xref: /qemu/hw/mips/boston.c (revision 13f934e7)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "hw/boards.h"
24 #include "hw/char/serial.h"
25 #include "hw/ide/pci.h"
26 #include "hw/ide/ahci.h"
27 #include "hw/loader.h"
28 #include "hw/loader-fit.h"
29 #include "hw/mips/bootloader.h"
30 #include "hw/mips/cps.h"
31 #include "hw/pci-host/xilinx-pcie.h"
32 #include "hw/qdev-clock.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 #include "sysemu/runstate.h"
42 
43 #include <libfdt.h>
44 #include "qom/object.h"
45 
46 #define TYPE_BOSTON "mips-boston"
47 typedef struct BostonState BostonState;
48 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
49                          TYPE_BOSTON)
50 
51 struct BostonState {
52     SysBusDevice parent_obj;
53 
54     MachineState *mach;
55     MIPSCPSState cps;
56     SerialMM *uart;
57     Clock *cpuclk;
58 
59     CharBackend lcd_display;
60     char lcd_content[8];
61     bool lcd_inited;
62 
63     hwaddr kernel_entry;
64     hwaddr fdt_base;
65 };
66 
67 enum boston_plat_reg {
68     PLAT_FPGA_BUILD     = 0x00,
69     PLAT_CORE_CL        = 0x04,
70     PLAT_WRAPPER_CL     = 0x08,
71     PLAT_SYSCLK_STATUS  = 0x0c,
72     PLAT_SOFTRST_CTL    = 0x10,
73 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
74     PLAT_DDR3_STATUS    = 0x14,
75 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
76 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
77     PLAT_PCIE_STATUS    = 0x18,
78 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
79 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
80 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
81     PLAT_FLASH_CTL      = 0x1c,
82     PLAT_SPARE0         = 0x20,
83     PLAT_SPARE1         = 0x24,
84     PLAT_SPARE2         = 0x28,
85     PLAT_SPARE3         = 0x2c,
86     PLAT_MMCM_DIV       = 0x30,
87 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
88 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
89 #define PLAT_MMCM_DIV_MUL_SHIFT         16
90 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
91     PLAT_BUILD_CFG      = 0x34,
92 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
93 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
94 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
95 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
96     PLAT_DDR_CFG        = 0x38,
97 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
98 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
99     PLAT_NOC_PCIE0_ADDR = 0x3c,
100     PLAT_NOC_PCIE1_ADDR = 0x40,
101     PLAT_NOC_PCIE2_ADDR = 0x44,
102     PLAT_SYS_CTL        = 0x48,
103 };
104 
105 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
106 {
107     BostonState *s = opaque;
108     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
109         qemu_chr_fe_printf(&s->lcd_display, "        ");
110         s->lcd_inited = true;
111     }
112 }
113 
114 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
115                                 unsigned size)
116 {
117     BostonState *s = opaque;
118     uint64_t val = 0;
119 
120     switch (size) {
121     case 8:
122         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
123         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
124         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
125         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
126         /* fall through */
127     case 4:
128         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
129         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
130         /* fall through */
131     case 2:
132         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
133         /* fall through */
134     case 1:
135         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
136         break;
137     }
138 
139     return val;
140 }
141 
142 static void boston_lcd_write(void *opaque, hwaddr addr,
143                              uint64_t val, unsigned size)
144 {
145     BostonState *s = opaque;
146 
147     switch (size) {
148     case 8:
149         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
150         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
151         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
152         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
153         /* fall through */
154     case 4:
155         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
156         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
157         /* fall through */
158     case 2:
159         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
160         /* fall through */
161     case 1:
162         s->lcd_content[(addr + 0) & 0x7] = val;
163         break;
164     }
165 
166     qemu_chr_fe_printf(&s->lcd_display,
167                        "\r%-8.8s", s->lcd_content);
168 }
169 
170 static const MemoryRegionOps boston_lcd_ops = {
171     .read = boston_lcd_read,
172     .write = boston_lcd_write,
173     .endianness = DEVICE_NATIVE_ENDIAN,
174 };
175 
176 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
177                                     unsigned size)
178 {
179     BostonState *s = opaque;
180     uint32_t gic_freq, val;
181 
182     if (size != 4) {
183         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
184         return 0;
185     }
186 
187     switch (addr & 0xffff) {
188     case PLAT_FPGA_BUILD:
189     case PLAT_CORE_CL:
190     case PLAT_WRAPPER_CL:
191         return 0;
192     case PLAT_DDR3_STATUS:
193         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
194     case PLAT_MMCM_DIV:
195         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
196         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
197         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
198         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
199         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
200         return val;
201     case PLAT_BUILD_CFG:
202         val = PLAT_BUILD_CFG_PCIE0_EN;
203         val |= PLAT_BUILD_CFG_PCIE1_EN;
204         val |= PLAT_BUILD_CFG_PCIE2_EN;
205         return val;
206     case PLAT_DDR_CFG:
207         val = s->mach->ram_size / GiB;
208         assert(!(val & ~PLAT_DDR_CFG_SIZE));
209         val |= PLAT_DDR_CFG_MHZ;
210         return val;
211     default:
212         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
213                       addr & 0xffff);
214         return 0;
215     }
216 }
217 
218 static void boston_platreg_write(void *opaque, hwaddr addr,
219                                  uint64_t val, unsigned size)
220 {
221     if (size != 4) {
222         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
223         return;
224     }
225 
226     switch (addr & 0xffff) {
227     case PLAT_FPGA_BUILD:
228     case PLAT_CORE_CL:
229     case PLAT_WRAPPER_CL:
230     case PLAT_DDR3_STATUS:
231     case PLAT_PCIE_STATUS:
232     case PLAT_MMCM_DIV:
233     case PLAT_BUILD_CFG:
234     case PLAT_DDR_CFG:
235         /* read only */
236         break;
237     case PLAT_SOFTRST_CTL:
238         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
239             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
240         }
241         break;
242     default:
243         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
244                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
245         break;
246     }
247 }
248 
249 static const MemoryRegionOps boston_platreg_ops = {
250     .read = boston_platreg_read,
251     .write = boston_platreg_write,
252     .endianness = DEVICE_NATIVE_ENDIAN,
253 };
254 
255 static void mips_boston_instance_init(Object *obj)
256 {
257     BostonState *s = BOSTON(obj);
258 
259     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
260     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
261 }
262 
263 static const TypeInfo boston_device = {
264     .name          = TYPE_BOSTON,
265     .parent        = TYPE_SYS_BUS_DEVICE,
266     .instance_size = sizeof(BostonState),
267     .instance_init = mips_boston_instance_init,
268 };
269 
270 static void boston_register_types(void)
271 {
272     type_register_static(&boston_device);
273 }
274 type_init(boston_register_types)
275 
276 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
277 {
278     const uint32_t cm_base = 0x16100000;
279     const uint32_t gic_base = 0x16120000;
280     const uint32_t cpc_base = 0x16200000;
281 
282     /* Move CM GCRs */
283     bl_gen_write_ulong(&p,
284                        cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
285                        cm_base);
286 
287     /* Move & enable GIC GCRs */
288     bl_gen_write_ulong(&p,
289                        cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_GIC_BASE_OFS),
290                        gic_base | GCR_GIC_BASE_GICEN_MSK);
291 
292     /* Move & enable CPC GCRs */
293     bl_gen_write_ulong(&p,
294                        cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_CPC_BASE_OFS),
295                        cpc_base | GCR_CPC_BASE_CPCEN_MSK);
296 
297     /*
298      * Setup argument registers to follow the UHI boot protocol:
299      *
300      * a0/$4 = -2
301      * a1/$5 = virtual address of FDT
302      * a2/$6 = 0
303      * a3/$7 = 0
304      */
305     bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
306 }
307 
308 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
309                                      const void *match_data, hwaddr *load_addr)
310 {
311     BostonState *s = BOSTON(opaque);
312     MachineState *machine = s->mach;
313     const char *cmdline;
314     int err;
315     size_t ram_low_sz, ram_high_sz;
316     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
317     g_autofree void *fdt = g_malloc0(fdt_sz);
318 
319     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
320     if (err) {
321         fprintf(stderr, "unable to open FDT\n");
322         return NULL;
323     }
324 
325     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
326             ? machine->kernel_cmdline : " ";
327     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
328     if (err < 0) {
329         fprintf(stderr, "couldn't set /chosen/bootargs\n");
330         return NULL;
331     }
332 
333     ram_low_sz = MIN(256 * MiB, machine->ram_size);
334     ram_high_sz = machine->ram_size - ram_low_sz;
335     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
336                                  1, 0x00000000, 1, ram_low_sz,
337                                  1, 0x90000000, 1, ram_high_sz);
338 
339     fdt = g_realloc(fdt, fdt_totalsize(fdt));
340     qemu_fdt_dumpdtb(fdt, fdt_sz);
341 
342     s->fdt_base = *load_addr;
343 
344     return g_steal_pointer(&fdt);
345 }
346 
347 static const void *boston_kernel_filter(void *opaque, const void *kernel,
348                                         hwaddr *load_addr, hwaddr *entry_addr)
349 {
350     BostonState *s = BOSTON(opaque);
351 
352     s->kernel_entry = *entry_addr;
353 
354     return kernel;
355 }
356 
357 static const struct fit_loader_match boston_matches[] = {
358     { "img,boston" },
359     { NULL },
360 };
361 
362 static const struct fit_loader boston_fit_loader = {
363     .matches = boston_matches,
364     .addr_to_phys = cpu_mips_kseg0_to_phys,
365     .fdt_filter = boston_fdt_filter,
366     .kernel_filter = boston_kernel_filter,
367 };
368 
369 static inline XilinxPCIEHost *
370 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
371                  hwaddr cfg_base, uint64_t cfg_size,
372                  hwaddr mmio_base, uint64_t mmio_size,
373                  qemu_irq irq, bool link_up)
374 {
375     DeviceState *dev;
376     MemoryRegion *cfg, *mmio;
377 
378     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
379 
380     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
381     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
382     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
383     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
384     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
385     qdev_prop_set_bit(dev, "link_up", link_up);
386 
387     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
388 
389     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
390     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
391 
392     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
393     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
394 
395     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
396 
397     return XILINX_PCIE_HOST(dev);
398 }
399 
400 static void boston_mach_init(MachineState *machine)
401 {
402     DeviceState *dev;
403     BostonState *s;
404     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
405     MemoryRegion *sys_mem = get_system_memory();
406     XilinxPCIEHost *pcie2;
407     PCIDevice *ahci;
408     DriveInfo *hd[6];
409     Chardev *chr;
410     int fw_size, fit_err;
411 
412     if ((machine->ram_size % GiB) ||
413         (machine->ram_size > (2 * GiB))) {
414         error_report("Memory size must be 1GB or 2GB");
415         exit(1);
416     }
417 
418     dev = qdev_new(TYPE_BOSTON);
419     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
420 
421     s = BOSTON(dev);
422     s->mach = machine;
423 
424     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
425         error_report("Boston requires CPUs which support CPS");
426         exit(1);
427     }
428 
429     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
430     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
431                             &error_fatal);
432     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
433                             &error_fatal);
434     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
435                           qdev_get_clock_out(dev, "cpu-refclk"));
436     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
437 
438     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
439 
440     flash =  g_new(MemoryRegion, 1);
441     memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
442                            &error_fatal);
443     memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
444 
445     memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
446 
447     ddr_low_alias = g_new(MemoryRegion, 1);
448     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
449                              machine->ram, 0,
450                              MIN(machine->ram_size, (256 * MiB)));
451     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
452 
453     xilinx_pcie_init(sys_mem, 0,
454                      0x10000000, 32 * MiB,
455                      0x40000000, 1 * GiB,
456                      get_cps_irq(&s->cps, 2), false);
457 
458     xilinx_pcie_init(sys_mem, 1,
459                      0x12000000, 32 * MiB,
460                      0x20000000, 512 * MiB,
461                      get_cps_irq(&s->cps, 1), false);
462 
463     pcie2 = xilinx_pcie_init(sys_mem, 2,
464                              0x14000000, 32 * MiB,
465                              0x16000000, 1 * MiB,
466                              get_cps_irq(&s->cps, 0), true);
467 
468     platreg = g_new(MemoryRegion, 1);
469     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
470                           "boston-platregs", 0x1000);
471     memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
472 
473     s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
474                              get_cps_irq(&s->cps, 3), 10000000,
475                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
476 
477     lcd = g_new(MemoryRegion, 1);
478     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
479     memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
480 
481     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
482     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
483     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
484                              boston_lcd_event, NULL, s, NULL, true);
485 
486     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
487                                            PCI_DEVFN(0, 0),
488                                            true, TYPE_ICH9_AHCI);
489     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
490     ide_drive_get(hd, ahci_get_num_ports(ahci));
491     ahci_ide_create_devs(ahci, hd);
492 
493     if (machine->firmware) {
494         fw_size = load_image_targphys(machine->firmware,
495                                       0x1fc00000, 4 * MiB);
496         if (fw_size == -1) {
497             error_report("unable to load firmware image '%s'",
498                           machine->firmware);
499             exit(1);
500         }
501     } else if (machine->kernel_filename) {
502         fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
503         if (fit_err) {
504             error_report("unable to load FIT image");
505             exit(1);
506         }
507 
508         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
509                      s->kernel_entry, s->fdt_base);
510     } else if (!qtest_enabled()) {
511         error_report("Please provide either a -kernel or -bios argument");
512         exit(1);
513     }
514 }
515 
516 static void boston_mach_class_init(MachineClass *mc)
517 {
518     mc->desc = "MIPS Boston";
519     mc->init = boston_mach_init;
520     mc->block_default_type = IF_IDE;
521     mc->default_ram_size = 1 * GiB;
522     mc->default_ram_id = "boston.ddr";
523     mc->max_cpus = 16;
524     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
525 }
526 
527 DEFINE_MACHINE("boston", boston_mach_class_init)
528