xref: /qemu/hw/intc/xive.c (revision a976a99a)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
25 
26 /*
27  * XIVE Thread Interrupt Management context
28  */
29 
30 /*
31  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32  * Interrupt Priority Register (PIPR), which contains the priority of
33  * the most favored pending notification.
34  */
35 static uint8_t ipb_to_pipr(uint8_t ibp)
36 {
37     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
38 }
39 
40 static uint8_t exception_mask(uint8_t ring)
41 {
42     switch (ring) {
43     case TM_QW1_OS:
44         return TM_QW1_NSR_EO;
45     case TM_QW3_HV_PHYS:
46         return TM_QW3_NSR_HE;
47     default:
48         g_assert_not_reached();
49     }
50 }
51 
52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
53 {
54         switch (ring) {
55         case TM_QW0_USER:
56                 return 0; /* Not supported */
57         case TM_QW1_OS:
58                 return tctx->os_output;
59         case TM_QW2_HV_POOL:
60         case TM_QW3_HV_PHYS:
61                 return tctx->hv_output;
62         default:
63                 return 0;
64         }
65 }
66 
67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
68 {
69     uint8_t *regs = &tctx->regs[ring];
70     uint8_t nsr = regs[TM_NSR];
71     uint8_t mask = exception_mask(ring);
72 
73     qemu_irq_lower(xive_tctx_output(tctx, ring));
74 
75     if (regs[TM_NSR] & mask) {
76         uint8_t cppr = regs[TM_PIPR];
77 
78         regs[TM_CPPR] = cppr;
79 
80         /* Reset the pending buffer bit */
81         regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
83 
84         /* Drop Exception bit */
85         regs[TM_NSR] &= ~mask;
86 
87         trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88                                regs[TM_IPB], regs[TM_PIPR],
89                                regs[TM_CPPR], regs[TM_NSR]);
90     }
91 
92     return (nsr << 8) | regs[TM_CPPR];
93 }
94 
95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
96 {
97     uint8_t *regs = &tctx->regs[ring];
98 
99     if (regs[TM_PIPR] < regs[TM_CPPR]) {
100         switch (ring) {
101         case TM_QW1_OS:
102             regs[TM_NSR] |= TM_QW1_NSR_EO;
103             break;
104         case TM_QW3_HV_PHYS:
105             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106             break;
107         default:
108             g_assert_not_reached();
109         }
110         trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111                                regs[TM_IPB], regs[TM_PIPR],
112                                regs[TM_CPPR], regs[TM_NSR]);
113         qemu_irq_raise(xive_tctx_output(tctx, ring));
114     }
115 }
116 
117 void xive_tctx_reset_os_signal(XiveTCTX *tctx)
118 {
119     /*
120      * Lower the External interrupt. Used when pulling an OS
121      * context. It is necessary to avoid catching it in the hypervisor
122      * context. It should be raised again when re-pushing the OS
123      * context.
124      */
125     qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS));
126 }
127 
128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
129 {
130     uint8_t *regs = &tctx->regs[ring];
131 
132     trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
133                              regs[TM_IPB], regs[TM_PIPR],
134                              cppr, regs[TM_NSR]);
135 
136     if (cppr > XIVE_PRIORITY_MAX) {
137         cppr = 0xff;
138     }
139 
140     tctx->regs[ring + TM_CPPR] = cppr;
141 
142     /* CPPR has changed, check if we need to raise a pending exception */
143     xive_tctx_notify(tctx, ring);
144 }
145 
146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
147 {
148     uint8_t *regs = &tctx->regs[ring];
149 
150     regs[TM_IPB] |= ipb;
151     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
152     xive_tctx_notify(tctx, ring);
153 }
154 
155 /*
156  * XIVE Thread Interrupt Management Area (TIMA)
157  */
158 
159 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
160                                 hwaddr offset, uint64_t value, unsigned size)
161 {
162     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
163 }
164 
165 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
166                                    hwaddr offset, unsigned size)
167 {
168     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
169 }
170 
171 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
172                                       hwaddr offset, unsigned size)
173 {
174     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
175     uint32_t qw2w2;
176 
177     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
178     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
179     return qw2w2;
180 }
181 
182 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
183                             uint64_t value, unsigned size)
184 {
185     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
186 }
187 
188 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
189                                 hwaddr offset, unsigned size)
190 {
191     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
192 }
193 
194 /*
195  * Define an access map for each page of the TIMA that we will use in
196  * the memory region ops to filter values when doing loads and stores
197  * of raw registers values
198  *
199  * Registers accessibility bits :
200  *
201  *    0x0 - no access
202  *    0x1 - write only
203  *    0x2 - read only
204  *    0x3 - read/write
205  */
206 
207 static const uint8_t xive_tm_hw_view[] = {
208     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
209     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
210     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
211     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
212 };
213 
214 static const uint8_t xive_tm_hv_view[] = {
215     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
216     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
217     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
218     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
219 };
220 
221 static const uint8_t xive_tm_os_view[] = {
222     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
223     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
224     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
225     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
226 };
227 
228 static const uint8_t xive_tm_user_view[] = {
229     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
230     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
231     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
232     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
233 };
234 
235 /*
236  * Overall TIMA access map for the thread interrupt management context
237  * registers
238  */
239 static const uint8_t *xive_tm_views[] = {
240     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
241     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
242     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
243     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
244 };
245 
246 /*
247  * Computes a register access mask for a given offset in the TIMA
248  */
249 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
250 {
251     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
252     uint8_t reg_offset = offset & 0x3F;
253     uint8_t reg_mask = write ? 0x1 : 0x2;
254     uint64_t mask = 0x0;
255     int i;
256 
257     for (i = 0; i < size; i++) {
258         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
259             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
260         }
261     }
262 
263     return mask;
264 }
265 
266 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
267                               unsigned size)
268 {
269     uint8_t ring_offset = offset & 0x30;
270     uint8_t reg_offset = offset & 0x3F;
271     uint64_t mask = xive_tm_mask(offset, size, true);
272     int i;
273 
274     /*
275      * Only 4 or 8 bytes stores are allowed and the User ring is
276      * excluded
277      */
278     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
279         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
280                       HWADDR_PRIx"\n", offset);
281         return;
282     }
283 
284     /*
285      * Use the register offset for the raw values and filter out
286      * reserved values
287      */
288     for (i = 0; i < size; i++) {
289         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
290         if (byte_mask) {
291             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
292                 byte_mask;
293         }
294     }
295 }
296 
297 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
298 {
299     uint8_t ring_offset = offset & 0x30;
300     uint8_t reg_offset = offset & 0x3F;
301     uint64_t mask = xive_tm_mask(offset, size, false);
302     uint64_t ret;
303     int i;
304 
305     /*
306      * Only 4 or 8 bytes loads are allowed and the User ring is
307      * excluded
308      */
309     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
310         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
311                       HWADDR_PRIx"\n", offset);
312         return -1;
313     }
314 
315     /* Use the register offset for the raw values */
316     ret = 0;
317     for (i = 0; i < size; i++) {
318         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
319     }
320 
321     /* filter out reserved values */
322     return ret & mask;
323 }
324 
325 /*
326  * The TM context is mapped twice within each page. Stores and loads
327  * to the first mapping below 2K write and read the specified values
328  * without modification. The second mapping above 2K performs specific
329  * state changes (side effects) in addition to setting/returning the
330  * interrupt management area context of the processor thread.
331  */
332 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
333                                    hwaddr offset, unsigned size)
334 {
335     return xive_tctx_accept(tctx, TM_QW1_OS);
336 }
337 
338 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
339                                 hwaddr offset, uint64_t value, unsigned size)
340 {
341     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
342 }
343 
344 /*
345  * Adjust the IPB to allow a CPU to process event queues of other
346  * priorities during one physical interrupt cycle.
347  */
348 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
349                                    hwaddr offset, uint64_t value, unsigned size)
350 {
351     xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
352 }
353 
354 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
355                                uint32_t *nvt_idx, bool *vo)
356 {
357     if (nvt_blk) {
358         *nvt_blk = xive_nvt_blk(cam);
359     }
360     if (nvt_idx) {
361         *nvt_idx = xive_nvt_idx(cam);
362     }
363     if (vo) {
364         *vo = !!(cam & TM_QW1W2_VO);
365     }
366 }
367 
368 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
369                                      uint32_t *nvt_idx, bool *vo)
370 {
371     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
372     uint32_t cam = be32_to_cpu(qw1w2);
373 
374     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
375     return qw1w2;
376 }
377 
378 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
379 {
380     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
381 }
382 
383 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
384                                     hwaddr offset, unsigned size)
385 {
386     uint32_t qw1w2;
387     uint32_t qw1w2_new;
388     uint8_t nvt_blk;
389     uint32_t nvt_idx;
390     bool vo;
391 
392     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
393 
394     if (!vo) {
395         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
396                       nvt_blk, nvt_idx);
397     }
398 
399     /* Invalidate CAM line */
400     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
401     xive_tctx_set_os_cam(tctx, qw1w2_new);
402 
403     xive_tctx_reset_os_signal(tctx);
404     return qw1w2;
405 }
406 
407 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
408                                   uint8_t nvt_blk, uint32_t nvt_idx)
409 {
410     XiveNVT nvt;
411     uint8_t ipb;
412 
413     /*
414      * Grab the associated NVT to pull the pending bits, and merge
415      * them with the IPB of the thread interrupt context registers
416      */
417     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
418         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
419                           nvt_blk, nvt_idx);
420         return;
421     }
422 
423     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
424 
425     if (ipb) {
426         /* Reset the NVT value */
427         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
428         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
429     }
430     /*
431      * Always call xive_tctx_ipb_update(). Even if there were no
432      * escalation triggered, there could be a pending interrupt which
433      * was saved when the context was pulled and that we need to take
434      * into account by recalculating the PIPR (which is not
435      * saved/restored).
436      * It will also raise the External interrupt signal if needed.
437      */
438     xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
439 }
440 
441 /*
442  * Updating the OS CAM line can trigger a resend of interrupt
443  */
444 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
445                                 hwaddr offset, uint64_t value, unsigned size)
446 {
447     uint32_t cam = value;
448     uint32_t qw1w2 = cpu_to_be32(cam);
449     uint8_t nvt_blk;
450     uint32_t nvt_idx;
451     bool vo;
452 
453     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
454 
455     /* First update the registers */
456     xive_tctx_set_os_cam(tctx, qw1w2);
457 
458     /* Check the interrupt pending bits */
459     if (vo) {
460         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
461     }
462 }
463 
464 /*
465  * Define a mapping of "special" operations depending on the TIMA page
466  * offset and the size of the operation.
467  */
468 typedef struct XiveTmOp {
469     uint8_t  page_offset;
470     uint32_t op_offset;
471     unsigned size;
472     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
473                               hwaddr offset,
474                               uint64_t value, unsigned size);
475     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
476                              unsigned size);
477 } XiveTmOp;
478 
479 static const XiveTmOp xive_tm_operations[] = {
480     /*
481      * MMIOs below 2K : raw values and special operations without side
482      * effects
483      */
484     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
485     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
486     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
487     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
488     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
489 
490     /* MMIOs above 2K : special operations with side effects */
491     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
492     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
493     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
494     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
495     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
496     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
497     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
498 };
499 
500 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
501 {
502     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
503     uint32_t op_offset = offset & 0xFFF;
504     int i;
505 
506     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
507         const XiveTmOp *xto = &xive_tm_operations[i];
508 
509         /* Accesses done from a more privileged TIMA page is allowed */
510         if (xto->page_offset >= page_offset &&
511             xto->op_offset == op_offset &&
512             xto->size == size &&
513             ((write && xto->write_handler) || (!write && xto->read_handler))) {
514             return xto;
515         }
516     }
517     return NULL;
518 }
519 
520 /*
521  * TIMA MMIO handlers
522  */
523 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
524                         uint64_t value, unsigned size)
525 {
526     const XiveTmOp *xto;
527 
528     trace_xive_tctx_tm_write(offset, size, value);
529 
530     /*
531      * TODO: check V bit in Q[0-3]W2
532      */
533 
534     /*
535      * First, check for special operations in the 2K region
536      */
537     if (offset & 0x800) {
538         xto = xive_tm_find_op(offset, size, true);
539         if (!xto) {
540             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
541                           "@%"HWADDR_PRIx"\n", offset);
542         } else {
543             xto->write_handler(xptr, tctx, offset, value, size);
544         }
545         return;
546     }
547 
548     /*
549      * Then, for special operations in the region below 2K.
550      */
551     xto = xive_tm_find_op(offset, size, true);
552     if (xto) {
553         xto->write_handler(xptr, tctx, offset, value, size);
554         return;
555     }
556 
557     /*
558      * Finish with raw access to the register values
559      */
560     xive_tm_raw_write(tctx, offset, value, size);
561 }
562 
563 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
564                            unsigned size)
565 {
566     const XiveTmOp *xto;
567     uint64_t ret;
568 
569     /*
570      * TODO: check V bit in Q[0-3]W2
571      */
572 
573     /*
574      * First, check for special operations in the 2K region
575      */
576     if (offset & 0x800) {
577         xto = xive_tm_find_op(offset, size, false);
578         if (!xto) {
579             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
580                           "@%"HWADDR_PRIx"\n", offset);
581             return -1;
582         }
583         ret = xto->read_handler(xptr, tctx, offset, size);
584         goto out;
585     }
586 
587     /*
588      * Then, for special operations in the region below 2K.
589      */
590     xto = xive_tm_find_op(offset, size, false);
591     if (xto) {
592         ret = xto->read_handler(xptr, tctx, offset, size);
593         goto out;
594     }
595 
596     /*
597      * Finish with raw access to the register values
598      */
599     ret = xive_tm_raw_read(tctx, offset, size);
600 out:
601     trace_xive_tctx_tm_read(offset, size, ret);
602     return ret;
603 }
604 
605 static char *xive_tctx_ring_print(uint8_t *ring)
606 {
607     uint32_t w2 = xive_tctx_word2(ring);
608 
609     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
610                    "%02x  %02x   %02x  %08x",
611                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
612                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
613                    be32_to_cpu(w2));
614 }
615 
616 static const char * const xive_tctx_ring_names[] = {
617     "USER", "OS", "POOL", "PHYS",
618 };
619 
620 /*
621  * kvm_irqchip_in_kernel() will cause the compiler to turn this
622  * info a nop if CONFIG_KVM isn't defined.
623  */
624 #define xive_in_kernel(xptr)                                            \
625     (kvm_irqchip_in_kernel() &&                                         \
626      ({                                                                 \
627          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
628          xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
629      }))
630 
631 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
632 {
633     int cpu_index;
634     int i;
635 
636     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
637      * are hot plugged or unplugged.
638      */
639     if (!tctx) {
640         return;
641     }
642 
643     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
644 
645     if (xive_in_kernel(tctx->xptr)) {
646         Error *local_err = NULL;
647 
648         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
649         if (local_err) {
650             error_report_err(local_err);
651             return;
652         }
653     }
654 
655     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
656                    "  W2\n", cpu_index);
657 
658     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
659         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
660         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
661                        xive_tctx_ring_names[i], s);
662         g_free(s);
663     }
664 }
665 
666 void xive_tctx_reset(XiveTCTX *tctx)
667 {
668     memset(tctx->regs, 0, sizeof(tctx->regs));
669 
670     /* Set some defaults */
671     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
672     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
673     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
674 
675     /*
676      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
677      * CPPR is first set.
678      */
679     tctx->regs[TM_QW1_OS + TM_PIPR] =
680         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
681     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
682         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
683 }
684 
685 static void xive_tctx_realize(DeviceState *dev, Error **errp)
686 {
687     XiveTCTX *tctx = XIVE_TCTX(dev);
688     PowerPCCPU *cpu;
689     CPUPPCState *env;
690 
691     assert(tctx->cs);
692     assert(tctx->xptr);
693 
694     cpu = POWERPC_CPU(tctx->cs);
695     env = &cpu->env;
696     switch (PPC_INPUT(env)) {
697     case PPC_FLAGS_INPUT_POWER9:
698         tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
699         tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
700         break;
701 
702     default:
703         error_setg(errp, "XIVE interrupt controller does not support "
704                    "this CPU bus model");
705         return;
706     }
707 
708     /* Connect the presenter to the VCPU (required for CPU hotplug) */
709     if (xive_in_kernel(tctx->xptr)) {
710         if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
711             return;
712         }
713     }
714 }
715 
716 static int vmstate_xive_tctx_pre_save(void *opaque)
717 {
718     XiveTCTX *tctx = XIVE_TCTX(opaque);
719     Error *local_err = NULL;
720     int ret;
721 
722     if (xive_in_kernel(tctx->xptr)) {
723         ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
724         if (ret < 0) {
725             error_report_err(local_err);
726             return ret;
727         }
728     }
729 
730     return 0;
731 }
732 
733 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
734 {
735     XiveTCTX *tctx = XIVE_TCTX(opaque);
736     Error *local_err = NULL;
737     int ret;
738 
739     if (xive_in_kernel(tctx->xptr)) {
740         /*
741          * Required for hotplugged CPU, for which the state comes
742          * after all states of the machine.
743          */
744         ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
745         if (ret < 0) {
746             error_report_err(local_err);
747             return ret;
748         }
749     }
750 
751     return 0;
752 }
753 
754 static const VMStateDescription vmstate_xive_tctx = {
755     .name = TYPE_XIVE_TCTX,
756     .version_id = 1,
757     .minimum_version_id = 1,
758     .pre_save = vmstate_xive_tctx_pre_save,
759     .post_load = vmstate_xive_tctx_post_load,
760     .fields = (VMStateField[]) {
761         VMSTATE_BUFFER(regs, XiveTCTX),
762         VMSTATE_END_OF_LIST()
763     },
764 };
765 
766 static Property xive_tctx_properties[] = {
767     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
768     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
769                      XivePresenter *),
770     DEFINE_PROP_END_OF_LIST(),
771 };
772 
773 static void xive_tctx_class_init(ObjectClass *klass, void *data)
774 {
775     DeviceClass *dc = DEVICE_CLASS(klass);
776 
777     dc->desc = "XIVE Interrupt Thread Context";
778     dc->realize = xive_tctx_realize;
779     dc->vmsd = &vmstate_xive_tctx;
780     device_class_set_props(dc, xive_tctx_properties);
781     /*
782      * Reason: part of XIVE interrupt controller, needs to be wired up
783      * by xive_tctx_create().
784      */
785     dc->user_creatable = false;
786 }
787 
788 static const TypeInfo xive_tctx_info = {
789     .name          = TYPE_XIVE_TCTX,
790     .parent        = TYPE_DEVICE,
791     .instance_size = sizeof(XiveTCTX),
792     .class_init    = xive_tctx_class_init,
793 };
794 
795 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
796 {
797     Object *obj;
798 
799     obj = object_new(TYPE_XIVE_TCTX);
800     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
801     object_unref(obj);
802     object_property_set_link(obj, "cpu", cpu, &error_abort);
803     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
804     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
805         object_unparent(obj);
806         return NULL;
807     }
808     return obj;
809 }
810 
811 void xive_tctx_destroy(XiveTCTX *tctx)
812 {
813     Object *obj = OBJECT(tctx);
814 
815     object_unparent(obj);
816 }
817 
818 /*
819  * XIVE ESB helpers
820  */
821 
822 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
823 {
824     uint8_t old_pq = *pq & 0x3;
825 
826     *pq &= ~0x3;
827     *pq |= value & 0x3;
828 
829     return old_pq;
830 }
831 
832 bool xive_esb_trigger(uint8_t *pq)
833 {
834     uint8_t old_pq = *pq & 0x3;
835 
836     switch (old_pq) {
837     case XIVE_ESB_RESET:
838         xive_esb_set(pq, XIVE_ESB_PENDING);
839         return true;
840     case XIVE_ESB_PENDING:
841     case XIVE_ESB_QUEUED:
842         xive_esb_set(pq, XIVE_ESB_QUEUED);
843         return false;
844     case XIVE_ESB_OFF:
845         xive_esb_set(pq, XIVE_ESB_OFF);
846         return false;
847     default:
848          g_assert_not_reached();
849     }
850 }
851 
852 bool xive_esb_eoi(uint8_t *pq)
853 {
854     uint8_t old_pq = *pq & 0x3;
855 
856     switch (old_pq) {
857     case XIVE_ESB_RESET:
858     case XIVE_ESB_PENDING:
859         xive_esb_set(pq, XIVE_ESB_RESET);
860         return false;
861     case XIVE_ESB_QUEUED:
862         xive_esb_set(pq, XIVE_ESB_PENDING);
863         return true;
864     case XIVE_ESB_OFF:
865         xive_esb_set(pq, XIVE_ESB_OFF);
866         return false;
867     default:
868          g_assert_not_reached();
869     }
870 }
871 
872 /*
873  * XIVE Interrupt Source (or IVSE)
874  */
875 
876 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
877 {
878     assert(srcno < xsrc->nr_irqs);
879 
880     return xsrc->status[srcno] & 0x3;
881 }
882 
883 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
884 {
885     assert(srcno < xsrc->nr_irqs);
886 
887     return xive_esb_set(&xsrc->status[srcno], pq);
888 }
889 
890 /*
891  * Returns whether the event notification should be forwarded.
892  */
893 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
894 {
895     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
896 
897     xive_source_set_asserted(xsrc, srcno, true);
898 
899     switch (old_pq) {
900     case XIVE_ESB_RESET:
901         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
902         return true;
903     default:
904         return false;
905     }
906 }
907 
908 /*
909  * Sources can be configured with PQ offloading in which case the check
910  * on the PQ state bits of MSIs is disabled
911  */
912 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
913 {
914     return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
915         !xive_source_irq_is_lsi(xsrc, srcno);
916 }
917 
918 /*
919  * Returns whether the event notification should be forwarded.
920  */
921 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
922 {
923     bool ret;
924 
925     assert(srcno < xsrc->nr_irqs);
926 
927     if (xive_source_esb_disabled(xsrc, srcno)) {
928         return true;
929     }
930 
931     ret = xive_esb_trigger(&xsrc->status[srcno]);
932 
933     if (xive_source_irq_is_lsi(xsrc, srcno) &&
934         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
935         qemu_log_mask(LOG_GUEST_ERROR,
936                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
937     }
938 
939     return ret;
940 }
941 
942 /*
943  * Returns whether the event notification should be forwarded.
944  */
945 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
946 {
947     bool ret;
948 
949     assert(srcno < xsrc->nr_irqs);
950 
951     if (xive_source_esb_disabled(xsrc, srcno)) {
952         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
953         return false;
954     }
955 
956     ret = xive_esb_eoi(&xsrc->status[srcno]);
957 
958     /*
959      * LSI sources do not set the Q bit but they can still be
960      * asserted, in which case we should forward a new event
961      * notification
962      */
963     if (xive_source_irq_is_lsi(xsrc, srcno) &&
964         xive_source_is_asserted(xsrc, srcno)) {
965         ret = xive_source_lsi_trigger(xsrc, srcno);
966     }
967 
968     return ret;
969 }
970 
971 /*
972  * Forward the source event notification to the Router
973  */
974 static void xive_source_notify(XiveSource *xsrc, int srcno)
975 {
976     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
977     bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
978 
979     if (xnc->notify) {
980         xnc->notify(xsrc->xive, srcno, pq_checked);
981     }
982 }
983 
984 /*
985  * In a two pages ESB MMIO setting, even page is the trigger page, odd
986  * page is for management
987  */
988 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
989 {
990     return !((addr >> shift) & 1);
991 }
992 
993 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
994 {
995     return xive_source_esb_has_2page(xsrc) &&
996         addr_is_even(addr, xsrc->esb_shift - 1);
997 }
998 
999 /*
1000  * ESB MMIO loads
1001  *                      Trigger page    Management/EOI page
1002  *
1003  * ESB MMIO setting     2 pages         1 or 2 pages
1004  *
1005  * 0x000 .. 0x3FF       -1              EOI and return 0|1
1006  * 0x400 .. 0x7FF       -1              EOI and return 0|1
1007  * 0x800 .. 0xBFF       -1              return PQ
1008  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
1009  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
1010  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
1011  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
1012  */
1013 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1014 {
1015     XiveSource *xsrc = XIVE_SOURCE(opaque);
1016     uint32_t offset = addr & 0xFFF;
1017     uint32_t srcno = addr >> xsrc->esb_shift;
1018     uint64_t ret = -1;
1019 
1020     /* In a two pages ESB MMIO setting, trigger page should not be read */
1021     if (xive_source_is_trigger_page(xsrc, addr)) {
1022         qemu_log_mask(LOG_GUEST_ERROR,
1023                       "XIVE: invalid load on IRQ %d trigger page at "
1024                       "0x%"HWADDR_PRIx"\n", srcno, addr);
1025         return -1;
1026     }
1027 
1028     switch (offset) {
1029     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1030         ret = xive_source_esb_eoi(xsrc, srcno);
1031 
1032         /* Forward the source event notification for routing */
1033         if (ret) {
1034             xive_source_notify(xsrc, srcno);
1035         }
1036         break;
1037 
1038     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1039         ret = xive_source_esb_get(xsrc, srcno);
1040         break;
1041 
1042     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1043     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1044     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1045     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1046         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1047         break;
1048     default:
1049         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1050                       offset);
1051     }
1052 
1053     trace_xive_source_esb_read(addr, srcno, ret);
1054 
1055     return ret;
1056 }
1057 
1058 /*
1059  * ESB MMIO stores
1060  *                      Trigger page    Management/EOI page
1061  *
1062  * ESB MMIO setting     2 pages         1 or 2 pages
1063  *
1064  * 0x000 .. 0x3FF       Trigger         Trigger
1065  * 0x400 .. 0x7FF       Trigger         EOI
1066  * 0x800 .. 0xBFF       Trigger         undefined
1067  * 0xC00 .. 0xCFF       Trigger         PQ=00
1068  * 0xD00 .. 0xDFF       Trigger         PQ=01
1069  * 0xE00 .. 0xDFF       Trigger         PQ=10
1070  * 0xF00 .. 0xDFF       Trigger         PQ=11
1071  */
1072 static void xive_source_esb_write(void *opaque, hwaddr addr,
1073                                   uint64_t value, unsigned size)
1074 {
1075     XiveSource *xsrc = XIVE_SOURCE(opaque);
1076     uint32_t offset = addr & 0xFFF;
1077     uint32_t srcno = addr >> xsrc->esb_shift;
1078     bool notify = false;
1079 
1080     trace_xive_source_esb_write(addr, srcno, value);
1081 
1082     /* In a two pages ESB MMIO setting, trigger page only triggers */
1083     if (xive_source_is_trigger_page(xsrc, addr)) {
1084         notify = xive_source_esb_trigger(xsrc, srcno);
1085         goto out;
1086     }
1087 
1088     switch (offset) {
1089     case 0 ... 0x3FF:
1090         notify = xive_source_esb_trigger(xsrc, srcno);
1091         break;
1092 
1093     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1094         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1095             qemu_log_mask(LOG_GUEST_ERROR,
1096                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1097             return;
1098         }
1099 
1100         notify = xive_source_esb_eoi(xsrc, srcno);
1101         break;
1102 
1103     /*
1104      * This is an internal offset used to inject triggers when the PQ
1105      * state bits are not controlled locally. Such as for LSIs when
1106      * under ABT mode.
1107      */
1108     case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1109         notify = true;
1110         break;
1111 
1112     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1113     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1114     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1115     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1116         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1117         break;
1118 
1119     default:
1120         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1121                       offset);
1122         return;
1123     }
1124 
1125 out:
1126     /* Forward the source event notification for routing */
1127     if (notify) {
1128         xive_source_notify(xsrc, srcno);
1129     }
1130 }
1131 
1132 static const MemoryRegionOps xive_source_esb_ops = {
1133     .read = xive_source_esb_read,
1134     .write = xive_source_esb_write,
1135     .endianness = DEVICE_BIG_ENDIAN,
1136     .valid = {
1137         .min_access_size = 8,
1138         .max_access_size = 8,
1139     },
1140     .impl = {
1141         .min_access_size = 8,
1142         .max_access_size = 8,
1143     },
1144 };
1145 
1146 void xive_source_set_irq(void *opaque, int srcno, int val)
1147 {
1148     XiveSource *xsrc = XIVE_SOURCE(opaque);
1149     bool notify = false;
1150 
1151     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1152         if (val) {
1153             notify = xive_source_lsi_trigger(xsrc, srcno);
1154         } else {
1155             xive_source_set_asserted(xsrc, srcno, false);
1156         }
1157     } else {
1158         if (val) {
1159             notify = xive_source_esb_trigger(xsrc, srcno);
1160         }
1161     }
1162 
1163     /* Forward the source event notification for routing */
1164     if (notify) {
1165         xive_source_notify(xsrc, srcno);
1166     }
1167 }
1168 
1169 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1170 {
1171     int i;
1172 
1173     for (i = 0; i < xsrc->nr_irqs; i++) {
1174         uint8_t pq = xive_source_esb_get(xsrc, i);
1175 
1176         if (pq == XIVE_ESB_OFF) {
1177             continue;
1178         }
1179 
1180         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1181                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1182                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1183                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1184                        xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1185     }
1186 }
1187 
1188 static void xive_source_reset(void *dev)
1189 {
1190     XiveSource *xsrc = XIVE_SOURCE(dev);
1191 
1192     /* Do not clear the LSI bitmap */
1193 
1194     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1195     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1196 }
1197 
1198 static void xive_source_realize(DeviceState *dev, Error **errp)
1199 {
1200     XiveSource *xsrc = XIVE_SOURCE(dev);
1201     size_t esb_len = xive_source_esb_len(xsrc);
1202 
1203     assert(xsrc->xive);
1204 
1205     if (!xsrc->nr_irqs) {
1206         error_setg(errp, "Number of interrupt needs to be greater than 0");
1207         return;
1208     }
1209 
1210     if (xsrc->esb_shift != XIVE_ESB_4K &&
1211         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1212         xsrc->esb_shift != XIVE_ESB_64K &&
1213         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1214         error_setg(errp, "Invalid ESB shift setting");
1215         return;
1216     }
1217 
1218     xsrc->status = g_malloc0(xsrc->nr_irqs);
1219     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1220 
1221     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1222     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1223                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1224                           esb_len);
1225     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1226 
1227     qemu_register_reset(xive_source_reset, dev);
1228 }
1229 
1230 static const VMStateDescription vmstate_xive_source = {
1231     .name = TYPE_XIVE_SOURCE,
1232     .version_id = 1,
1233     .minimum_version_id = 1,
1234     .fields = (VMStateField[]) {
1235         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1236         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1237         VMSTATE_END_OF_LIST()
1238     },
1239 };
1240 
1241 /*
1242  * The default XIVE interrupt source setting for the ESB MMIOs is two
1243  * 64k pages without Store EOI, to be in sync with KVM.
1244  */
1245 static Property xive_source_properties[] = {
1246     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1247     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1248     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1249     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1250                      XiveNotifier *),
1251     DEFINE_PROP_END_OF_LIST(),
1252 };
1253 
1254 static void xive_source_class_init(ObjectClass *klass, void *data)
1255 {
1256     DeviceClass *dc = DEVICE_CLASS(klass);
1257 
1258     dc->desc    = "XIVE Interrupt Source";
1259     device_class_set_props(dc, xive_source_properties);
1260     dc->realize = xive_source_realize;
1261     dc->vmsd    = &vmstate_xive_source;
1262     /*
1263      * Reason: part of XIVE interrupt controller, needs to be wired up,
1264      * e.g. by spapr_xive_instance_init().
1265      */
1266     dc->user_creatable = false;
1267 }
1268 
1269 static const TypeInfo xive_source_info = {
1270     .name          = TYPE_XIVE_SOURCE,
1271     .parent        = TYPE_DEVICE,
1272     .instance_size = sizeof(XiveSource),
1273     .class_init    = xive_source_class_init,
1274 };
1275 
1276 /*
1277  * XiveEND helpers
1278  */
1279 
1280 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1281 {
1282     uint64_t qaddr_base = xive_end_qaddr(end);
1283     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1284     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1285     uint32_t qentries = 1 << (qsize + 10);
1286     int i;
1287 
1288     /*
1289      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1290      */
1291     monitor_printf(mon, " [ ");
1292     qindex = (qindex - (width - 1)) & (qentries - 1);
1293     for (i = 0; i < width; i++) {
1294         uint64_t qaddr = qaddr_base + (qindex << 2);
1295         uint32_t qdata = -1;
1296 
1297         if (dma_memory_read(&address_space_memory, qaddr,
1298                             &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1299             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1300                           HWADDR_PRIx "\n", qaddr);
1301             return;
1302         }
1303         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1304                        be32_to_cpu(qdata));
1305         qindex = (qindex + 1) & (qentries - 1);
1306     }
1307     monitor_printf(mon, "]");
1308 }
1309 
1310 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1311 {
1312     uint64_t qaddr_base = xive_end_qaddr(end);
1313     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1314     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1315     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1316     uint32_t qentries = 1 << (qsize + 10);
1317 
1318     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1319     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1320     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1321     uint8_t pq;
1322 
1323     if (!xive_end_is_valid(end)) {
1324         return;
1325     }
1326 
1327     pq = xive_get_field32(END_W1_ESn, end->w1);
1328 
1329     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1330                    end_idx,
1331                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1332                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1333                    xive_end_is_valid(end)    ? 'v' : '-',
1334                    xive_end_is_enqueue(end)  ? 'q' : '-',
1335                    xive_end_is_notify(end)   ? 'n' : '-',
1336                    xive_end_is_backlog(end)  ? 'b' : '-',
1337                    xive_end_is_escalate(end) ? 'e' : '-',
1338                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1339                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1340                    xive_end_is_firmware(end)   ? 'f' : '-',
1341                    priority, nvt_blk, nvt_idx);
1342 
1343     if (qaddr_base) {
1344         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1345                        qaddr_base, qindex, qentries, qgen);
1346         xive_end_queue_pic_print_info(end, 6, mon);
1347     }
1348     monitor_printf(mon, "\n");
1349 }
1350 
1351 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1352 {
1353     uint64_t qaddr_base = xive_end_qaddr(end);
1354     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1355     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1356     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1357 
1358     uint64_t qaddr = qaddr_base + (qindex << 2);
1359     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1360     uint32_t qentries = 1 << (qsize + 10);
1361 
1362     if (dma_memory_write(&address_space_memory, qaddr,
1363                          &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1364         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1365                       HWADDR_PRIx "\n", qaddr);
1366         return;
1367     }
1368 
1369     qindex = (qindex + 1) & (qentries - 1);
1370     if (qindex == 0) {
1371         qgen ^= 1;
1372         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1373     }
1374     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1375 }
1376 
1377 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1378                                    Monitor *mon)
1379 {
1380     XiveEAS *eas = (XiveEAS *) &end->w4;
1381     uint8_t pq;
1382 
1383     if (!xive_end_is_escalate(end)) {
1384         return;
1385     }
1386 
1387     pq = xive_get_field32(END_W1_ESe, end->w1);
1388 
1389     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1390                    end_idx,
1391                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1392                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1393                    xive_eas_is_valid(eas) ? 'V' : ' ',
1394                    xive_eas_is_masked(eas) ? 'M' : ' ',
1395                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1396                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1397                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1398 }
1399 
1400 /*
1401  * XIVE Router (aka. Virtualization Controller or IVRE)
1402  */
1403 
1404 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1405                         XiveEAS *eas)
1406 {
1407     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1408 
1409     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1410 }
1411 
1412 static
1413 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1414                        uint8_t *pq)
1415 {
1416     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1417 
1418     return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1419 }
1420 
1421 static
1422 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1423                        uint8_t *pq)
1424 {
1425     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1426 
1427     return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1428 }
1429 
1430 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1431                         XiveEND *end)
1432 {
1433    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1434 
1435    return xrc->get_end(xrtr, end_blk, end_idx, end);
1436 }
1437 
1438 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1439                           XiveEND *end, uint8_t word_number)
1440 {
1441    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1442 
1443    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1444 }
1445 
1446 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1447                         XiveNVT *nvt)
1448 {
1449    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1450 
1451    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1452 }
1453 
1454 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1455                         XiveNVT *nvt, uint8_t word_number)
1456 {
1457    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1458 
1459    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1460 }
1461 
1462 static int xive_router_get_block_id(XiveRouter *xrtr)
1463 {
1464    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1465 
1466    return xrc->get_block_id(xrtr);
1467 }
1468 
1469 static void xive_router_realize(DeviceState *dev, Error **errp)
1470 {
1471     XiveRouter *xrtr = XIVE_ROUTER(dev);
1472 
1473     assert(xrtr->xfb);
1474 }
1475 
1476 /*
1477  * Encode the HW CAM line in the block group mode format :
1478  *
1479  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1480  */
1481 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1482 {
1483     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1484     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1485     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1486 
1487     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1488 }
1489 
1490 /*
1491  * The thread context register words are in big-endian format.
1492  */
1493 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1494                               uint8_t format,
1495                               uint8_t nvt_blk, uint32_t nvt_idx,
1496                               bool cam_ignore, uint32_t logic_serv)
1497 {
1498     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1499     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1500     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1501     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1502     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1503 
1504     /*
1505      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1506      * identifier are ignored in the "CAM" match.
1507      */
1508 
1509     if (format == 0) {
1510         if (cam_ignore == true) {
1511             /*
1512              * F=0 & i=1: Logical server notification (bits ignored at
1513              * the end of the NVT identifier)
1514              */
1515             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1516                           nvt_blk, nvt_idx);
1517              return -1;
1518         }
1519 
1520         /* F=0 & i=0: Specific NVT notification */
1521 
1522         /* PHYS ring */
1523         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1524             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1525             return TM_QW3_HV_PHYS;
1526         }
1527 
1528         /* HV POOL ring */
1529         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1530             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1531             return TM_QW2_HV_POOL;
1532         }
1533 
1534         /* OS ring */
1535         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1536             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1537             return TM_QW1_OS;
1538         }
1539     } else {
1540         /* F=1 : User level Event-Based Branch (EBB) notification */
1541 
1542         /* USER ring */
1543         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1544              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1545              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1546              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1547             return TM_QW0_USER;
1548         }
1549     }
1550     return -1;
1551 }
1552 
1553 /*
1554  * This is our simple Xive Presenter Engine model. It is merged in the
1555  * Router as it does not require an extra object.
1556  *
1557  * It receives notification requests sent by the IVRE to find one
1558  * matching NVT (or more) dispatched on the processor threads. In case
1559  * of a single NVT notification, the process is abreviated and the
1560  * thread is signaled if a match is found. In case of a logical server
1561  * notification (bits ignored at the end of the NVT identifier), the
1562  * IVPE and IVRE select a winning thread using different filters. This
1563  * involves 2 or 3 exchanges on the PowerBus that the model does not
1564  * support.
1565  *
1566  * The parameters represent what is sent on the PowerBus
1567  */
1568 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1569                            uint8_t nvt_blk, uint32_t nvt_idx,
1570                            bool cam_ignore, uint8_t priority,
1571                            uint32_t logic_serv)
1572 {
1573     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1574     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1575     int count;
1576 
1577     /*
1578      * Ask the machine to scan the interrupt controllers for a match
1579      */
1580     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1581                            priority, logic_serv, &match);
1582     if (count < 0) {
1583         return false;
1584     }
1585 
1586     /* handle CPU exception delivery */
1587     if (count) {
1588         trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1589         xive_tctx_ipb_update(match.tctx, match.ring,
1590                              xive_priority_to_ipb(priority));
1591     }
1592 
1593     return !!count;
1594 }
1595 
1596 /*
1597  * Notification using the END ESe/ESn bit (Event State Buffer for
1598  * escalation and notification). Provide further coalescing in the
1599  * Router.
1600  */
1601 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1602                                       uint32_t end_idx, XiveEND *end,
1603                                       uint32_t end_esmask)
1604 {
1605     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1606     bool notify = xive_esb_trigger(&pq);
1607 
1608     if (pq != xive_get_field32(end_esmask, end->w1)) {
1609         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1610         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1611     }
1612 
1613     /* ESe/n[Q]=1 : end of notification */
1614     return notify;
1615 }
1616 
1617 /*
1618  * An END trigger can come from an event trigger (IPI or HW) or from
1619  * another chip. We don't model the PowerBus but the END trigger
1620  * message has the same parameters than in the function below.
1621  */
1622 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1623                                    uint32_t end_idx, uint32_t end_data)
1624 {
1625     XiveEND end;
1626     uint8_t priority;
1627     uint8_t format;
1628     uint8_t nvt_blk;
1629     uint32_t nvt_idx;
1630     XiveNVT nvt;
1631     bool found;
1632 
1633     /* END cache lookup */
1634     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1635         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1636                       end_idx);
1637         return;
1638     }
1639 
1640     if (!xive_end_is_valid(&end)) {
1641         trace_xive_router_end_notify(end_blk, end_idx, end_data);
1642         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1643                       end_blk, end_idx);
1644         return;
1645     }
1646 
1647     if (xive_end_is_enqueue(&end)) {
1648         xive_end_enqueue(&end, end_data);
1649         /* Enqueuing event data modifies the EQ toggle and index */
1650         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1651     }
1652 
1653     /*
1654      * When the END is silent, we skip the notification part.
1655      */
1656     if (xive_end_is_silent_escalation(&end)) {
1657         goto do_escalation;
1658     }
1659 
1660     /*
1661      * The W7 format depends on the F bit in W6. It defines the type
1662      * of the notification :
1663      *
1664      *   F=0 : single or multiple NVT notification
1665      *   F=1 : User level Event-Based Branch (EBB) notification, no
1666      *         priority
1667      */
1668     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1669     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1670 
1671     /* The END is masked */
1672     if (format == 0 && priority == 0xff) {
1673         return;
1674     }
1675 
1676     /*
1677      * Check the END ESn (Event State Buffer for notification) for
1678      * even further coalescing in the Router
1679      */
1680     if (!xive_end_is_notify(&end)) {
1681         /* ESn[Q]=1 : end of notification */
1682         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1683                                        &end, END_W1_ESn)) {
1684             return;
1685         }
1686     }
1687 
1688     /*
1689      * Follows IVPE notification
1690      */
1691     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1692     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1693 
1694     /* NVT cache lookup */
1695     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1696         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1697                       nvt_blk, nvt_idx);
1698         return;
1699     }
1700 
1701     if (!xive_nvt_is_valid(&nvt)) {
1702         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1703                       nvt_blk, nvt_idx);
1704         return;
1705     }
1706 
1707     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1708                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1709                           priority,
1710                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1711 
1712     /* TODO: Auto EOI. */
1713 
1714     if (found) {
1715         return;
1716     }
1717 
1718     /*
1719      * If no matching NVT is dispatched on a HW thread :
1720      * - specific VP: update the NVT structure if backlog is activated
1721      * - logical server : forward request to IVPE (not supported)
1722      */
1723     if (xive_end_is_backlog(&end)) {
1724         uint8_t ipb;
1725 
1726         if (format == 1) {
1727             qemu_log_mask(LOG_GUEST_ERROR,
1728                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1729                           end_blk, end_idx);
1730             return;
1731         }
1732         /*
1733          * Record the IPB in the associated NVT structure for later
1734          * use. The presenter will resend the interrupt when the vCPU
1735          * is dispatched again on a HW thread.
1736          */
1737         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1738             xive_priority_to_ipb(priority);
1739         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1740         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1741 
1742         /*
1743          * On HW, follows a "Broadcast Backlog" to IVPEs
1744          */
1745     }
1746 
1747 do_escalation:
1748     /*
1749      * If activated, escalate notification using the ESe PQ bits and
1750      * the EAS in w4-5
1751      */
1752     if (!xive_end_is_escalate(&end)) {
1753         return;
1754     }
1755 
1756     /*
1757      * Check the END ESe (Event State Buffer for escalation) for even
1758      * further coalescing in the Router
1759      */
1760     if (!xive_end_is_uncond_escalation(&end)) {
1761         /* ESe[Q]=1 : end of notification */
1762         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1763                                        &end, END_W1_ESe)) {
1764             return;
1765         }
1766     }
1767 
1768     trace_xive_router_end_escalate(end_blk, end_idx,
1769            (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1770            (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1771            (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1772     /*
1773      * The END trigger becomes an Escalation trigger
1774      */
1775     xive_router_end_notify(xrtr,
1776                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1777                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1778                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1779 }
1780 
1781 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1782 {
1783     XiveRouter *xrtr = XIVE_ROUTER(xn);
1784     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1785     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1786     XiveEAS eas;
1787 
1788     /* EAS cache lookup */
1789     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1790         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1791         return;
1792     }
1793 
1794     if (!pq_checked) {
1795         bool notify;
1796         uint8_t pq;
1797 
1798         /* PQ cache lookup */
1799         if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1800             /* Set FIR */
1801             g_assert_not_reached();
1802         }
1803 
1804         notify = xive_esb_trigger(&pq);
1805 
1806         if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1807             /* Set FIR */
1808             g_assert_not_reached();
1809         }
1810 
1811         if (!notify) {
1812             return;
1813         }
1814     }
1815 
1816     if (!xive_eas_is_valid(&eas)) {
1817         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1818         return;
1819     }
1820 
1821     if (xive_eas_is_masked(&eas)) {
1822         /* Notification completed */
1823         return;
1824     }
1825 
1826     /*
1827      * The event trigger becomes an END trigger
1828      */
1829     xive_router_end_notify(xrtr,
1830                            xive_get_field64(EAS_END_BLOCK, eas.w),
1831                            xive_get_field64(EAS_END_INDEX, eas.w),
1832                            xive_get_field64(EAS_END_DATA,  eas.w));
1833 }
1834 
1835 static Property xive_router_properties[] = {
1836     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1837                      TYPE_XIVE_FABRIC, XiveFabric *),
1838     DEFINE_PROP_END_OF_LIST(),
1839 };
1840 
1841 static void xive_router_class_init(ObjectClass *klass, void *data)
1842 {
1843     DeviceClass *dc = DEVICE_CLASS(klass);
1844     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1845 
1846     dc->desc    = "XIVE Router Engine";
1847     device_class_set_props(dc, xive_router_properties);
1848     /* Parent is SysBusDeviceClass. No need to call its realize hook */
1849     dc->realize = xive_router_realize;
1850     xnc->notify = xive_router_notify;
1851 }
1852 
1853 static const TypeInfo xive_router_info = {
1854     .name          = TYPE_XIVE_ROUTER,
1855     .parent        = TYPE_SYS_BUS_DEVICE,
1856     .abstract      = true,
1857     .instance_size = sizeof(XiveRouter),
1858     .class_size    = sizeof(XiveRouterClass),
1859     .class_init    = xive_router_class_init,
1860     .interfaces    = (InterfaceInfo[]) {
1861         { TYPE_XIVE_NOTIFIER },
1862         { TYPE_XIVE_PRESENTER },
1863         { }
1864     }
1865 };
1866 
1867 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1868 {
1869     if (!xive_eas_is_valid(eas)) {
1870         return;
1871     }
1872 
1873     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1874                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1875                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1876                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1877                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1878 }
1879 
1880 /*
1881  * END ESB MMIO loads
1882  */
1883 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1884 {
1885     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1886     uint32_t offset = addr & 0xFFF;
1887     uint8_t end_blk;
1888     uint32_t end_idx;
1889     XiveEND end;
1890     uint32_t end_esmask;
1891     uint8_t pq;
1892     uint64_t ret = -1;
1893 
1894     /*
1895      * The block id should be deduced from the load address on the END
1896      * ESB MMIO but our model only supports a single block per XIVE chip.
1897      */
1898     end_blk = xive_router_get_block_id(xsrc->xrtr);
1899     end_idx = addr >> (xsrc->esb_shift + 1);
1900 
1901     trace_xive_end_source_read(end_blk, end_idx, addr);
1902 
1903     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1904         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1905                       end_idx);
1906         return -1;
1907     }
1908 
1909     if (!xive_end_is_valid(&end)) {
1910         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1911                       end_blk, end_idx);
1912         return -1;
1913     }
1914 
1915     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1916     pq = xive_get_field32(end_esmask, end.w1);
1917 
1918     switch (offset) {
1919     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1920         ret = xive_esb_eoi(&pq);
1921 
1922         /* Forward the source event notification for routing ?? */
1923         break;
1924 
1925     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1926         ret = pq;
1927         break;
1928 
1929     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1930     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1931     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1932     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1933         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1934         break;
1935     default:
1936         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1937                       offset);
1938         return -1;
1939     }
1940 
1941     if (pq != xive_get_field32(end_esmask, end.w1)) {
1942         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1943         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1944     }
1945 
1946     return ret;
1947 }
1948 
1949 /*
1950  * END ESB MMIO stores are invalid
1951  */
1952 static void xive_end_source_write(void *opaque, hwaddr addr,
1953                                   uint64_t value, unsigned size)
1954 {
1955     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1956                   HWADDR_PRIx"\n", addr);
1957 }
1958 
1959 static const MemoryRegionOps xive_end_source_ops = {
1960     .read = xive_end_source_read,
1961     .write = xive_end_source_write,
1962     .endianness = DEVICE_BIG_ENDIAN,
1963     .valid = {
1964         .min_access_size = 8,
1965         .max_access_size = 8,
1966     },
1967     .impl = {
1968         .min_access_size = 8,
1969         .max_access_size = 8,
1970     },
1971 };
1972 
1973 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1974 {
1975     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1976 
1977     assert(xsrc->xrtr);
1978 
1979     if (!xsrc->nr_ends) {
1980         error_setg(errp, "Number of interrupt needs to be greater than 0");
1981         return;
1982     }
1983 
1984     if (xsrc->esb_shift != XIVE_ESB_4K &&
1985         xsrc->esb_shift != XIVE_ESB_64K) {
1986         error_setg(errp, "Invalid ESB shift setting");
1987         return;
1988     }
1989 
1990     /*
1991      * Each END is assigned an even/odd pair of MMIO pages, the even page
1992      * manages the ESn field while the odd page manages the ESe field.
1993      */
1994     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1995                           &xive_end_source_ops, xsrc, "xive.end",
1996                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1997 }
1998 
1999 static Property xive_end_source_properties[] = {
2000     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
2001     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
2002     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
2003                      XiveRouter *),
2004     DEFINE_PROP_END_OF_LIST(),
2005 };
2006 
2007 static void xive_end_source_class_init(ObjectClass *klass, void *data)
2008 {
2009     DeviceClass *dc = DEVICE_CLASS(klass);
2010 
2011     dc->desc    = "XIVE END Source";
2012     device_class_set_props(dc, xive_end_source_properties);
2013     dc->realize = xive_end_source_realize;
2014     /*
2015      * Reason: part of XIVE interrupt controller, needs to be wired up,
2016      * e.g. by spapr_xive_instance_init().
2017      */
2018     dc->user_creatable = false;
2019 }
2020 
2021 static const TypeInfo xive_end_source_info = {
2022     .name          = TYPE_XIVE_END_SOURCE,
2023     .parent        = TYPE_DEVICE,
2024     .instance_size = sizeof(XiveENDSource),
2025     .class_init    = xive_end_source_class_init,
2026 };
2027 
2028 /*
2029  * XIVE Notifier
2030  */
2031 static const TypeInfo xive_notifier_info = {
2032     .name = TYPE_XIVE_NOTIFIER,
2033     .parent = TYPE_INTERFACE,
2034     .class_size = sizeof(XiveNotifierClass),
2035 };
2036 
2037 /*
2038  * XIVE Presenter
2039  */
2040 static const TypeInfo xive_presenter_info = {
2041     .name = TYPE_XIVE_PRESENTER,
2042     .parent = TYPE_INTERFACE,
2043     .class_size = sizeof(XivePresenterClass),
2044 };
2045 
2046 /*
2047  * XIVE Fabric
2048  */
2049 static const TypeInfo xive_fabric_info = {
2050     .name = TYPE_XIVE_FABRIC,
2051     .parent = TYPE_INTERFACE,
2052     .class_size = sizeof(XiveFabricClass),
2053 };
2054 
2055 static void xive_register_types(void)
2056 {
2057     type_register_static(&xive_fabric_info);
2058     type_register_static(&xive_source_info);
2059     type_register_static(&xive_notifier_info);
2060     type_register_static(&xive_presenter_info);
2061     type_register_static(&xive_router_info);
2062     type_register_static(&xive_end_source_info);
2063     type_register_static(&xive_tctx_info);
2064 }
2065 
2066 type_init(xive_register_types)
2067