xref: /qemu/hw/misc/macio/cuda.c (revision 2562755e)
1 /*
2  * QEMU PowerMac CUDA device support
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/mac.h"
28 #include "hw/input/adb.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/cutils.h"
32 #include "qemu/log.h"
33 
34 /* XXX: implement all timer modes */
35 
36 /* debug CUDA */
37 //#define DEBUG_CUDA
38 
39 /* debug CUDA packets */
40 //#define DEBUG_CUDA_PACKET
41 
42 #ifdef DEBUG_CUDA
43 #define CUDA_DPRINTF(fmt, ...)                                  \
44     do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define CUDA_DPRINTF(fmt, ...)
47 #endif
48 
49 /* Bits in B data register: all active low */
50 #define TREQ		0x08		/* Transfer request (input) */
51 #define TACK		0x10		/* Transfer acknowledge (output) */
52 #define TIP		0x20		/* Transfer in progress (output) */
53 
54 /* Bits in ACR */
55 #define SR_CTRL		0x1c		/* Shift register control bits */
56 #define SR_EXT		0x0c		/* Shift on external clock */
57 #define SR_OUT		0x10		/* Shift out if 1 */
58 
59 /* Bits in IFR and IER */
60 #define IER_SET		0x80		/* set bits in IER */
61 #define IER_CLR		0		/* clear bits in IER */
62 #define SR_INT		0x04		/* Shift register full/empty */
63 #define SR_DATA_INT	0x08
64 #define SR_CLOCK_INT	0x10
65 #define T1_INT          0x40            /* Timer 1 interrupt */
66 #define T2_INT          0x20            /* Timer 2 interrupt */
67 
68 /* Bits in ACR */
69 #define T1MODE          0xc0            /* Timer 1 mode */
70 #define T1MODE_CONT     0x40            /*  continuous interrupts */
71 
72 /* commands (1st byte) */
73 #define ADB_PACKET	0
74 #define CUDA_PACKET	1
75 #define ERROR_PACKET	2
76 #define TIMER_PACKET	3
77 #define POWER_PACKET	4
78 #define MACIIC_PACKET	5
79 #define PMU_PACKET	6
80 
81 
82 /* CUDA commands (2nd byte) */
83 #define CUDA_WARM_START			0x0
84 #define CUDA_AUTOPOLL			0x1
85 #define CUDA_GET_6805_ADDR		0x2
86 #define CUDA_GET_TIME			0x3
87 #define CUDA_GET_PRAM			0x7
88 #define CUDA_SET_6805_ADDR		0x8
89 #define CUDA_SET_TIME			0x9
90 #define CUDA_POWERDOWN			0xa
91 #define CUDA_POWERUP_TIME		0xb
92 #define CUDA_SET_PRAM			0xc
93 #define CUDA_MS_RESET			0xd
94 #define CUDA_SEND_DFAC			0xe
95 #define CUDA_BATTERY_SWAP_SENSE		0x10
96 #define CUDA_RESET_SYSTEM		0x11
97 #define CUDA_SET_IPL			0x12
98 #define CUDA_FILE_SERVER_FLAG		0x13
99 #define CUDA_SET_AUTO_RATE		0x14
100 #define CUDA_GET_AUTO_RATE		0x16
101 #define CUDA_SET_DEVICE_LIST		0x19
102 #define CUDA_GET_DEVICE_LIST		0x1a
103 #define CUDA_SET_ONE_SECOND_MODE	0x1b
104 #define CUDA_SET_POWER_MESSAGES		0x21
105 #define CUDA_GET_SET_IIC		0x22
106 #define CUDA_WAKEUP			0x23
107 #define CUDA_TIMER_TICKLE		0x24
108 #define CUDA_COMBINED_FORMAT_IIC	0x25
109 
110 #define CUDA_TIMER_FREQ (4700000 / 6)
111 
112 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
113 #define RTC_OFFSET                      2082844800
114 
115 /* CUDA registers */
116 #define CUDA_REG_B       0x00
117 #define CUDA_REG_A       0x01
118 #define CUDA_REG_DIRB    0x02
119 #define CUDA_REG_DIRA    0x03
120 #define CUDA_REG_T1CL    0x04
121 #define CUDA_REG_T1CH    0x05
122 #define CUDA_REG_T1LL    0x06
123 #define CUDA_REG_T1LH    0x07
124 #define CUDA_REG_T2CL    0x08
125 #define CUDA_REG_T2CH    0x09
126 #define CUDA_REG_SR      0x0a
127 #define CUDA_REG_ACR     0x0b
128 #define CUDA_REG_PCR     0x0c
129 #define CUDA_REG_IFR     0x0d
130 #define CUDA_REG_IER     0x0e
131 #define CUDA_REG_ANH     0x0f
132 
133 static void cuda_update(CUDAState *s);
134 static void cuda_receive_packet_from_host(CUDAState *s,
135                                           const uint8_t *data, int len);
136 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
137                               int64_t current_time);
138 
139 static void cuda_update_irq(CUDAState *s)
140 {
141     if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
142         qemu_irq_raise(s->irq);
143     } else {
144         qemu_irq_lower(s->irq);
145     }
146 }
147 
148 static uint64_t get_tb(uint64_t time, uint64_t freq)
149 {
150     return muldiv64(time, freq, NANOSECONDS_PER_SECOND);
151 }
152 
153 static unsigned int get_counter(CUDATimer *ti)
154 {
155     int64_t d;
156     unsigned int counter;
157     uint64_t tb_diff;
158     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
159 
160     /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
161     tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
162     d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
163 
164     if (ti->index == 0) {
165         /* the timer goes down from latch to -1 (period of latch + 2) */
166         if (d <= (ti->counter_value + 1)) {
167             counter = (ti->counter_value - d) & 0xffff;
168         } else {
169             counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
170             counter = (ti->latch - counter) & 0xffff;
171         }
172     } else {
173         counter = (ti->counter_value - d) & 0xffff;
174     }
175     return counter;
176 }
177 
178 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
179 {
180     CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
181     ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
182                            s->frequency);
183     ti->counter_value = val;
184     cuda_timer_update(s, ti, ti->load_time);
185 }
186 
187 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
188 {
189     int64_t d, next_time;
190     unsigned int counter;
191 
192     /* current counter value */
193     d = muldiv64(current_time - s->load_time,
194                  CUDA_TIMER_FREQ, NANOSECONDS_PER_SECOND);
195     /* the timer goes down from latch to -1 (period of latch + 2) */
196     if (d <= (s->counter_value + 1)) {
197         counter = (s->counter_value - d) & 0xffff;
198     } else {
199         counter = (d - (s->counter_value + 1)) % (s->latch + 2);
200         counter = (s->latch - counter) & 0xffff;
201     }
202 
203     /* Note: we consider the irq is raised on 0 */
204     if (counter == 0xffff) {
205         next_time = d + s->latch + 1;
206     } else if (counter == 0) {
207         next_time = d + s->latch + 2;
208     } else {
209         next_time = d + counter;
210     }
211     CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
212                  s->latch, d, next_time - d);
213     next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, CUDA_TIMER_FREQ) +
214         s->load_time;
215     if (next_time <= current_time)
216         next_time = current_time + 1;
217     return next_time;
218 }
219 
220 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
221                               int64_t current_time)
222 {
223     if (!ti->timer)
224         return;
225     if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
226         timer_del(ti->timer);
227     } else {
228         ti->next_irq_time = get_next_irq_time(ti, current_time);
229         timer_mod(ti->timer, ti->next_irq_time);
230     }
231 }
232 
233 static void cuda_timer1(void *opaque)
234 {
235     CUDAState *s = opaque;
236     CUDATimer *ti = &s->timers[0];
237 
238     cuda_timer_update(s, ti, ti->next_irq_time);
239     s->ifr |= T1_INT;
240     cuda_update_irq(s);
241 }
242 
243 static void cuda_timer2(void *opaque)
244 {
245     CUDAState *s = opaque;
246     CUDATimer *ti = &s->timers[1];
247 
248     cuda_timer_update(s, ti, ti->next_irq_time);
249     s->ifr |= T2_INT;
250     cuda_update_irq(s);
251 }
252 
253 static void cuda_set_sr_int(void *opaque)
254 {
255     CUDAState *s = opaque;
256 
257     CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
258     s->ifr |= SR_INT;
259     cuda_update_irq(s);
260 }
261 
262 static void cuda_delay_set_sr_int(CUDAState *s)
263 {
264     int64_t expire;
265 
266     if (s->dirb == 0xff) {
267         /* Not in Mac OS, fire the IRQ directly */
268         cuda_set_sr_int(s);
269         return;
270     }
271 
272     CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
273 
274     expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
275     timer_mod(s->sr_delay_timer, expire);
276 }
277 
278 static uint32_t cuda_readb(void *opaque, hwaddr addr)
279 {
280     CUDAState *s = opaque;
281     uint32_t val;
282 
283     addr = (addr >> 9) & 0xf;
284     switch(addr) {
285     case CUDA_REG_B:
286         val = s->b;
287         break;
288     case CUDA_REG_A:
289         val = s->a;
290         break;
291     case CUDA_REG_DIRB:
292         val = s->dirb;
293         break;
294     case CUDA_REG_DIRA:
295         val = s->dira;
296         break;
297     case CUDA_REG_T1CL:
298         val = get_counter(&s->timers[0]) & 0xff;
299         s->ifr &= ~T1_INT;
300         cuda_update_irq(s);
301         break;
302     case CUDA_REG_T1CH:
303         val = get_counter(&s->timers[0]) >> 8;
304         cuda_update_irq(s);
305         break;
306     case CUDA_REG_T1LL:
307         val = s->timers[0].latch & 0xff;
308         break;
309     case CUDA_REG_T1LH:
310         /* XXX: check this */
311         val = (s->timers[0].latch >> 8) & 0xff;
312         break;
313     case CUDA_REG_T2CL:
314         val = get_counter(&s->timers[1]) & 0xff;
315         s->ifr &= ~T2_INT;
316         cuda_update_irq(s);
317         break;
318     case CUDA_REG_T2CH:
319         val = get_counter(&s->timers[1]) >> 8;
320         break;
321     case CUDA_REG_SR:
322         val = s->sr;
323         s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
324         cuda_update_irq(s);
325         break;
326     case CUDA_REG_ACR:
327         val = s->acr;
328         break;
329     case CUDA_REG_PCR:
330         val = s->pcr;
331         break;
332     case CUDA_REG_IFR:
333         val = s->ifr;
334         if (s->ifr & s->ier) {
335             val |= 0x80;
336         }
337         break;
338     case CUDA_REG_IER:
339         val = s->ier | 0x80;
340         break;
341     default:
342     case CUDA_REG_ANH:
343         val = s->anh;
344         break;
345     }
346     if (addr != CUDA_REG_IFR || val != 0) {
347         CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
348     }
349 
350     return val;
351 }
352 
353 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
354 {
355     CUDAState *s = opaque;
356 
357     addr = (addr >> 9) & 0xf;
358     CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
359 
360     switch(addr) {
361     case CUDA_REG_B:
362         s->b = val;
363         cuda_update(s);
364         break;
365     case CUDA_REG_A:
366         s->a = val;
367         break;
368     case CUDA_REG_DIRB:
369         s->dirb = val;
370         break;
371     case CUDA_REG_DIRA:
372         s->dira = val;
373         break;
374     case CUDA_REG_T1CL:
375         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
376         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
377         break;
378     case CUDA_REG_T1CH:
379         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
380         s->ifr &= ~T1_INT;
381         set_counter(s, &s->timers[0], s->timers[0].latch);
382         break;
383     case CUDA_REG_T1LL:
384         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
385         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
386         break;
387     case CUDA_REG_T1LH:
388         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
389         s->ifr &= ~T1_INT;
390         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
391         break;
392     case CUDA_REG_T2CL:
393         s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
394         break;
395     case CUDA_REG_T2CH:
396         /* To ensure T2 generates an interrupt on zero crossing with the
397            common timer code, write the value directly from the latch to
398            the counter */
399         s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
400         s->ifr &= ~T2_INT;
401         set_counter(s, &s->timers[1], s->timers[1].latch);
402         break;
403     case CUDA_REG_SR:
404         s->sr = val;
405         break;
406     case CUDA_REG_ACR:
407         s->acr = val;
408         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
409         cuda_update(s);
410         break;
411     case CUDA_REG_PCR:
412         s->pcr = val;
413         break;
414     case CUDA_REG_IFR:
415         /* reset bits */
416         s->ifr &= ~val;
417         cuda_update_irq(s);
418         break;
419     case CUDA_REG_IER:
420         if (val & IER_SET) {
421             /* set bits */
422             s->ier |= val & 0x7f;
423         } else {
424             /* reset bits */
425             s->ier &= ~val;
426         }
427         cuda_update_irq(s);
428         break;
429     default:
430     case CUDA_REG_ANH:
431         s->anh = val;
432         break;
433     }
434 }
435 
436 /* NOTE: TIP and TREQ are negated */
437 static void cuda_update(CUDAState *s)
438 {
439     int packet_received, len;
440 
441     packet_received = 0;
442     if (!(s->b & TIP)) {
443         /* transfer requested from host */
444 
445         if (s->acr & SR_OUT) {
446             /* data output */
447             if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
448                 if (s->data_out_index < sizeof(s->data_out)) {
449                     CUDA_DPRINTF("send: %02x\n", s->sr);
450                     s->data_out[s->data_out_index++] = s->sr;
451                     cuda_delay_set_sr_int(s);
452                 }
453             }
454         } else {
455             if (s->data_in_index < s->data_in_size) {
456                 /* data input */
457                 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
458                     s->sr = s->data_in[s->data_in_index++];
459                     CUDA_DPRINTF("recv: %02x\n", s->sr);
460                     /* indicate end of transfer */
461                     if (s->data_in_index >= s->data_in_size) {
462                         s->b = (s->b | TREQ);
463                     }
464                     cuda_delay_set_sr_int(s);
465                 }
466             }
467         }
468     } else {
469         /* no transfer requested: handle sync case */
470         if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
471             /* update TREQ state each time TACK change state */
472             if (s->b & TACK)
473                 s->b = (s->b | TREQ);
474             else
475                 s->b = (s->b & ~TREQ);
476             cuda_delay_set_sr_int(s);
477         } else {
478             if (!(s->last_b & TIP)) {
479                 /* handle end of host to cuda transfer */
480                 packet_received = (s->data_out_index > 0);
481                 /* always an IRQ at the end of transfer */
482                 cuda_delay_set_sr_int(s);
483             }
484             /* signal if there is data to read */
485             if (s->data_in_index < s->data_in_size) {
486                 s->b = (s->b & ~TREQ);
487             }
488         }
489     }
490 
491     s->last_acr = s->acr;
492     s->last_b = s->b;
493 
494     /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
495        recursively */
496     if (packet_received) {
497         len = s->data_out_index;
498         s->data_out_index = 0;
499         cuda_receive_packet_from_host(s, s->data_out, len);
500     }
501 }
502 
503 static void cuda_send_packet_to_host(CUDAState *s,
504                                      const uint8_t *data, int len)
505 {
506 #ifdef DEBUG_CUDA_PACKET
507     {
508         int i;
509         printf("cuda_send_packet_to_host:\n");
510         for(i = 0; i < len; i++)
511             printf(" %02x", data[i]);
512         printf("\n");
513     }
514 #endif
515     memcpy(s->data_in, data, len);
516     s->data_in_size = len;
517     s->data_in_index = 0;
518     cuda_update(s);
519     cuda_delay_set_sr_int(s);
520 }
521 
522 static void cuda_adb_poll(void *opaque)
523 {
524     CUDAState *s = opaque;
525     uint8_t obuf[ADB_MAX_OUT_LEN + 2];
526     int olen;
527 
528     olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
529     if (olen > 0) {
530         obuf[0] = ADB_PACKET;
531         obuf[1] = 0x40; /* polled data */
532         cuda_send_packet_to_host(s, obuf, olen + 2);
533     }
534     timer_mod(s->adb_poll_timer,
535                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
536                    (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
537 }
538 
539 /* description of commands */
540 typedef struct CudaCommand {
541     uint8_t command;
542     const char *name;
543     bool (*handler)(CUDAState *s,
544                     const uint8_t *in_args, int in_len,
545                     uint8_t *out_args, int *out_len);
546 } CudaCommand;
547 
548 static bool cuda_cmd_autopoll(CUDAState *s,
549                               const uint8_t *in_data, int in_len,
550                               uint8_t *out_data, int *out_len)
551 {
552     int autopoll;
553 
554     if (in_len != 1) {
555         return false;
556     }
557 
558     autopoll = (in_data[0] != 0);
559     if (autopoll != s->autopoll) {
560         s->autopoll = autopoll;
561         if (autopoll) {
562             timer_mod(s->adb_poll_timer,
563                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
564                       (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
565         } else {
566             timer_del(s->adb_poll_timer);
567         }
568     }
569     return true;
570 }
571 
572 static bool cuda_cmd_set_autorate(CUDAState *s,
573                                   const uint8_t *in_data, int in_len,
574                                   uint8_t *out_data, int *out_len)
575 {
576     if (in_len != 1) {
577         return false;
578     }
579 
580     /* we don't want a period of 0 ms */
581     /* FIXME: check what real hardware does */
582     if (in_data[0] == 0) {
583         return false;
584     }
585 
586     s->autopoll_rate_ms = in_data[0];
587     if (s->autopoll) {
588         timer_mod(s->adb_poll_timer,
589                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
590                   (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
591     }
592     return true;
593 }
594 
595 static bool cuda_cmd_set_device_list(CUDAState *s,
596                                      const uint8_t *in_data, int in_len,
597                                      uint8_t *out_data, int *out_len)
598 {
599     if (in_len != 2) {
600         return false;
601     }
602 
603     s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
604     return true;
605 }
606 
607 static bool cuda_cmd_powerdown(CUDAState *s,
608                                const uint8_t *in_data, int in_len,
609                                uint8_t *out_data, int *out_len)
610 {
611     if (in_len != 0) {
612         return false;
613     }
614 
615     qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
616     return true;
617 }
618 
619 static bool cuda_cmd_reset_system(CUDAState *s,
620                                   const uint8_t *in_data, int in_len,
621                                   uint8_t *out_data, int *out_len)
622 {
623     if (in_len != 0) {
624         return false;
625     }
626 
627     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
628     return true;
629 }
630 
631 static bool cuda_cmd_set_file_server_flag(CUDAState *s,
632                                           const uint8_t *in_data, int in_len,
633                                           uint8_t *out_data, int *out_len)
634 {
635     if (in_len != 1) {
636         return false;
637     }
638 
639     qemu_log_mask(LOG_UNIMP,
640                   "CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
641                   in_data[0]);
642     return true;
643 }
644 
645 static bool cuda_cmd_set_power_message(CUDAState *s,
646                                        const uint8_t *in_data, int in_len,
647                                        uint8_t *out_data, int *out_len)
648 {
649     if (in_len != 1) {
650         return false;
651     }
652 
653     qemu_log_mask(LOG_UNIMP,
654                   "CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
655                   in_data[0]);
656     return true;
657 }
658 
659 static bool cuda_cmd_get_time(CUDAState *s,
660                               const uint8_t *in_data, int in_len,
661                               uint8_t *out_data, int *out_len)
662 {
663     uint32_t ti;
664 
665     if (in_len != 0) {
666         return false;
667     }
668 
669     ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
670                            / NANOSECONDS_PER_SECOND);
671     out_data[0] = ti >> 24;
672     out_data[1] = ti >> 16;
673     out_data[2] = ti >> 8;
674     out_data[3] = ti;
675     *out_len = 4;
676     return true;
677 }
678 
679 static bool cuda_cmd_set_time(CUDAState *s,
680                               const uint8_t *in_data, int in_len,
681                               uint8_t *out_data, int *out_len)
682 {
683     uint32_t ti;
684 
685     if (in_len != 4) {
686         return false;
687     }
688 
689     ti = (((uint32_t)in_data[0]) << 24) + (((uint32_t)in_data[1]) << 16)
690          + (((uint32_t)in_data[2]) << 8) + in_data[3];
691     s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
692                            / NANOSECONDS_PER_SECOND);
693     return true;
694 }
695 
696 static const CudaCommand handlers[] = {
697     { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
698     { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE",  cuda_cmd_set_autorate },
699     { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
700     { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
701     { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
702     { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
703       cuda_cmd_set_file_server_flag },
704     { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
705       cuda_cmd_set_power_message },
706     { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
707     { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
708 };
709 
710 static void cuda_receive_packet(CUDAState *s,
711                                 const uint8_t *data, int len)
712 {
713     uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
714     int i, out_len = 0;
715 
716     for (i = 0; i < ARRAY_SIZE(handlers); i++) {
717         const CudaCommand *desc = &handlers[i];
718         if (desc->command == data[0]) {
719             CUDA_DPRINTF("handling command %s\n", desc->name);
720             out_len = 0;
721             if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
722                 cuda_send_packet_to_host(s, obuf, 3 + out_len);
723             } else {
724                 qemu_log_mask(LOG_GUEST_ERROR,
725                               "CUDA: %s: wrong parameters %d\n",
726                               desc->name, len);
727                 obuf[0] = ERROR_PACKET;
728                 obuf[1] = 0x5; /* bad parameters */
729                 obuf[2] = CUDA_PACKET;
730                 obuf[3] = data[0];
731                 cuda_send_packet_to_host(s, obuf, 4);
732             }
733             return;
734         }
735     }
736 
737     qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
738     obuf[0] = ERROR_PACKET;
739     obuf[1] = 0x2; /* unknown command */
740     obuf[2] = CUDA_PACKET;
741     obuf[3] = data[0];
742     cuda_send_packet_to_host(s, obuf, 4);
743 }
744 
745 static void cuda_receive_packet_from_host(CUDAState *s,
746                                           const uint8_t *data, int len)
747 {
748 #ifdef DEBUG_CUDA_PACKET
749     {
750         int i;
751         printf("cuda_receive_packet_from_host:\n");
752         for(i = 0; i < len; i++)
753             printf(" %02x", data[i]);
754         printf("\n");
755     }
756 #endif
757     switch(data[0]) {
758     case ADB_PACKET:
759         {
760             uint8_t obuf[ADB_MAX_OUT_LEN + 3];
761             int olen;
762             olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
763             if (olen > 0) {
764                 obuf[0] = ADB_PACKET;
765                 obuf[1] = 0x00;
766                 cuda_send_packet_to_host(s, obuf, olen + 2);
767             } else {
768                 /* error */
769                 obuf[0] = ADB_PACKET;
770                 obuf[1] = -olen;
771                 obuf[2] = data[1];
772                 olen = 0;
773                 cuda_send_packet_to_host(s, obuf, olen + 3);
774             }
775         }
776         break;
777     case CUDA_PACKET:
778         cuda_receive_packet(s, data + 1, len - 1);
779         break;
780     }
781 }
782 
783 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
784 {
785 }
786 
787 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
788 {
789 }
790 
791 static uint32_t cuda_readw (void *opaque, hwaddr addr)
792 {
793     return 0;
794 }
795 
796 static uint32_t cuda_readl (void *opaque, hwaddr addr)
797 {
798     return 0;
799 }
800 
801 static const MemoryRegionOps cuda_ops = {
802     .old_mmio = {
803         .write = {
804             cuda_writeb,
805             cuda_writew,
806             cuda_writel,
807         },
808         .read = {
809             cuda_readb,
810             cuda_readw,
811             cuda_readl,
812         },
813     },
814     .endianness = DEVICE_NATIVE_ENDIAN,
815 };
816 
817 static bool cuda_timer_exist(void *opaque, int version_id)
818 {
819     CUDATimer *s = opaque;
820 
821     return s->timer != NULL;
822 }
823 
824 static const VMStateDescription vmstate_cuda_timer = {
825     .name = "cuda_timer",
826     .version_id = 0,
827     .minimum_version_id = 0,
828     .fields = (VMStateField[]) {
829         VMSTATE_UINT16(latch, CUDATimer),
830         VMSTATE_UINT16(counter_value, CUDATimer),
831         VMSTATE_INT64(load_time, CUDATimer),
832         VMSTATE_INT64(next_irq_time, CUDATimer),
833         VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
834         VMSTATE_END_OF_LIST()
835     }
836 };
837 
838 static const VMStateDescription vmstate_cuda = {
839     .name = "cuda",
840     .version_id = 4,
841     .minimum_version_id = 4,
842     .fields = (VMStateField[]) {
843         VMSTATE_UINT8(a, CUDAState),
844         VMSTATE_UINT8(b, CUDAState),
845         VMSTATE_UINT8(last_b, CUDAState),
846         VMSTATE_UINT8(dira, CUDAState),
847         VMSTATE_UINT8(dirb, CUDAState),
848         VMSTATE_UINT8(sr, CUDAState),
849         VMSTATE_UINT8(acr, CUDAState),
850         VMSTATE_UINT8(last_acr, CUDAState),
851         VMSTATE_UINT8(pcr, CUDAState),
852         VMSTATE_UINT8(ifr, CUDAState),
853         VMSTATE_UINT8(ier, CUDAState),
854         VMSTATE_UINT8(anh, CUDAState),
855         VMSTATE_INT32(data_in_size, CUDAState),
856         VMSTATE_INT32(data_in_index, CUDAState),
857         VMSTATE_INT32(data_out_index, CUDAState),
858         VMSTATE_UINT8(autopoll, CUDAState),
859         VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
860         VMSTATE_UINT16(adb_poll_mask, CUDAState),
861         VMSTATE_BUFFER(data_in, CUDAState),
862         VMSTATE_BUFFER(data_out, CUDAState),
863         VMSTATE_UINT32(tick_offset, CUDAState),
864         VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
865                              vmstate_cuda_timer, CUDATimer),
866         VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
867         VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
868         VMSTATE_END_OF_LIST()
869     }
870 };
871 
872 static void cuda_reset(DeviceState *dev)
873 {
874     CUDAState *s = CUDA(dev);
875 
876     s->b = 0;
877     s->a = 0;
878     s->dirb = 0xff;
879     s->dira = 0;
880     s->sr = 0;
881     s->acr = 0;
882     s->pcr = 0;
883     s->ifr = 0;
884     s->ier = 0;
885     //    s->ier = T1_INT | SR_INT;
886     s->anh = 0;
887     s->data_in_size = 0;
888     s->data_in_index = 0;
889     s->data_out_index = 0;
890     s->autopoll = 0;
891 
892     s->timers[0].latch = 0xffff;
893     set_counter(s, &s->timers[0], 0xffff);
894 
895     s->timers[1].latch = 0xffff;
896 
897     s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
898 }
899 
900 static void cuda_realizefn(DeviceState *dev, Error **errp)
901 {
902     CUDAState *s = CUDA(dev);
903     struct tm tm;
904 
905     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
906     s->timers[0].frequency = s->frequency;
907     s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
908     s->timers[1].frequency = (SCALE_US * 6000) / 4700;
909 
910     qemu_get_timedate(&tm, 0);
911     s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
912 
913     s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
914     s->autopoll_rate_ms = 20;
915     s->adb_poll_mask = 0xffff;
916 }
917 
918 static void cuda_initfn(Object *obj)
919 {
920     SysBusDevice *d = SYS_BUS_DEVICE(obj);
921     CUDAState *s = CUDA(obj);
922     int i;
923 
924     memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
925     sysbus_init_mmio(d, &s->mem);
926     sysbus_init_irq(d, &s->irq);
927 
928     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
929         s->timers[i].index = i;
930     }
931 
932     qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
933                         DEVICE(obj), "adb.0");
934 }
935 
936 static Property cuda_properties[] = {
937     DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
938     DEFINE_PROP_END_OF_LIST()
939 };
940 
941 static void cuda_class_init(ObjectClass *oc, void *data)
942 {
943     DeviceClass *dc = DEVICE_CLASS(oc);
944 
945     dc->realize = cuda_realizefn;
946     dc->reset = cuda_reset;
947     dc->vmsd = &vmstate_cuda;
948     dc->props = cuda_properties;
949     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
950 }
951 
952 static const TypeInfo cuda_type_info = {
953     .name = TYPE_CUDA,
954     .parent = TYPE_SYS_BUS_DEVICE,
955     .instance_size = sizeof(CUDAState),
956     .instance_init = cuda_initfn,
957     .class_init = cuda_class_init,
958 };
959 
960 static void cuda_register_types(void)
961 {
962     type_register_static(&cuda_type_info);
963 }
964 
965 type_init(cuda_register_types)
966