {
440     struct kvm_ppc_xive_eq kvm_eq = { 0 };
441     uint64_t kvm_eq_idx;
442     uint8_t priority;
443     uint32_t server;
444     int ret;
445 
446     assert(xive_end_is_valid(end));
447 
448     /* Encode the tuple (server, prio) as a KVM EQ index */
449     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
450 
451     kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
452             KVM_XIVE_EQ_PRIORITY_MASK;
453     kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
454         KVM_XIVE_EQ_SERVER_MASK;
455 
456     ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
457                             &kvm_eq, false, errp);
458     if (ret < 0) {
459         return ret;
460     }
461 
462     /*
463      * The EQ index and toggle bit are updated by HW. These are the
464      * only fields from KVM we want to update QEMU with. The other END
465      * fields should already be in the QEMU END table.
466      */
467     end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
468         xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
469 
470     return 0;
471 }
472 
473 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
474                                  uint32_t end_idx, XiveEND *end,
475                                  Error **errp)
476 {
477     struct kvm_ppc_xive_eq kvm_eq = { 0 };
478     uint64_t kvm_eq_idx;
479     uint8_t priority;
480     uint32_t server;
481 
482     /*
483      * Build the KVM state from the local END structure.
484      */
485 
486     kvm_eq.flags = 0;
487     if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
488         kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
489     }
490 
491     /*
492      * If the hcall is disabling the EQ, set the size and page address
493      * to zero. When migrating, only valid ENDs are taken into
494      * account.
495      */
496     if (xive_end_is_valid(end)) {
497         kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
498         kvm_eq.qaddr  = xive_end_qaddr(end);
499         /*
500          * The EQ toggle bit and index should only be relevant when
501          * restoring the EQ state
502          */
503         kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
504         kvm_eq.qindex  = xive_get_field32(END_W1_PAGE_OFF, end->w1);
505     } else {
506         kvm_eq.qshift = 0;
507         kvm_eq.qaddr  = 0;
508     }
509 
510     /* Encode the tuple (server, prio) as a KVM EQ index */
511     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
512 
513     kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
514             KVM_XIVE_EQ_PRIORITY_MASK;
515     kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
516         KVM_XIVE_EQ_SERVER_MASK;
517 
518     return
519         kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
520                           &kvm_eq, true, errp);
521 }
522 
523 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
524 {
525     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
526                       NULL, true, errp);
527 }
528 
529 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
530 {
531     int i;
532     int ret;
533 
534     for (i = 0; i < xive->nr_ends; i++) {
535         if (!xive_end_is_valid(&xive->endt[i])) {
536             continue;
537         }
538 
539         ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
540                                            &xive->endt[i], errp);
541         if (ret < 0) {
542             return ret;
543         }
544     }
545 
546     return 0;
547 }
548 
549 /*
550  * The primary goal of the XIVE VM change handler is to mark the EQ
551  * pages dirty when all XIVE event notifications have stopped.
552  *
553  * Whenever the VM is stopped, the VM change handler sets the source
554  * PQs to PENDING to stop the flow of events and to possibly catch a
555  * triggered interrupt occuring while the VM is stopped. The previous
556  * state is saved in anticipation of a migration. The XIVE controller
557  * is then synced through KVM to flush any in-flight event
558  * notification and stabilize the EQs.
559  *
560  * At this stage, we can mark the EQ page dirty and let a migration
561  * sequence transfer the EQ pages to the destination, which is done
562  * just after the stop state.
563  *
564  * The previous configuration of the sources is restored when the VM
565  * runs again. If an interrupt was queued while the VM was stopped,
566  * simply generate a trigger.
567  */
568 static void kvmppc_xive_change_state_handler(void *opaque, int running,
569                                              RunState state)
570 {
571     SpaprXive *xive = opaque;
572     XiveSource *xsrc = &xive->source;
573     Error *local_err = NULL;
574     int i;
575 
576     /*
577      * Restore the sources to their initial state. This is called when
578      * the VM resumes after a stop or a migration.
579      */
580     if (running) {
581         for (i = 0; i < xsrc->nr_irqs; i++) {
582             uint8_t pq;
583             uint8_t old_pq;
584 
585             if (!xive_source_is_valid(xive, i)) {
586                 continue;
587             }
588 
589             pq = xive_source_esb_get(xsrc, i);
590             old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
591 
592             /*
593              * An interrupt was queued while the VM was stopped,
594              * generate a trigger.
595              */
596             if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
597                 xive_esb_trigger(xsrc, i);
598             }
599         }
600 
601         return;
602     }
603 
604     /*
605      * Mask the sources, to stop the flow of event notifications, and
606      * save the PQs locally in the XiveSource object. The XiveSource
607      * state will be collected later on by its vmstate handler if a
608      * migration is in progress.
609      */
610     for (i = 0; i < xsrc->nr_irqs; i++) {
611         uint8_t pq;
612 
613         if (!xive_source_is_valid(xive, i)) {
614             continue;
615         }
616 
617         pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
618 
619         /*
620          * PQ is set to PENDING to possibly catch a triggered
621          * interrupt occuring while the VM is stopped (hotplug event
622          * for instance) .
623          */
624         if (pq != XIVE_ESB_OFF) {
625             pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
626         }
627         xive_source_esb_set(xsrc, i, pq);
628     }
629 
630     /*
631      * Sync the XIVE controller in KVM, to flush in-flight event
632      * notification that should be enqueued in the EQs and mark the
633      * XIVE EQ pages dirty to collect all updates.
634      */
635     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
636                       KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
637     if (local_err) {
638         error_report_err(local_err);
639         return;
640     }
641 }
642 
643 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
644 {
645     assert(xive->fd != -1);
646 
647     /*
648      * When the VM is stopped, the sources are masked and the previous
649      * state is saved in anticipation of a migration. We should not
650      * synchronize the source state in that case else we will override
651      * the saved state.
652      */
653     if (runstate_is_running()) {
654         kvmppc_xive_source_get_state(&xive->source);
655     }
656 
657     /* EAT: there is no extra state to query from KVM */
658 
659     /* ENDT */
660     kvmppc_xive_get_queues(xive, errp);
661 }
662 
663 /*
664  * The SpaprXive 'pre_save' method is called by the vmstate handler of
665  * the SpaprXive model, after the XIVE controller is synced in the VM
666  * change handler.
667  */
668 int kvmppc_xive_pre_save(SpaprXive *xive)
669 {
670     Error *local_err = NULL;
671     int ret;
672 
673     assert(xive->fd != -1);
674 
675     /* EAT: there is no extra state to query from KVM */
676 
677     /* ENDT */
678     ret = kvmppc_xive_get_queues(xive, &local_err);
679     if (ret < 0) {
680         error_report_err(local_err);
681         return ret;
682     }
683 
684     return 0;
685 }
686 
687 /*
688  * The SpaprXive 'post_load' method is not called by a vmstate
689  * handler. It is called at the sPAPR machine level at the end of the
690  * migration sequence by the sPAPR IRQ backend 'post_load' method,
691  * when all XIVE states have been transferred and loaded.
692  */
693 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
694 {
695     Error *local_err = NULL;
696     CPUState *cs;
697     int i;
698     int ret;
699 
700     /* The KVM XIVE device should be in use */
701     assert(xive->fd != -1);
702 
703     /* Restore the ENDT first. The targetting depends on it. */
704     for (i = 0; i < xive->nr_ends; i++) {
705         if (!xive_end_is_valid(&xive->endt[i])) {
706             continue;
707         }
708 
709         ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
710                                            &xive->endt[i], &local_err);
711         if (ret < 0) {
712             goto fail;
713         }
714     }
715 
716     /*
717      * We can only restore the source config if the source has been
718      * previously set in KVM. Since we don't do that at reset time
719      * when restoring a VM, let's do it now.
720      */
721     ret = kvmppc_xive_source_reset(&xive->source, &local_err);
722     if (ret < 0) {
723         goto fail;
724     }
725 
726     /* Restore the EAT */
727     for (i = 0; i < xive->nr_irqs; i++) {
728         if (!xive_source_is_valid(xive, i)) {
729             continue;
730         }
731 
732         ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
733         if (ret < 0) {
734             goto fail;
735         }
736     }
737 
738     /*
739      * Restore the thread interrupt contexts of initial CPUs.
740      *
741      * The context of hotplugged CPUs is restored later, by the
742      * 'post_load' handler of the XiveTCTX model because they are not
743      * available at the time the SpaprXive 'post_load' method is
744      * called. We can not restore the context of all CPUs in the
745      * 'post_load' handler of XiveTCTX because the machine is not
746      * necessarily connected to the KVM device at that time.
747      */
748     CPU_FOREACH(cs) {
749         PowerPCCPU *cpu = POWERPC_CPU(cs);
750 
751         ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
752         if (ret < 0) {
753             goto fail;
754         }
755     }
756 
757     /* The source states will be restored when the machine starts running */
758     return 0;
759 
760 fail:
761     error_report_err(local_err);
762     return ret;
763 }
764 
765 /* Returns MAP_FAILED on error and sets errno */
766 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
767                               Error **errp)
768 {
769     void *addr;
770     uint32_t page_shift = 16; /* TODO: fix page_shift */
771 
772     addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
773                 pgoff << page_shift);
774     if (addr == MAP_FAILED) {
775         error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
776     }
777 
778     return addr;
779 }
780 
781 /*
782  * All the XIVE memory regions are now backed by mappings from the KVM
783  * XIVE device.
784  */
785 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
786                         Error **errp)
787 {
788     SpaprXive *xive = SPAPR_XIVE(intc);
789     XiveSource *xsrc = &xive->source;
790     size_t esb_len = xive_source_esb_len(xsrc);
791     size_t tima_len = 4ull << TM_SHIFT;
792     CPUState *cs;
793     int fd;
794     void *addr;
795     int ret;
796 
797     /*
798      * The KVM XIVE device already in use. This is the case when
799      * rebooting under the XIVE-only interrupt mode.
800      */
801     if (xive->fd != -1) {
802         return 0;
803     }
804 
805     if (!kvmppc_has_cap_xive()) {
806         error_setg(errp, "IRQ_XIVE capability must be present for KVM");
807         return -1;
808     }
809 
810     /* First, create the KVM XIVE device */
811     fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
812     if (fd < 0) {
813         error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
814         return -1;
815     }
816     xive->fd = fd;
817 
818     /* Tell KVM about the # of VCPUs we may have */
819     if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
820                               KVM_DEV_XIVE_NR_SERVERS)) {
821         ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
822                                 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
823                                 errp);
824         if (ret < 0) {
825             goto fail;
826         }
827     }
828 
829     /*
830      * 1. Source ESB pages - KVM mapping
831      */
832     addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
833     if (addr == MAP_FAILED) {
834         goto fail;
835     }
836     xsrc->esb_mmap = addr;
837 
838     memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
839                                       "xive.esb-kvm", esb_len, xsrc->esb_mmap);
840     memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
841                                         &xsrc->esb_mmio_kvm, 1);
842 
843     /*
844      * 2. END ESB pages (No KVM support yet)
845      */
846 
847     /*
848      * 3. TIMA pages - KVM mapping
849      */
850     addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
851     if (addr == MAP_FAILED) {
852         goto fail;
853     }
854     xive->tm_mmap = addr;
855 
856     memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
857                                       "xive.tima", tima_len, xive->tm_mmap);
858     memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
859                                         &xive->tm_mmio_kvm, 1);
860 
861     xive->change = qemu_add_vm_change_state_handler(
862         kvmppc_xive_change_state_handler, xive);
863 
864     /* Connect the presenters to the initial VCPUs of the machine */
865     CPU_FOREACH(cs) {
866         PowerPCCPU *cpu = POWERPC_CPU(cs);
867 
868         ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
869         if (ret < 0) {
870             goto fail;
871         }
872     }
873 
874     /* Update the KVM sources */
875     ret = kvmppc_xive_source_reset(xsrc, errp);
876     if (ret < 0) {
877         goto fail;
878     }
879 
880     kvm_kernel_irqchip = true;
881     kvm_msi_via_irqfd_allowed = true;
882     kvm_gsi_direct_mapping = true;
883     return 0;
884 
885 fail:
886     kvmppc_xive_disconnect(intc);
887     return -1;
888 }
889 
890 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
891 {
892     SpaprXive *xive = SPAPR_XIVE(intc);
893     XiveSource *xsrc;
894     size_t esb_len;
895 
896     assert(xive->fd != -1);
897 
898     /* Clear the KVM mapping */
899     xsrc = &xive->source;
900     esb_len = xive_source_esb_len(xsrc);
901 
902     if (xsrc->esb_mmap) {
903         memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
904         object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
905         munmap(xsrc->esb_mmap, esb_len);
906         xsrc->esb_mmap = NULL;
907     }
908 
909     if (xive->tm_mmap) {
910         memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
911         object_unparent(OBJECT(&xive->tm_mmio_kvm));
912         munmap(xive->tm_mmap, 4ull << TM_SHIFT);
913         xive->tm_mmap = NULL;
914     }
915 
916     /*
917      * When the KVM device fd is closed, the KVM device is destroyed
918      * and removed from the list of devices of the VM. The VCPU
919      * presenters are also detached from the device.
920      */
921     close(xive->fd);
922     xive->fd = -1;
923 
924     kvm_kernel_irqchip = false;
925     kvm_msi_via_irqfd_allowed = false;
926     kvm_gsi_direct_mapping = false;
927 
928     /* Clear the local list of presenter (hotplug) */
929     kvm_cpu_disable_all();
930 
931     /* VM Change state handler is not needed anymore */
932     if (xive->change) {
933         qemu_del_vm_change_state_handler(xive->change);
934         xive->change = NULL;
935     }
936 }
937