xref: /qemu/hw/mips/malta.c (revision 75ac231c)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/bootloader.h"
40 #include "hw/mips/cpudevs.h"
41 #include "hw/pci/pci.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide/pci.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h"             /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/misc/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "semihosting/semihost.h"
59 #include "hw/mips/cps.h"
60 #include "hw/qdev-clock.h"
61 
62 #define ENVP_PADDR          0x2000
63 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
64 #define ENVP_NB_ENTRIES     16
65 #define ENVP_ENTRY_SIZE     256
66 
67 /* Hardware addresses */
68 #define FLASH_ADDRESS       0x1e000000ULL
69 #define FPGA_ADDRESS        0x1f000000ULL
70 #define RESET_ADDRESS       0x1fc00000ULL
71 
72 #define FLASH_SIZE          0x400000
73 
74 typedef struct {
75     MemoryRegion iomem;
76     MemoryRegion iomem_lo; /* 0 - 0x900 */
77     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
78     uint32_t leds;
79     uint32_t brk;
80     uint32_t gpout;
81     uint32_t i2cin;
82     uint32_t i2coe;
83     uint32_t i2cout;
84     uint32_t i2csel;
85     CharBackend display;
86     char display_text[9];
87     SerialMM *uart;
88     bool display_inited;
89 } MaltaFPGAState;
90 
91 #define TYPE_MIPS_MALTA "mips-malta"
92 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
93 
94 struct MaltaState {
95     SysBusDevice parent_obj;
96 
97     Clock *cpuclk;
98     MIPSCPSState cps;
99 };
100 
101 static struct _loaderparams {
102     int ram_size, ram_low_size;
103     const char *kernel_filename;
104     const char *kernel_cmdline;
105     const char *initrd_filename;
106 } loaderparams;
107 
108 /* Malta FPGA */
109 static void malta_fpga_update_display(void *opaque)
110 {
111     char leds_text[9];
112     int i;
113     MaltaFPGAState *s = opaque;
114 
115     for (i = 7 ; i >= 0 ; i--) {
116         if (s->leds & (1 << i)) {
117             leds_text[i] = '#';
118         } else {
119             leds_text[i] = ' ';
120         }
121     }
122     leds_text[8] = '\0';
123 
124     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
125                        leds_text);
126     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
127                        s->display_text);
128 }
129 
130 /*
131  * EEPROM 24C01 / 24C02 emulation.
132  *
133  * Emulation for serial EEPROMs:
134  * 24C01 - 1024 bit (128 x 8)
135  * 24C02 - 2048 bit (256 x 8)
136  *
137  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
138  */
139 
140 #if defined(DEBUG)
141 #  define logout(fmt, ...) \
142           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
143 #else
144 #  define logout(fmt, ...) ((void)0)
145 #endif
146 
147 struct _eeprom24c0x_t {
148   uint8_t tick;
149   uint8_t address;
150   uint8_t command;
151   uint8_t ack;
152   uint8_t scl;
153   uint8_t sda;
154   uint8_t data;
155   /* uint16_t size; */
156   uint8_t contents[256];
157 };
158 
159 typedef struct _eeprom24c0x_t eeprom24c0x_t;
160 
161 static eeprom24c0x_t spd_eeprom = {
162     .contents = {
163         /* 00000000: */
164         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
165         /* 00000008: */
166         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
167         /* 00000010: */
168         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
169         /* 00000018: */
170         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
171         /* 00000020: */
172         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
173         /* 00000028: */
174         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
175         /* 00000030: */
176         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
177         /* 00000038: */
178         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
179         /* 00000040: */
180         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181         /* 00000048: */
182         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183         /* 00000050: */
184         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185         /* 00000058: */
186         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187         /* 00000060: */
188         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189         /* 00000068: */
190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191         /* 00000070: */
192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193         /* 00000078: */
194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
195     },
196 };
197 
198 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
199 {
200     enum { SDR = 0x4, DDR2 = 0x8 } type;
201     uint8_t *spd = spd_eeprom.contents;
202     uint8_t nbanks = 0;
203     uint16_t density = 0;
204     int i;
205 
206     /* work in terms of MB */
207     ram_size /= MiB;
208 
209     while ((ram_size >= 4) && (nbanks <= 2)) {
210         int sz_log2 = MIN(31 - clz32(ram_size), 14);
211         nbanks++;
212         density |= 1 << (sz_log2 - 2);
213         ram_size -= 1 << sz_log2;
214     }
215 
216     /* split to 2 banks if possible */
217     if ((nbanks == 1) && (density > 1)) {
218         nbanks++;
219         density >>= 1;
220     }
221 
222     if (density & 0xff00) {
223         density = (density & 0xe0) | ((density >> 8) & 0x1f);
224         type = DDR2;
225     } else if (!(density & 0x1f)) {
226         type = DDR2;
227     } else {
228         type = SDR;
229     }
230 
231     if (ram_size) {
232         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
233                     " of SDRAM", ram_size);
234     }
235 
236     /* fill in SPD memory information */
237     spd[2] = type;
238     spd[5] = nbanks;
239     spd[31] = density;
240 
241     /* checksum */
242     spd[63] = 0;
243     for (i = 0; i < 63; i++) {
244         spd[63] += spd[i];
245     }
246 
247     /* copy for SMBUS */
248     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
249 }
250 
251 static void generate_eeprom_serial(uint8_t *eeprom)
252 {
253     int i, pos = 0;
254     uint8_t mac[6] = { 0x00 };
255     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
256 
257     /* version */
258     eeprom[pos++] = 0x01;
259 
260     /* count */
261     eeprom[pos++] = 0x02;
262 
263     /* MAC address */
264     eeprom[pos++] = 0x01; /* MAC */
265     eeprom[pos++] = 0x06; /* length */
266     memcpy(&eeprom[pos], mac, sizeof(mac));
267     pos += sizeof(mac);
268 
269     /* serial number */
270     eeprom[pos++] = 0x02; /* serial */
271     eeprom[pos++] = 0x05; /* length */
272     memcpy(&eeprom[pos], sn, sizeof(sn));
273     pos += sizeof(sn);
274 
275     /* checksum */
276     eeprom[pos] = 0;
277     for (i = 0; i < pos; i++) {
278         eeprom[pos] += eeprom[i];
279     }
280 }
281 
282 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
283 {
284     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
285         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
286     return eeprom->sda;
287 }
288 
289 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
290 {
291     if (eeprom->scl && scl && (eeprom->sda != sda)) {
292         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
293                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
294                 sda ? "stop" : "start");
295         if (!sda) {
296             eeprom->tick = 1;
297             eeprom->command = 0;
298         }
299     } else if (eeprom->tick == 0 && !eeprom->ack) {
300         /* Waiting for start. */
301         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
302                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
303     } else if (!eeprom->scl && scl) {
304         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
305                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
306         if (eeprom->ack) {
307             logout("\ti2c ack bit = 0\n");
308             sda = 0;
309             eeprom->ack = 0;
310         } else if (eeprom->sda == sda) {
311             uint8_t bit = (sda != 0);
312             logout("\ti2c bit = %d\n", bit);
313             if (eeprom->tick < 9) {
314                 eeprom->command <<= 1;
315                 eeprom->command += bit;
316                 eeprom->tick++;
317                 if (eeprom->tick == 9) {
318                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
319                            bit ? "read" : "write");
320                     eeprom->ack = 1;
321                 }
322             } else if (eeprom->tick < 17) {
323                 if (eeprom->command & 1) {
324                     sda = ((eeprom->data & 0x80) != 0);
325                 }
326                 eeprom->address <<= 1;
327                 eeprom->address += bit;
328                 eeprom->tick++;
329                 eeprom->data <<= 1;
330                 if (eeprom->tick == 17) {
331                     eeprom->data = eeprom->contents[eeprom->address];
332                     logout("\taddress 0x%04x, data 0x%02x\n",
333                            eeprom->address, eeprom->data);
334                     eeprom->ack = 1;
335                     eeprom->tick = 0;
336                 }
337             } else if (eeprom->tick >= 17) {
338                 sda = 0;
339             }
340         } else {
341             logout("\tsda changed with raising scl\n");
342         }
343     } else {
344         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
345                scl, eeprom->sda, sda);
346     }
347     eeprom->scl = scl;
348     eeprom->sda = sda;
349 }
350 
351 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
352                                 unsigned size)
353 {
354     MaltaFPGAState *s = opaque;
355     uint32_t val = 0;
356     uint32_t saddr;
357 
358     saddr = (addr & 0xfffff);
359 
360     switch (saddr) {
361 
362     /* SWITCH Register */
363     case 0x00200:
364         val = 0x00000000;
365         break;
366 
367     /* STATUS Register */
368     case 0x00208:
369 #if TARGET_BIG_ENDIAN
370         val = 0x00000012;
371 #else
372         val = 0x00000010;
373 #endif
374         break;
375 
376     /* JMPRS Register */
377     case 0x00210:
378         val = 0x00;
379         break;
380 
381     /* LEDBAR Register */
382     case 0x00408:
383         val = s->leds;
384         break;
385 
386     /* BRKRES Register */
387     case 0x00508:
388         val = s->brk;
389         break;
390 
391     /* UART Registers are handled directly by the serial device */
392 
393     /* GPOUT Register */
394     case 0x00a00:
395         val = s->gpout;
396         break;
397 
398     /* XXX: implement a real I2C controller */
399 
400     /* GPINP Register */
401     case 0x00a08:
402         /* IN = OUT until a real I2C control is implemented */
403         if (s->i2csel) {
404             val = s->i2cout;
405         } else {
406             val = 0x00;
407         }
408         break;
409 
410     /* I2CINP Register */
411     case 0x00b00:
412         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
413         break;
414 
415     /* I2COE Register */
416     case 0x00b08:
417         val = s->i2coe;
418         break;
419 
420     /* I2COUT Register */
421     case 0x00b10:
422         val = s->i2cout;
423         break;
424 
425     /* I2CSEL Register */
426     case 0x00b18:
427         val = s->i2csel;
428         break;
429 
430     default:
431         qemu_log_mask(LOG_GUEST_ERROR,
432                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
433                       addr);
434         break;
435     }
436     return val;
437 }
438 
439 static void malta_fpga_write(void *opaque, hwaddr addr,
440                              uint64_t val, unsigned size)
441 {
442     MaltaFPGAState *s = opaque;
443     uint32_t saddr;
444 
445     saddr = (addr & 0xfffff);
446 
447     switch (saddr) {
448 
449     /* SWITCH Register */
450     case 0x00200:
451         break;
452 
453     /* JMPRS Register */
454     case 0x00210:
455         break;
456 
457     /* LEDBAR Register */
458     case 0x00408:
459         s->leds = val & 0xff;
460         malta_fpga_update_display(s);
461         break;
462 
463     /* ASCIIWORD Register */
464     case 0x00410:
465         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
466         malta_fpga_update_display(s);
467         break;
468 
469     /* ASCIIPOS0 to ASCIIPOS7 Registers */
470     case 0x00418:
471     case 0x00420:
472     case 0x00428:
473     case 0x00430:
474     case 0x00438:
475     case 0x00440:
476     case 0x00448:
477     case 0x00450:
478         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
479         malta_fpga_update_display(s);
480         break;
481 
482     /* SOFTRES Register */
483     case 0x00500:
484         if (val == 0x42) {
485             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
486         }
487         break;
488 
489     /* BRKRES Register */
490     case 0x00508:
491         s->brk = val & 0xff;
492         break;
493 
494     /* UART Registers are handled directly by the serial device */
495 
496     /* GPOUT Register */
497     case 0x00a00:
498         s->gpout = val & 0xff;
499         break;
500 
501     /* I2COE Register */
502     case 0x00b08:
503         s->i2coe = val & 0x03;
504         break;
505 
506     /* I2COUT Register */
507     case 0x00b10:
508         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
509         s->i2cout = val;
510         break;
511 
512     /* I2CSEL Register */
513     case 0x00b18:
514         s->i2csel = val & 0x01;
515         break;
516 
517     default:
518         qemu_log_mask(LOG_GUEST_ERROR,
519                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
520                       addr);
521         break;
522     }
523 }
524 
525 static const MemoryRegionOps malta_fpga_ops = {
526     .read = malta_fpga_read,
527     .write = malta_fpga_write,
528     .endianness = DEVICE_NATIVE_ENDIAN,
529 };
530 
531 static void malta_fpga_reset(void *opaque)
532 {
533     MaltaFPGAState *s = opaque;
534 
535     s->leds   = 0x00;
536     s->brk    = 0x0a;
537     s->gpout  = 0x00;
538     s->i2cin  = 0x3;
539     s->i2coe  = 0x0;
540     s->i2cout = 0x3;
541     s->i2csel = 0x1;
542 
543     s->display_text[8] = '\0';
544     snprintf(s->display_text, 9, "        ");
545 }
546 
547 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
548 {
549     MaltaFPGAState *s = opaque;
550 
551     if (event == CHR_EVENT_OPENED && !s->display_inited) {
552         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
553         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
554         qemu_chr_fe_printf(&s->display, "+        +\r\n");
555         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
556         qemu_chr_fe_printf(&s->display, "\n");
557         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
558         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
559         qemu_chr_fe_printf(&s->display, "+        +\r\n");
560         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
561         s->display_inited = true;
562     }
563 }
564 
565 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
566          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
567 {
568     MaltaFPGAState *s;
569     Chardev *chr;
570 
571     s = g_new0(MaltaFPGAState, 1);
572 
573     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
574                           "malta-fpga", 0x100000);
575     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
576                              &s->iomem, 0, 0x900);
577     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
578                              &s->iomem, 0xa00, 0x100000 - 0xa00);
579 
580     memory_region_add_subregion(address_space, base, &s->iomem_lo);
581     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
582 
583     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
584     qemu_chr_fe_init(&s->display, chr, NULL);
585     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
586                              malta_fgpa_display_event, NULL, s, NULL, true);
587 
588     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
589                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
590 
591     malta_fpga_reset(s);
592     qemu_register_reset(malta_fpga_reset, s);
593 
594     return s;
595 }
596 
597 /* Network support */
598 static void network_init(PCIBus *pci_bus)
599 {
600     int i;
601 
602     for (i = 0; i < nb_nics; i++) {
603         NICInfo *nd = &nd_table[i];
604         const char *default_devaddr = NULL;
605 
606         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
607             /* The malta board has a PCNet card using PCI SLOT 11 */
608             default_devaddr = "0b";
609 
610         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
611     }
612 }
613 
614 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
615                                       uint64_t kernel_entry)
616 {
617     uint16_t *p;
618 
619     /* Small bootloader */
620     p = (uint16_t *)base;
621 
622 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
623 #define NM_HI2(VAL) \
624           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
625 #define NM_LO(VAL)  ((VAL) & 0xfff)
626 
627     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
628                                 /* bc to_here */
629     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
630                                 /* nop */
631     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
632                                 /* nop */
633     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
634                                 /* nop */
635     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636                                 /* nop */
637     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638                                 /* nop */
639     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640                                 /* nop */
641     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642                                 /* nop */
643 
644     /* to_here: */
645     if (semihosting_get_argc()) {
646         /* Preserve a0 content as arguments have been passed    */
647         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
648                                 /* nop                          */
649     } else {
650         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
651                                 /* li a0,2                      */
652     }
653 
654     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
655 
656     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
657                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
658 
659     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
660                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
661 
662     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
663 
664     stw_p(p++, NM_HI2(ENVP_VADDR));
665                                 /* lui a1,%hi(ENVP_VADDR)        */
666 
667     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
668                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
669 
670     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
671 
672     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
673                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
674 
675     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
676                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
677 
678     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
679 
680     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
681                                 /* lui a3,%hi(loaderparams.ram_low_size) */
682 
683     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
684                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
685 
686     /*
687      * Load BAR registers as done by YAMON:
688      *
689      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
690      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
691      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
692      *
693      */
694     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
695                                 /* lui t1, %hi(0xb4000000)      */
696 
697 #if TARGET_BIG_ENDIAN
698 
699     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
700                                 /* lui t0, %hi(0xdf000000)      */
701 
702     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
703     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
704                                 /* sw t0, 0x68(t1)              */
705 
706     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
707                                 /* lui t1, %hi(0xbbe00000)      */
708 
709     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
710                                 /* lui t0, %hi(0xc0000000)      */
711 
712     /* 0x48 corresponds to GT_PCI0IOLD                          */
713     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
714                                 /* sw t0, 0x48(t1)              */
715 
716     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
717                                 /* lui t0, %hi(0x40000000)      */
718 
719     /* 0x50 corresponds to GT_PCI0IOHD                          */
720     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
721                                 /* sw t0, 0x50(t1)              */
722 
723     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
724                                 /* lui t0, %hi(0x80000000)      */
725 
726     /* 0x58 corresponds to GT_PCI0M0LD                          */
727     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
728                                 /* sw t0, 0x58(t1)              */
729 
730     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
731                                 /* lui t0, %hi(0x3f000000)      */
732 
733     /* 0x60 corresponds to GT_PCI0M0HD                          */
734     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
735                                 /* sw t0, 0x60(t1)              */
736 
737     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
738                                 /* lui t0, %hi(0xc1000000)      */
739 
740     /* 0x80 corresponds to GT_PCI0M1LD                          */
741     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
742                                 /* sw t0, 0x80(t1)              */
743 
744     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
745                                 /* lui t0, %hi(0x5e000000)      */
746 
747 #else
748 
749     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
750                                 /* addiu[32] t0, $0, 0xdf       */
751 
752     /* 0x68 corresponds to GT_ISD                               */
753     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
754                                 /* sw t0, 0x68(t1)              */
755 
756     /* Use kseg2 remapped address 0x1be00000                    */
757     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
758                                 /* lui t1, %hi(0xbbe00000)      */
759 
760     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
761                                 /* addiu[32] t0, $0, 0xc0       */
762 
763     /* 0x48 corresponds to GT_PCI0IOLD                          */
764     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
765                                 /* sw t0, 0x48(t1)              */
766 
767     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
768                                 /* addiu[32] t0, $0, 0x40       */
769 
770     /* 0x50 corresponds to GT_PCI0IOHD                          */
771     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
772                                 /* sw t0, 0x50(t1)              */
773 
774     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
775                                 /* addiu[32] t0, $0, 0x80       */
776 
777     /* 0x58 corresponds to GT_PCI0M0LD                          */
778     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
779                                 /* sw t0, 0x58(t1)              */
780 
781     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
782                                 /* addiu[32] t0, $0, 0x3f       */
783 
784     /* 0x60 corresponds to GT_PCI0M0HD                          */
785     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
786                                 /* sw t0, 0x60(t1)              */
787 
788     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
789                                 /* addiu[32] t0, $0, 0xc1       */
790 
791     /* 0x80 corresponds to GT_PCI0M1LD                          */
792     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
793                                 /* sw t0, 0x80(t1)              */
794 
795     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
796                                 /* addiu[32] t0, $0, 0x5e       */
797 
798 #endif
799 
800     /* 0x88 corresponds to GT_PCI0M1HD                          */
801     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
802                                 /* sw t0, 0x88(t1)              */
803 
804     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
805 
806     stw_p(p++, NM_HI2(kernel_entry));
807                                 /* lui t9,%hi(kernel_entry)     */
808 
809     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
810                                 /* ori t9,t9,%lo(kernel_entry)  */
811 
812     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
813                                 /* jalrc   t8                   */
814 }
815 
816 /*
817  * ROM and pseudo bootloader
818  *
819  * The following code implements a very very simple bootloader. It first
820  * loads the registers a0 to a3 to the values expected by the OS, and
821  * then jump at the kernel address.
822  *
823  * The bootloader should pass the locations of the kernel arguments and
824  * environment variables tables. Those tables contain the 32-bit address
825  * of NULL terminated strings. The environment variables table should be
826  * terminated by a NULL address.
827  *
828  * For a simpler implementation, the number of kernel arguments is fixed
829  * to two (the name of the kernel and the command line), and the two
830  * tables are actually the same one.
831  *
832  * The registers a0 to a3 should contain the following values:
833  *   a0 - number of kernel arguments
834  *   a1 - 32-bit address of the kernel arguments table
835  *   a2 - 32-bit address of the environment variables table
836  *   a3 - RAM size in bytes
837  */
838 static void write_bootloader(uint8_t *base, uint64_t run_addr,
839                              uint64_t kernel_entry)
840 {
841     uint32_t *p;
842 
843     /* Small bootloader */
844     p = (uint32_t *)base;
845 
846     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
847                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
848     stl_p(p++, 0x00000000);                  /* nop */
849 
850     /* YAMON service vector */
851     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
852     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
853     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
854     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
855     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
856     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
857     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
858     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
859     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
860     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
861     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
862     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
863     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
864 
865 
866     /* Second part of the bootloader */
867     p = (uint32_t *) (base + 0x580);
868 
869     /*
870      * Load BAR registers as done by YAMON:
871      *
872      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
873      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
874      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
875      *
876      */
877 
878     /* Bus endianess is always reversed */
879 #if TARGET_BIG_ENDIAN
880 #define cpu_to_gt32 cpu_to_le32
881 #else
882 #define cpu_to_gt32 cpu_to_be32
883 #endif
884 
885     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
886     bl_gen_write_u32(&p, /* GT_ISD */
887                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
888                      cpu_to_gt32(0x1be00000 << 3));
889 
890     /* setup MEM-to-PCI0 mapping */
891     /* setup PCI0 io window to 0x18000000-0x181fffff */
892     bl_gen_write_u32(&p, /* GT_PCI0IOLD */
893                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
894                      cpu_to_gt32(0x18000000 << 3));
895     bl_gen_write_u32(&p, /* GT_PCI0IOHD */
896                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
897                      cpu_to_gt32(0x08000000 << 3));
898     /* setup PCI0 mem windows */
899     bl_gen_write_u32(&p, /* GT_PCI0M0LD */
900                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
901                      cpu_to_gt32(0x10000000 << 3));
902     bl_gen_write_u32(&p, /* GT_PCI0M0HD */
903                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
904                      cpu_to_gt32(0x07e00000 << 3));
905 
906     bl_gen_write_u32(&p, /* GT_PCI0M1LD */
907                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
908                      cpu_to_gt32(0x18200000 << 3));
909     bl_gen_write_u32(&p, /* GT_PCI0M1HD */
910                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
911                      cpu_to_gt32(0x0bc00000 << 3));
912 
913 #undef cpu_to_gt32
914 
915     bl_gen_jump_kernel(&p,
916                        true, ENVP_VADDR - 64,
917                        /*
918                         * If semihosting is used, arguments have already been
919                         * passed, so we preserve $a0.
920                         */
921                        !semihosting_get_argc(), 2,
922                        true, ENVP_VADDR,
923                        true, ENVP_VADDR + 8,
924                        true, loaderparams.ram_low_size,
925                        kernel_entry);
926 
927     /* YAMON subroutines */
928     p = (uint32_t *) (base + 0x800);
929     stl_p(p++, 0x03e00009);                  /* jalr ra */
930     stl_p(p++, 0x24020000);                  /* li v0,0 */
931     /* 808 YAMON print */
932     stl_p(p++, 0x03e06821);                  /* move t5,ra */
933     stl_p(p++, 0x00805821);                  /* move t3,a0 */
934     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
935     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
936     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
937     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
938     stl_p(p++, 0x00000000);                  /* nop */
939     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
940     stl_p(p++, 0x00000000);                  /* nop */
941     stl_p(p++, 0x1000fff9);                  /* b 814 */
942     stl_p(p++, 0x00000000);                  /* nop */
943     stl_p(p++, 0x01a00009);                  /* jalr t5 */
944     stl_p(p++, 0x01602021);                  /* move a0,t3 */
945     /* 0x83c YAMON print_count */
946     stl_p(p++, 0x03e06821);                  /* move t5,ra */
947     stl_p(p++, 0x00805821);                  /* move t3,a0 */
948     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
949     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
950     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
951     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
952     stl_p(p++, 0x00000000);                  /* nop */
953     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
954     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
955     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
956     stl_p(p++, 0x00000000);                  /* nop */
957     stl_p(p++, 0x01a00009);                  /* jalr t5 */
958     stl_p(p++, 0x01602021);                  /* move a0,t3 */
959     /* 0x870 */
960     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
961     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
962     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
963     stl_p(p++, 0x00000000);                  /* nop */
964     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
965     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
966     stl_p(p++, 0x00000000);                  /* nop */
967     stl_p(p++, 0x03e00009);                  /* jalr ra */
968     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
969 
970 }
971 
972 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
973                                         const char *string, ...)
974 {
975     va_list ap;
976     uint32_t table_addr;
977 
978     if (index >= ENVP_NB_ENTRIES) {
979         return;
980     }
981 
982     if (string == NULL) {
983         prom_buf[index] = 0;
984         return;
985     }
986 
987     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
988     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
989 
990     va_start(ap, string);
991     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
992     va_end(ap);
993 }
994 
995 static void reinitialize_rng_seed(void *opaque)
996 {
997     char *rng_seed_hex = opaque;
998     uint8_t rng_seed[32];
999 
1000     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1001     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
1002         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
1003     }
1004 }
1005 
1006 /* Kernel */
1007 static uint64_t load_kernel(void)
1008 {
1009     uint64_t kernel_entry, kernel_high, initrd_size;
1010     long kernel_size;
1011     ram_addr_t initrd_offset;
1012     int big_endian;
1013     uint32_t *prom_buf;
1014     long prom_size;
1015     int prom_index = 0;
1016     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1017     uint8_t rng_seed[32];
1018     char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
1019     size_t rng_seed_prom_offset;
1020 
1021 #if TARGET_BIG_ENDIAN
1022     big_endian = 1;
1023 #else
1024     big_endian = 0;
1025 #endif
1026 
1027     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1028                            cpu_mips_kseg0_to_phys, NULL,
1029                            &kernel_entry, NULL,
1030                            &kernel_high, NULL, big_endian, EM_MIPS,
1031                            1, 0);
1032     if (kernel_size < 0) {
1033         error_report("could not load kernel '%s': %s",
1034                      loaderparams.kernel_filename,
1035                      load_elf_strerror(kernel_size));
1036         exit(1);
1037     }
1038 
1039     /* Check where the kernel has been linked */
1040     if (kernel_entry & 0x80000000ll) {
1041         if (kvm_enabled()) {
1042             error_report("KVM guest kernels must be linked in useg. "
1043                          "Did you forget to enable CONFIG_KVM_GUEST?");
1044             exit(1);
1045         }
1046 
1047         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1048     } else {
1049         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1050         mips_um_ksegs_enable();
1051 
1052         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1053     }
1054 
1055     /* load initrd */
1056     initrd_size = 0;
1057     initrd_offset = 0;
1058     if (loaderparams.initrd_filename) {
1059         initrd_size = get_image_size(loaderparams.initrd_filename);
1060         if (initrd_size > 0) {
1061             /*
1062              * The kernel allocates the bootmap memory in the low memory after
1063              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1064              * pages.
1065              */
1066             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1067                                      - (initrd_size + 128 * KiB),
1068                                      INITRD_PAGE_SIZE);
1069             if (kernel_high >= initrd_offset) {
1070                 error_report("memory too small for initial ram disk '%s'",
1071                              loaderparams.initrd_filename);
1072                 exit(1);
1073             }
1074             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1075                                               initrd_offset,
1076                                               loaderparams.ram_size - initrd_offset);
1077         }
1078         if (initrd_size == (target_ulong) -1) {
1079             error_report("could not load initial ram disk '%s'",
1080                          loaderparams.initrd_filename);
1081             exit(1);
1082         }
1083     }
1084 
1085     /* Setup prom parameters. */
1086     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1087     prom_buf = g_malloc(prom_size);
1088 
1089     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1090     if (initrd_size > 0) {
1091         prom_set(prom_buf, prom_index++,
1092                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1093                  xlate_to_kseg0(NULL, initrd_offset),
1094                  initrd_size, loaderparams.kernel_cmdline);
1095     } else {
1096         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1097     }
1098 
1099     prom_set(prom_buf, prom_index++, "memsize");
1100     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1101 
1102     prom_set(prom_buf, prom_index++, "ememsize");
1103     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1104 
1105     prom_set(prom_buf, prom_index++, "modetty0");
1106     prom_set(prom_buf, prom_index++, "38400n8r");
1107 
1108     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1109     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
1110         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
1111     }
1112     prom_set(prom_buf, prom_index++, "rngseed");
1113     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
1114                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
1115     prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
1116 
1117     prom_set(prom_buf, prom_index++, NULL);
1118 
1119     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1120     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
1121             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
1122 
1123     g_free(prom_buf);
1124     return kernel_entry;
1125 }
1126 
1127 static void malta_mips_config(MIPSCPU *cpu)
1128 {
1129     MachineState *ms = MACHINE(qdev_get_machine());
1130     unsigned int smp_cpus = ms->smp.cpus;
1131     CPUMIPSState *env = &cpu->env;
1132     CPUState *cs = CPU(cpu);
1133 
1134     if (ase_mt_available(env)) {
1135         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1136                                            CP0MVPC0_PTC, 8,
1137                                            smp_cpus * cs->nr_threads - 1);
1138         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1139                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1140     }
1141 }
1142 
1143 static void main_cpu_reset(void *opaque)
1144 {
1145     MIPSCPU *cpu = opaque;
1146     CPUMIPSState *env = &cpu->env;
1147 
1148     cpu_reset(CPU(cpu));
1149 
1150     /*
1151      * The bootloader does not need to be rewritten as it is located in a
1152      * read only location. The kernel location and the arguments table
1153      * location does not change.
1154      */
1155     if (loaderparams.kernel_filename) {
1156         env->CP0_Status &= ~(1 << CP0St_ERL);
1157     }
1158 
1159     malta_mips_config(cpu);
1160 
1161     if (kvm_enabled()) {
1162         /* Start running from the bootloader we wrote to end of RAM */
1163         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1164     }
1165 }
1166 
1167 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1168                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1169 {
1170     CPUMIPSState *env;
1171     MIPSCPU *cpu;
1172     int i;
1173 
1174     for (i = 0; i < ms->smp.cpus; i++) {
1175         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1176 
1177         /* Init internal devices */
1178         cpu_mips_irq_init_cpu(cpu);
1179         cpu_mips_clock_init(cpu);
1180         qemu_register_reset(main_cpu_reset, cpu);
1181     }
1182 
1183     cpu = MIPS_CPU(first_cpu);
1184     env = &cpu->env;
1185     *i8259_irq = env->irq[2];
1186     *cbus_irq = env->irq[4];
1187 }
1188 
1189 static void create_cps(MachineState *ms, MaltaState *s,
1190                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1191 {
1192     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1193     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1194                             &error_fatal);
1195     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1196                             &error_fatal);
1197     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1198     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1199 
1200     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1201 
1202     *i8259_irq = get_cps_irq(&s->cps, 3);
1203     *cbus_irq = NULL;
1204 }
1205 
1206 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1207                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1208 {
1209     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1210         create_cps(ms, s, cbus_irq, i8259_irq);
1211     } else {
1212         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1213     }
1214 }
1215 
1216 static
1217 void mips_malta_init(MachineState *machine)
1218 {
1219     ram_addr_t ram_size = machine->ram_size;
1220     ram_addr_t ram_low_size;
1221     const char *kernel_filename = machine->kernel_filename;
1222     const char *kernel_cmdline = machine->kernel_cmdline;
1223     const char *initrd_filename = machine->initrd_filename;
1224     char *filename;
1225     PFlashCFI01 *fl;
1226     MemoryRegion *system_memory = get_system_memory();
1227     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1228     MemoryRegion *ram_low_postio;
1229     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1230     const size_t smbus_eeprom_size = 8 * 256;
1231     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1232     uint64_t kernel_entry, bootloader_run_addr;
1233     PCIBus *pci_bus;
1234     ISABus *isa_bus;
1235     qemu_irq cbus_irq, i8259_irq;
1236     I2CBus *smbus;
1237     DriveInfo *dinfo;
1238     int fl_idx = 0;
1239     int be;
1240     MaltaState *s;
1241     PCIDevice *piix4;
1242     DeviceState *dev;
1243 
1244     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1245     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1246 
1247     /* create CPU */
1248     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1249 
1250     /* allocate RAM */
1251     if (ram_size > 2 * GiB) {
1252         error_report("Too much memory for this machine: %" PRId64 "MB,"
1253                      " maximum 2048MB", ram_size / MiB);
1254         exit(1);
1255     }
1256 
1257     /* register RAM at high address where it is undisturbed by IO */
1258     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1259 
1260     /* alias for pre IO hole access */
1261     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1262                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1263     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1264 
1265     /* alias for post IO hole access, if there is enough RAM */
1266     if (ram_size > 512 * MiB) {
1267         ram_low_postio = g_new(MemoryRegion, 1);
1268         memory_region_init_alias(ram_low_postio, NULL,
1269                                  "mips_malta_low_postio.ram",
1270                                  machine->ram, 512 * MiB,
1271                                  ram_size - 512 * MiB);
1272         memory_region_add_subregion(system_memory, 512 * MiB,
1273                                     ram_low_postio);
1274     }
1275 
1276 #if TARGET_BIG_ENDIAN
1277     be = 1;
1278 #else
1279     be = 0;
1280 #endif
1281 
1282     /* FPGA */
1283 
1284     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1285     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1286 
1287     /* Load firmware in flash / BIOS. */
1288     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1289     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1290                                FLASH_SIZE,
1291                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1292                                65536,
1293                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1294     bios = pflash_cfi01_get_memory(fl);
1295     fl_idx++;
1296     if (kernel_filename) {
1297         ram_low_size = MIN(ram_size, 256 * MiB);
1298         /* For KVM we reserve 1MB of RAM for running bootloader */
1299         if (kvm_enabled()) {
1300             ram_low_size -= 0x100000;
1301             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1302         } else {
1303             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1304         }
1305 
1306         /* Write a small bootloader to the flash location. */
1307         loaderparams.ram_size = ram_size;
1308         loaderparams.ram_low_size = ram_low_size;
1309         loaderparams.kernel_filename = kernel_filename;
1310         loaderparams.kernel_cmdline = kernel_cmdline;
1311         loaderparams.initrd_filename = initrd_filename;
1312         kernel_entry = load_kernel();
1313 
1314         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1315             write_bootloader(memory_region_get_ram_ptr(bios),
1316                              bootloader_run_addr, kernel_entry);
1317         } else {
1318             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1319                                       bootloader_run_addr, kernel_entry);
1320         }
1321         if (kvm_enabled()) {
1322             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1323             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1324                                     ram_low_size,
1325                              bootloader_run_addr, kernel_entry);
1326         }
1327     } else {
1328         target_long bios_size = FLASH_SIZE;
1329         /* The flash region isn't executable from a KVM guest */
1330         if (kvm_enabled()) {
1331             error_report("KVM enabled but no -kernel argument was specified. "
1332                          "Booting from flash is not supported with KVM.");
1333             exit(1);
1334         }
1335         /* Load firmware from flash. */
1336         if (!dinfo) {
1337             /* Load a BIOS image. */
1338             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1339                                       machine->firmware ?: BIOS_FILENAME);
1340             if (filename) {
1341                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1342                                                 BIOS_SIZE);
1343                 g_free(filename);
1344             } else {
1345                 bios_size = -1;
1346             }
1347             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1348                 machine->firmware && !qtest_enabled()) {
1349                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1350                 exit(1);
1351             }
1352         }
1353         /*
1354          * In little endian mode the 32bit words in the bios are swapped,
1355          * a neat trick which allows bi-endian firmware.
1356          */
1357 #if !TARGET_BIG_ENDIAN
1358         {
1359             uint32_t *end, *addr;
1360             const size_t swapsize = MIN(bios_size, 0x3e0000);
1361             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1362             if (!addr) {
1363                 addr = memory_region_get_ram_ptr(bios);
1364             }
1365             end = (void *)addr + swapsize;
1366             while (addr < end) {
1367                 bswap32s(addr);
1368                 addr++;
1369             }
1370         }
1371 #endif
1372     }
1373 
1374     /*
1375      * Map the BIOS at a 2nd physical location, as on the real board.
1376      * Copy it so that we can patch in the MIPS revision, which cannot be
1377      * handled by an overlapping region as the resulting ROM code subpage
1378      * regions are not executable.
1379      */
1380     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1381                            &error_fatal);
1382     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1383                   FLASH_ADDRESS, BIOS_SIZE)) {
1384         memcpy(memory_region_get_ram_ptr(bios_copy),
1385                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1386     }
1387     memory_region_set_readonly(bios_copy, true);
1388     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1389 
1390     /* Board ID = 0x420 (Malta Board with CoreLV) */
1391     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1392 
1393     /* Northbridge */
1394     dev = sysbus_create_simple("gt64120", -1, NULL);
1395     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1396     /*
1397      * The whole address space decoded by the GT-64120A doesn't generate
1398      * exception when accessing invalid memory. Create an empty slot to
1399      * emulate this feature.
1400      */
1401     empty_slot_init("GT64120", 0, 0x20000000);
1402 
1403     /* Southbridge */
1404     piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true,
1405                                             TYPE_PIIX4_PCI_DEVICE);
1406     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1407 
1408     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1409     pci_ide_create_devs(PCI_DEVICE(dev));
1410 
1411     /* Interrupt controller */
1412     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1413 
1414     /* generate SPD EEPROM data */
1415     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1416     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1417     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1418     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1419     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1420     g_free(smbus_eeprom_buf);
1421 
1422     /* Super I/O: SMS FDC37M817 */
1423     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1424 
1425     /* Network card */
1426     network_init(pci_bus);
1427 
1428     /* Optional PCI video card */
1429     pci_vga_init(pci_bus);
1430 }
1431 
1432 static void mips_malta_instance_init(Object *obj)
1433 {
1434     MaltaState *s = MIPS_MALTA(obj);
1435 
1436     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1437     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1438 }
1439 
1440 static const TypeInfo mips_malta_device = {
1441     .name          = TYPE_MIPS_MALTA,
1442     .parent        = TYPE_SYS_BUS_DEVICE,
1443     .instance_size = sizeof(MaltaState),
1444     .instance_init = mips_malta_instance_init,
1445 };
1446 
1447 GlobalProperty malta_compat[] = {
1448     { "PIIX4_PM", "memory-hotplug-support", "off" },
1449     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1450     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1451     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1452 };
1453 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1454 
1455 static void mips_malta_machine_init(MachineClass *mc)
1456 {
1457     mc->desc = "MIPS Malta Core LV";
1458     mc->init = mips_malta_init;
1459     mc->block_default_type = IF_IDE;
1460     mc->max_cpus = 16;
1461     mc->is_default = true;
1462 #ifdef TARGET_MIPS64
1463     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1464 #else
1465     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1466 #endif
1467     mc->default_ram_id = "mips_malta.ram";
1468     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1469 }
1470 
1471 DEFINE_MACHINE("malta", mips_malta_machine_init)
1472 
1473 static void mips_malta_register_types(void)
1474 {
1475     type_register_static(&mips_malta_device);
1476 }
1477 
1478 type_init(mips_malta_register_types)
1479