xref: /qemu/hw/misc/imx6_src.c (revision cd892a2e)
1 /*
2  * IMX6 System Reset Controller
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "arm-powerctl.h"
17 #include "qom/cpu.h"
18 
19 #ifndef DEBUG_IMX6_SRC
20 #define DEBUG_IMX6_SRC 0
21 #endif
22 
23 #define DPRINTF(fmt, args...) \
24     do { \
25         if (DEBUG_IMX6_SRC) { \
26             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
27                                              __func__, ##args); \
28         } \
29     } while (0)
30 
31 static const char *imx6_src_reg_name(uint32_t reg)
32 {
33     static char unknown[20];
34 
35     switch (reg) {
36     case SRC_SCR:
37         return "SRC_SCR";
38     case SRC_SBMR1:
39         return "SRC_SBMR1";
40     case SRC_SRSR:
41         return "SRC_SRSR";
42     case SRC_SISR:
43         return "SRC_SISR";
44     case SRC_SIMR:
45         return "SRC_SIMR";
46     case SRC_SBMR2:
47         return "SRC_SBMR2";
48     case SRC_GPR1:
49         return "SRC_GPR1";
50     case SRC_GPR2:
51         return "SRC_GPR2";
52     case SRC_GPR3:
53         return "SRC_GPR3";
54     case SRC_GPR4:
55         return "SRC_GPR4";
56     case SRC_GPR5:
57         return "SRC_GPR5";
58     case SRC_GPR6:
59         return "SRC_GPR6";
60     case SRC_GPR7:
61         return "SRC_GPR7";
62     case SRC_GPR8:
63         return "SRC_GPR8";
64     case SRC_GPR9:
65         return "SRC_GPR9";
66     case SRC_GPR10:
67         return "SRC_GPR10";
68     default:
69         sprintf(unknown, "%d ?", reg);
70         return unknown;
71     }
72 }
73 
74 static const VMStateDescription vmstate_imx6_src = {
75     .name = TYPE_IMX6_SRC,
76     .version_id = 1,
77     .minimum_version_id = 1,
78     .fields = (VMStateField[]) {
79         VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
80         VMSTATE_END_OF_LIST()
81     },
82 };
83 
84 static void imx6_src_reset(DeviceState *dev)
85 {
86     IMX6SRCState *s = IMX6_SRC(dev);
87 
88     DPRINTF("\n");
89 
90     memset(s->regs, 0, sizeof(s->regs));
91 
92     /* Set reset values */
93     s->regs[SRC_SCR] = 0x521;
94     s->regs[SRC_SRSR] = 0x1;
95     s->regs[SRC_SIMR] = 0x1F;
96 }
97 
98 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
99 {
100     uint32_t value = 0;
101     IMX6SRCState *s = (IMX6SRCState *)opaque;
102     uint32_t index = offset >> 2;
103 
104     if (index < SRC_MAX) {
105         value = s->regs[index];
106     } else {
107         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
108                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
109 
110     }
111 
112     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
113 
114     return value;
115 }
116 
117 
118 /* The reset is asynchronous so we need to defer clearing the reset
119  * bit until the work is completed.
120  */
121 
122 struct SRCSCRResetInfo {
123     IMX6SRCState *s;
124     int reset_bit;
125 };
126 
127 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
128 {
129     struct SRCSCRResetInfo *ri = data.host_ptr;
130     IMX6SRCState *s = ri->s;
131 
132     assert(qemu_mutex_iothread_locked());
133 
134     s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
135     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
136             imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
137 
138     g_free(ri);
139 }
140 
141 static void imx6_defer_clear_reset_bit(int cpuid,
142                                        IMX6SRCState *s,
143                                        unsigned long reset_shift)
144 {
145     struct SRCSCRResetInfo *ri;
146 
147     ri = g_malloc(sizeof(struct SRCSCRResetInfo));
148     ri->s = s;
149     ri->reset_bit = reset_shift;
150 
151     async_run_on_cpu(arm_get_cpu_by_id(cpuid), imx6_clear_reset_bit,
152                      RUN_ON_CPU_HOST_PTR(ri));
153 }
154 
155 
156 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
157                            unsigned size)
158 {
159     IMX6SRCState *s = (IMX6SRCState *)opaque;
160     uint32_t index = offset >> 2;
161     unsigned long change_mask;
162     unsigned long current_value = value;
163 
164     if (index >=  SRC_MAX) {
165         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
166                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
167         return;
168     }
169 
170     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
171             (uint32_t)current_value);
172 
173     change_mask = s->regs[index] ^ (uint32_t)current_value;
174 
175     switch (index) {
176     case SRC_SCR:
177         /*
178          * On real hardware when the system reset controller starts a
179          * secondary CPU it runs through some boot ROM code which reads
180          * the SRC_GPRX registers controlling the start address and branches
181          * to it.
182          * Here we are taking a short cut and branching directly to the
183          * requested address (we don't want to run the boot ROM code inside
184          * QEMU)
185          */
186         if (EXTRACT(change_mask, CORE3_ENABLE)) {
187             if (EXTRACT(current_value, CORE3_ENABLE)) {
188                 /* CORE 3 is brought up */
189                 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
190                                3, false);
191             } else {
192                 /* CORE 3 is shut down */
193                 arm_set_cpu_off(3);
194             }
195             /* We clear the reset bits as the processor changed state */
196             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
197             clear_bit(CORE3_RST_SHIFT, &change_mask);
198         }
199         if (EXTRACT(change_mask, CORE2_ENABLE)) {
200             if (EXTRACT(current_value, CORE2_ENABLE)) {
201                 /* CORE 2 is brought up */
202                 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
203                                3, false);
204             } else {
205                 /* CORE 2 is shut down */
206                 arm_set_cpu_off(2);
207             }
208             /* We clear the reset bits as the processor changed state */
209             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
210             clear_bit(CORE2_RST_SHIFT, &change_mask);
211         }
212         if (EXTRACT(change_mask, CORE1_ENABLE)) {
213             if (EXTRACT(current_value, CORE1_ENABLE)) {
214                 /* CORE 1 is brought up */
215                 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
216                                3, false);
217             } else {
218                 /* CORE 1 is shut down */
219                 arm_set_cpu_off(1);
220             }
221             /* We clear the reset bits as the processor changed state */
222             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
223             clear_bit(CORE1_RST_SHIFT, &change_mask);
224         }
225         if (EXTRACT(change_mask, CORE0_RST)) {
226             arm_reset_cpu(0);
227             imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
228         }
229         if (EXTRACT(change_mask, CORE1_RST)) {
230             arm_reset_cpu(1);
231             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
232         }
233         if (EXTRACT(change_mask, CORE2_RST)) {
234             arm_reset_cpu(2);
235             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
236         }
237         if (EXTRACT(change_mask, CORE3_RST)) {
238             arm_reset_cpu(3);
239             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
240         }
241         if (EXTRACT(change_mask, SW_IPU2_RST)) {
242             /* We pretend the IPU2 is reset */
243             clear_bit(SW_IPU2_RST_SHIFT, &current_value);
244         }
245         if (EXTRACT(change_mask, SW_IPU1_RST)) {
246             /* We pretend the IPU1 is reset */
247             clear_bit(SW_IPU1_RST_SHIFT, &current_value);
248         }
249         s->regs[index] = current_value;
250         break;
251     default:
252         s->regs[index] = current_value;
253         break;
254     }
255 }
256 
257 static const struct MemoryRegionOps imx6_src_ops = {
258     .read = imx6_src_read,
259     .write = imx6_src_write,
260     .endianness = DEVICE_NATIVE_ENDIAN,
261     .valid = {
262         /*
263          * Our device would not work correctly if the guest was doing
264          * unaligned access. This might not be a limitation on the real
265          * device but in practice there is no reason for a guest to access
266          * this device unaligned.
267          */
268         .min_access_size = 4,
269         .max_access_size = 4,
270         .unaligned = false,
271     },
272 };
273 
274 static void imx6_src_realize(DeviceState *dev, Error **errp)
275 {
276     IMX6SRCState *s = IMX6_SRC(dev);
277 
278     memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
279                           TYPE_IMX6_SRC, 0x1000);
280     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
281 }
282 
283 static void imx6_src_class_init(ObjectClass *klass, void *data)
284 {
285     DeviceClass *dc = DEVICE_CLASS(klass);
286 
287     dc->realize = imx6_src_realize;
288     dc->reset = imx6_src_reset;
289     dc->vmsd = &vmstate_imx6_src;
290     dc->desc = "i.MX6 System Reset Controller";
291 }
292 
293 static const TypeInfo imx6_src_info = {
294     .name          = TYPE_IMX6_SRC,
295     .parent        = TYPE_SYS_BUS_DEVICE,
296     .instance_size = sizeof(IMX6SRCState),
297     .class_init    = imx6_src_class_init,
298 };
299 
300 static void imx6_src_register_types(void)
301 {
302     type_register_static(&imx6_src_info);
303 }
304 
305 type_init(imx6_src_register_types)
306