xref: /qemu/hw/misc/omap_gpmc.c (revision 3751e722)
1 /*
2  * TI OMAP general purpose memory controller emulation.
3  *
4  * Copyright (C) 2007-2009 Nokia Corporation
5  * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6  * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 or
11  * (at your option) any later version of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "hw/hw.h"
22 #include "hw/block/flash.h"
23 #include "hw/arm/omap.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 
27 /* General-Purpose Memory Controller */
28 struct omap_gpmc_s {
29     qemu_irq irq;
30     qemu_irq drq;
31     MemoryRegion iomem;
32     int accept_256;
33 
34     uint8_t revision;
35     uint8_t sysconfig;
36     uint16_t irqst;
37     uint16_t irqen;
38     uint16_t lastirq;
39     uint16_t timeout;
40     uint16_t config;
41     struct omap_gpmc_cs_file_s {
42         uint32_t config[7];
43         MemoryRegion *iomem;
44         MemoryRegion container;
45         MemoryRegion nandiomem;
46         DeviceState *dev;
47     } cs_file[8];
48     int ecc_cs;
49     int ecc_ptr;
50     uint32_t ecc_cfg;
51     ECCState ecc[9];
52     struct prefetch {
53         uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
54         uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
55         int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
56         int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
57         int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
58         MemoryRegion iomem;
59         uint8_t fifo[64];
60     } prefetch;
61 };
62 
63 #define OMAP_GPMC_8BIT 0
64 #define OMAP_GPMC_16BIT 1
65 #define OMAP_GPMC_NOR 0
66 #define OMAP_GPMC_NAND 2
67 
68 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
69 {
70     return (f->config[0] >> 10) & 3;
71 }
72 
73 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
74 {
75     /* devsize field is really 2 bits but we ignore the high
76      * bit to ensure consistent behaviour if the guest sets
77      * it (values 2 and 3 are reserved in the TRM)
78      */
79     return (f->config[0] >> 12) & 1;
80 }
81 
82 /* Extract the chip-select value from the prefetch config1 register */
83 static int prefetch_cs(uint32_t config1)
84 {
85     return (config1 >> 24) & 7;
86 }
87 
88 static int prefetch_threshold(uint32_t config1)
89 {
90     return (config1 >> 8) & 0x7f;
91 }
92 
93 static void omap_gpmc_int_update(struct omap_gpmc_s *s)
94 {
95     /* The TRM is a bit unclear, but it seems to say that
96      * the TERMINALCOUNTSTATUS bit is set only on the
97      * transition when the prefetch engine goes from
98      * active to inactive, whereas the FIFOEVENTSTATUS
99      * bit is held high as long as the fifo has at
100      * least THRESHOLD bytes available.
101      * So we do the latter here, but TERMINALCOUNTSTATUS
102      * is set elsewhere.
103      */
104     if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
105         s->irqst |= 1;
106     }
107     if ((s->irqen & s->irqst) != s->lastirq) {
108         s->lastirq = s->irqen & s->irqst;
109         qemu_set_irq(s->irq, s->lastirq);
110     }
111 }
112 
113 static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
114 {
115     if (s->prefetch.config1 & 4) {
116         qemu_set_irq(s->drq, value);
117     }
118 }
119 
120 /* Access functions for when a NAND-like device is mapped into memory:
121  * all addresses in the region behave like accesses to the relevant
122  * GPMC_NAND_DATA_i register (which is actually implemented to call these)
123  */
124 static uint64_t omap_nand_read(void *opaque, hwaddr addr,
125                                unsigned size)
126 {
127     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
128     uint64_t v;
129     nand_setpins(f->dev, 0, 0, 0, 1, 0);
130     switch (omap_gpmc_devsize(f)) {
131     case OMAP_GPMC_8BIT:
132         v = nand_getio(f->dev);
133         if (size == 1) {
134             return v;
135         }
136         v |= (nand_getio(f->dev) << 8);
137         if (size == 2) {
138             return v;
139         }
140         v |= (nand_getio(f->dev) << 16);
141         v |= (nand_getio(f->dev) << 24);
142         return v;
143     case OMAP_GPMC_16BIT:
144         v = nand_getio(f->dev);
145         if (size == 1) {
146             /* 8 bit read from 16 bit device : probably a guest bug */
147             return v & 0xff;
148         }
149         if (size == 2) {
150             return v;
151         }
152         v |= (nand_getio(f->dev) << 16);
153         return v;
154     default:
155         abort();
156     }
157 }
158 
159 static void omap_nand_setio(DeviceState *dev, uint64_t value,
160                             int nandsize, int size)
161 {
162     /* Write the specified value to the NAND device, respecting
163      * both size of the NAND device and size of the write access.
164      */
165     switch (nandsize) {
166     case OMAP_GPMC_8BIT:
167         switch (size) {
168         case 1:
169             nand_setio(dev, value & 0xff);
170             break;
171         case 2:
172             nand_setio(dev, value & 0xff);
173             nand_setio(dev, (value >> 8) & 0xff);
174             break;
175         case 4:
176         default:
177             nand_setio(dev, value & 0xff);
178             nand_setio(dev, (value >> 8) & 0xff);
179             nand_setio(dev, (value >> 16) & 0xff);
180             nand_setio(dev, (value >> 24) & 0xff);
181             break;
182         }
183         break;
184     case OMAP_GPMC_16BIT:
185         switch (size) {
186         case 1:
187             /* writing to a 16bit device with 8bit access is probably a guest
188              * bug; pass the value through anyway.
189              */
190         case 2:
191             nand_setio(dev, value & 0xffff);
192             break;
193         case 4:
194         default:
195             nand_setio(dev, value & 0xffff);
196             nand_setio(dev, (value >> 16) & 0xffff);
197             break;
198         }
199         break;
200     }
201 }
202 
203 static void omap_nand_write(void *opaque, hwaddr addr,
204                             uint64_t value, unsigned size)
205 {
206     struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
207     nand_setpins(f->dev, 0, 0, 0, 1, 0);
208     omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
209 }
210 
211 static const MemoryRegionOps omap_nand_ops = {
212     .read = omap_nand_read,
213     .write = omap_nand_write,
214     .endianness = DEVICE_NATIVE_ENDIAN,
215 };
216 
217 static void fill_prefetch_fifo(struct omap_gpmc_s *s)
218 {
219     /* Fill the prefetch FIFO by reading data from NAND.
220      * We do this synchronously, unlike the hardware which
221      * will do this asynchronously. We refill when the
222      * FIFO has THRESHOLD bytes free, and we always refill
223      * as much data as possible starting at the top end
224      * of the FIFO.
225      * (We have to refill at THRESHOLD rather than waiting
226      * for the FIFO to empty to allow for the case where
227      * the FIFO size isn't an exact multiple of THRESHOLD
228      * and we're doing DMA transfers.)
229      * This means we never need to handle wrap-around in
230      * the fifo-reading code, and the next byte of data
231      * to read is always fifo[63 - fifopointer].
232      */
233     int fptr;
234     int cs = prefetch_cs(s->prefetch.config1);
235     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
236     int bytes;
237     /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
238      * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
239      * Instead believe the bit that says it is always a byte count.
240      */
241     bytes = 64 - s->prefetch.fifopointer;
242     if (bytes > s->prefetch.count) {
243         bytes = s->prefetch.count;
244     }
245     s->prefetch.count -= bytes;
246     s->prefetch.fifopointer += bytes;
247     fptr = 64 - s->prefetch.fifopointer;
248     /* Move the existing data in the FIFO so it sits just
249      * before what we're about to read in
250      */
251     while (fptr < (64 - bytes)) {
252         s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
253         fptr++;
254     }
255     while (fptr < 64) {
256         if (is16bit) {
257             uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
258             s->prefetch.fifo[fptr++] = v & 0xff;
259             s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
260         } else {
261             s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
262         }
263     }
264     if (s->prefetch.startengine && (s->prefetch.count == 0)) {
265         /* This was the final transfer: raise TERMINALCOUNTSTATUS */
266         s->irqst |= 2;
267         s->prefetch.startengine = 0;
268     }
269     /* If there are any bytes in the FIFO at this point then
270      * we must raise a DMA request (either this is a final part
271      * transfer, or we filled the FIFO in which case we certainly
272      * have THRESHOLD bytes available)
273      */
274     if (s->prefetch.fifopointer != 0) {
275         omap_gpmc_dma_update(s, 1);
276     }
277     omap_gpmc_int_update(s);
278 }
279 
280 /* Access functions for a NAND-like device when the prefetch/postwrite
281  * engine is enabled -- all addresses in the region behave alike:
282  * data is read or written to the FIFO.
283  */
284 static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
285                                         unsigned size)
286 {
287     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
288     uint32_t data;
289     if (s->prefetch.config1 & 1) {
290         /* The TRM doesn't define the behaviour if you read from the
291          * FIFO when the prefetch engine is in write mode. We choose
292          * to always return zero.
293          */
294         return 0;
295     }
296     /* Note that trying to read an empty fifo repeats the last byte */
297     if (s->prefetch.fifopointer) {
298         s->prefetch.fifopointer--;
299     }
300     data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
301     if (s->prefetch.fifopointer ==
302         (64 - prefetch_threshold(s->prefetch.config1))) {
303         /* We've drained THRESHOLD bytes now. So deassert the
304          * DMA request, then refill the FIFO (which will probably
305          * assert it again.)
306          */
307         omap_gpmc_dma_update(s, 0);
308         fill_prefetch_fifo(s);
309     }
310     omap_gpmc_int_update(s);
311     return data;
312 }
313 
314 static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
315                                      uint64_t value, unsigned size)
316 {
317     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
318     int cs = prefetch_cs(s->prefetch.config1);
319     if ((s->prefetch.config1 & 1) == 0) {
320         /* The TRM doesn't define the behaviour of writing to the
321          * FIFO when the prefetch engine is in read mode. We
322          * choose to ignore the write.
323          */
324         return;
325     }
326     if (s->prefetch.count == 0) {
327         /* The TRM doesn't define the behaviour of writing to the
328          * FIFO if the transfer is complete. We choose to ignore.
329          */
330         return;
331     }
332     /* The only reason we do any data buffering in postwrite
333      * mode is if we are talking to a 16 bit NAND device, in
334      * which case we need to buffer the first byte of the
335      * 16 bit word until the other byte arrives.
336      */
337     int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
338     if (is16bit) {
339         /* fifopointer alternates between 64 (waiting for first
340          * byte of word) and 63 (waiting for second byte)
341          */
342         if (s->prefetch.fifopointer == 64) {
343             s->prefetch.fifo[0] = value;
344             s->prefetch.fifopointer--;
345         } else {
346             value = (value << 8) | s->prefetch.fifo[0];
347             omap_nand_write(&s->cs_file[cs], 0, value, 2);
348             s->prefetch.count--;
349             s->prefetch.fifopointer = 64;
350         }
351     } else {
352         /* Just write the byte : fifopointer remains 64 at all times */
353         omap_nand_write(&s->cs_file[cs], 0, value, 1);
354         s->prefetch.count--;
355     }
356     if (s->prefetch.count == 0) {
357         /* Final transfer: raise TERMINALCOUNTSTATUS */
358         s->irqst |= 2;
359         s->prefetch.startengine = 0;
360     }
361     omap_gpmc_int_update(s);
362 }
363 
364 static const MemoryRegionOps omap_prefetch_ops = {
365     .read = omap_gpmc_prefetch_read,
366     .write = omap_gpmc_prefetch_write,
367     .endianness = DEVICE_NATIVE_ENDIAN,
368     .impl.min_access_size = 1,
369     .impl.max_access_size = 1,
370 };
371 
372 static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
373 {
374     /* Return the MemoryRegion* to map/unmap for this chipselect */
375     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
376     if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
377         return f->iomem;
378     }
379     if ((s->prefetch.config1 & 0x80) &&
380         (prefetch_cs(s->prefetch.config1) == cs)) {
381         /* The prefetch engine is enabled for this CS: map the FIFO */
382         return &s->prefetch.iomem;
383     }
384     return &f->nandiomem;
385 }
386 
387 static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
388 {
389     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
390     uint32_t mask = (f->config[6] >> 8) & 0xf;
391     uint32_t base = f->config[6] & 0x3f;
392     uint32_t size;
393 
394     if (!f->iomem && !f->dev) {
395         return;
396     }
397 
398     if (!(f->config[6] & (1 << 6))) {
399         /* Do nothing unless CSVALID */
400         return;
401     }
402 
403     /* TODO: check for overlapping regions and report access errors */
404     if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
405          && !(s->accept_256 && !mask)) {
406         fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
407                  __func__, mask);
408     }
409 
410     base <<= 24;
411     size = (0x0fffffff & ~(mask << 24)) + 1;
412     /* TODO: rather than setting the size of the mapping (which should be
413      * constant), the mask should cause wrapping of the address space, so
414      * that the same memory becomes accessible at every <i>size</i> bytes
415      * starting from <i>base</i>.  */
416     memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
417     memory_region_add_subregion(&f->container, 0,
418                                 omap_gpmc_cs_memregion(s, cs));
419     memory_region_add_subregion(get_system_memory(), base,
420                                 &f->container);
421 }
422 
423 static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
424 {
425     struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
426     if (!(f->config[6] & (1 << 6))) {
427         /* Do nothing unless CSVALID */
428         return;
429     }
430     if (!f->iomem && !f->dev) {
431         return;
432     }
433     memory_region_del_subregion(get_system_memory(), &f->container);
434     memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
435     memory_region_destroy(&f->container);
436 }
437 
438 void omap_gpmc_reset(struct omap_gpmc_s *s)
439 {
440     int i;
441 
442     s->sysconfig = 0;
443     s->irqst = 0;
444     s->irqen = 0;
445     omap_gpmc_int_update(s);
446     for (i = 0; i < 8; i++) {
447         /* This has to happen before we change any of the config
448          * used to determine which memory regions are mapped or unmapped.
449          */
450         omap_gpmc_cs_unmap(s, i);
451     }
452     s->timeout = 0;
453     s->config = 0xa00;
454     s->prefetch.config1 = 0x00004000;
455     s->prefetch.transfercount = 0x00000000;
456     s->prefetch.startengine = 0;
457     s->prefetch.fifopointer = 0;
458     s->prefetch.count = 0;
459     for (i = 0; i < 8; i ++) {
460         s->cs_file[i].config[1] = 0x101001;
461         s->cs_file[i].config[2] = 0x020201;
462         s->cs_file[i].config[3] = 0x10031003;
463         s->cs_file[i].config[4] = 0x10f1111;
464         s->cs_file[i].config[5] = 0;
465         s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
466 
467         s->cs_file[i].config[6] = 0xf00;
468         /* In theory we could probe attached devices for some CFG1
469          * bits here, but we just retain them across resets as they
470          * were set initially by omap_gpmc_attach().
471          */
472         if (i == 0) {
473             s->cs_file[i].config[0] &= 0x00433e00;
474             s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
475             omap_gpmc_cs_map(s, i);
476         } else {
477             s->cs_file[i].config[0] &= 0x00403c00;
478         }
479     }
480     s->ecc_cs = 0;
481     s->ecc_ptr = 0;
482     s->ecc_cfg = 0x3fcff000;
483     for (i = 0; i < 9; i ++)
484         ecc_reset(&s->ecc[i]);
485 }
486 
487 static int gpmc_wordaccess_only(hwaddr addr)
488 {
489     /* Return true if the register offset is to a register that
490      * only permits word width accesses.
491      * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
492      * for any chipselect.
493      */
494     if (addr >= 0x60 && addr <= 0x1d4) {
495         int cs = (addr - 0x60) / 0x30;
496         addr -= cs * 0x30;
497         if (addr >= 0x7c && addr < 0x88) {
498             /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
499             return 0;
500         }
501     }
502     return 1;
503 }
504 
505 static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
506                                unsigned size)
507 {
508     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
509     int cs;
510     struct omap_gpmc_cs_file_s *f;
511 
512     if (size != 4 && gpmc_wordaccess_only(addr)) {
513         return omap_badwidth_read32(opaque, addr);
514     }
515 
516     switch (addr) {
517     case 0x000:	/* GPMC_REVISION */
518         return s->revision;
519 
520     case 0x010:	/* GPMC_SYSCONFIG */
521         return s->sysconfig;
522 
523     case 0x014:	/* GPMC_SYSSTATUS */
524         return 1;						/* RESETDONE */
525 
526     case 0x018:	/* GPMC_IRQSTATUS */
527         return s->irqst;
528 
529     case 0x01c:	/* GPMC_IRQENABLE */
530         return s->irqen;
531 
532     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
533         return s->timeout;
534 
535     case 0x044:	/* GPMC_ERR_ADDRESS */
536     case 0x048:	/* GPMC_ERR_TYPE */
537         return 0;
538 
539     case 0x050:	/* GPMC_CONFIG */
540         return s->config;
541 
542     case 0x054:	/* GPMC_STATUS */
543         return 0x001;
544 
545     case 0x060 ... 0x1d4:
546         cs = (addr - 0x060) / 0x30;
547         addr -= cs * 0x30;
548         f = s->cs_file + cs;
549         switch (addr) {
550         case 0x60:      /* GPMC_CONFIG1 */
551             return f->config[0];
552         case 0x64:      /* GPMC_CONFIG2 */
553             return f->config[1];
554         case 0x68:      /* GPMC_CONFIG3 */
555             return f->config[2];
556         case 0x6c:      /* GPMC_CONFIG4 */
557             return f->config[3];
558         case 0x70:      /* GPMC_CONFIG5 */
559             return f->config[4];
560         case 0x74:      /* GPMC_CONFIG6 */
561             return f->config[5];
562         case 0x78:      /* GPMC_CONFIG7 */
563             return f->config[6];
564         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
565             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
566                 return omap_nand_read(f, 0, size);
567             }
568             return 0;
569         }
570         break;
571 
572     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
573         return s->prefetch.config1;
574     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
575         return s->prefetch.transfercount;
576     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
577         return s->prefetch.startengine;
578     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
579         /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
580          * FIFOTHRESHOLDSTATUS bit should be set when
581          * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
582          * Apparently the underlying functional spec from which the TRM was
583          * created states that the behaviour is ">=", and this also
584          * makes more conceptual sense.
585          */
586         return (s->prefetch.fifopointer << 24) |
587                 ((s->prefetch.fifopointer >=
588                   ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
589                 s->prefetch.count;
590 
591     case 0x1f4:	/* GPMC_ECC_CONFIG */
592         return s->ecc_cs;
593     case 0x1f8:	/* GPMC_ECC_CONTROL */
594         return s->ecc_ptr;
595     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
596         return s->ecc_cfg;
597     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
598         cs = (addr & 0x1f) >> 2;
599         /* TODO: check correctness */
600         return
601                 ((s->ecc[cs].cp    &  0x07) <<  0) |
602                 ((s->ecc[cs].cp    &  0x38) << 13) |
603                 ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
604                 ((s->ecc[cs].lp[1] & 0x1ff) << 19);
605 
606     case 0x230:	/* GPMC_TESTMODE_CTRL */
607         return 0;
608     case 0x234:	/* GPMC_PSA_LSB */
609     case 0x238:	/* GPMC_PSA_MSB */
610         return 0x00000000;
611     }
612 
613     OMAP_BAD_REG(addr);
614     return 0;
615 }
616 
617 static void omap_gpmc_write(void *opaque, hwaddr addr,
618                             uint64_t value, unsigned size)
619 {
620     struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
621     int cs;
622     struct omap_gpmc_cs_file_s *f;
623 
624     if (size != 4 && gpmc_wordaccess_only(addr)) {
625         return omap_badwidth_write32(opaque, addr, value);
626     }
627 
628     switch (addr) {
629     case 0x000:	/* GPMC_REVISION */
630     case 0x014:	/* GPMC_SYSSTATUS */
631     case 0x054:	/* GPMC_STATUS */
632     case 0x1f0:	/* GPMC_PREFETCH_STATUS */
633     case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
634     case 0x234:	/* GPMC_PSA_LSB */
635     case 0x238:	/* GPMC_PSA_MSB */
636         OMAP_RO_REG(addr);
637         break;
638 
639     case 0x010:	/* GPMC_SYSCONFIG */
640         if ((value >> 3) == 0x3)
641             fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
642                             __FUNCTION__, value >> 3);
643         if (value & 2)
644             omap_gpmc_reset(s);
645         s->sysconfig = value & 0x19;
646         break;
647 
648     case 0x018:	/* GPMC_IRQSTATUS */
649         s->irqst &= ~value;
650         omap_gpmc_int_update(s);
651         break;
652 
653     case 0x01c:	/* GPMC_IRQENABLE */
654         s->irqen = value & 0xf03;
655         omap_gpmc_int_update(s);
656         break;
657 
658     case 0x040:	/* GPMC_TIMEOUT_CONTROL */
659         s->timeout = value & 0x1ff1;
660         break;
661 
662     case 0x044:	/* GPMC_ERR_ADDRESS */
663     case 0x048:	/* GPMC_ERR_TYPE */
664         break;
665 
666     case 0x050:	/* GPMC_CONFIG */
667         s->config = value & 0xf13;
668         break;
669 
670     case 0x060 ... 0x1d4:
671         cs = (addr - 0x060) / 0x30;
672         addr -= cs * 0x30;
673         f = s->cs_file + cs;
674         switch (addr) {
675         case 0x60:      /* GPMC_CONFIG1 */
676             f->config[0] = value & 0xffef3e13;
677             break;
678         case 0x64:      /* GPMC_CONFIG2 */
679             f->config[1] = value & 0x001f1f8f;
680             break;
681         case 0x68:      /* GPMC_CONFIG3 */
682             f->config[2] = value & 0x001f1f8f;
683             break;
684         case 0x6c:      /* GPMC_CONFIG4 */
685             f->config[3] = value & 0x1f8f1f8f;
686             break;
687         case 0x70:      /* GPMC_CONFIG5 */
688             f->config[4] = value & 0x0f1f1f1f;
689             break;
690         case 0x74:      /* GPMC_CONFIG6 */
691             f->config[5] = value & 0x00000fcf;
692             break;
693         case 0x78:      /* GPMC_CONFIG7 */
694             if ((f->config[6] ^ value) & 0xf7f) {
695                 omap_gpmc_cs_unmap(s, cs);
696                 f->config[6] = value & 0x00000f7f;
697                 omap_gpmc_cs_map(s, cs);
698             }
699             break;
700         case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
701             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
702                 nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
703                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
704             }
705             break;
706         case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
707             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
708                 nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
709                 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
710             }
711             break;
712         case 0x84 ... 0x87: /* GPMC_NAND_DATA */
713             if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
714                 omap_nand_write(f, 0, value, size);
715             }
716             break;
717         default:
718             goto bad_reg;
719         }
720         break;
721 
722     case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
723         if (!s->prefetch.startengine) {
724             uint32_t newconfig1 = value & 0x7f8f7fbf;
725             uint32_t changed;
726             changed = newconfig1 ^ s->prefetch.config1;
727             if (changed & (0x80 | 0x7000000)) {
728                 /* Turning the engine on or off, or mapping it somewhere else.
729                  * cs_map() and cs_unmap() check the prefetch config and
730                  * overall CSVALID bits, so it is sufficient to unmap-and-map
731                  * both the old cs and the new one. Note that we adhere to
732                  * the "unmap/change config/map" order (and not unmap twice
733                  * if newcs == oldcs), otherwise we'll try to delete the wrong
734                  * memory region.
735                  */
736                 int oldcs = prefetch_cs(s->prefetch.config1);
737                 int newcs = prefetch_cs(newconfig1);
738                 omap_gpmc_cs_unmap(s, oldcs);
739                 if (oldcs != newcs) {
740                     omap_gpmc_cs_unmap(s, newcs);
741                 }
742                 s->prefetch.config1 = newconfig1;
743                 omap_gpmc_cs_map(s, oldcs);
744                 if (oldcs != newcs) {
745                     omap_gpmc_cs_map(s, newcs);
746                 }
747             } else {
748                 s->prefetch.config1 = newconfig1;
749             }
750         }
751         break;
752 
753     case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
754         if (!s->prefetch.startengine) {
755             s->prefetch.transfercount = value & 0x3fff;
756         }
757         break;
758 
759     case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
760         if (s->prefetch.startengine != (value & 1)) {
761             s->prefetch.startengine = value & 1;
762             if (s->prefetch.startengine) {
763                 /* Prefetch engine start */
764                 s->prefetch.count = s->prefetch.transfercount;
765                 if (s->prefetch.config1 & 1) {
766                     /* Write */
767                     s->prefetch.fifopointer = 64;
768                 } else {
769                     /* Read */
770                     s->prefetch.fifopointer = 0;
771                     fill_prefetch_fifo(s);
772                 }
773             } else {
774                 /* Prefetch engine forcibly stopped. The TRM
775                  * doesn't define the behaviour if you do this.
776                  * We clear the prefetch count, which means that
777                  * we permit no more writes, and don't read any
778                  * more data from NAND. The CPU can still drain
779                  * the FIFO of unread data.
780                  */
781                 s->prefetch.count = 0;
782             }
783             omap_gpmc_int_update(s);
784         }
785         break;
786 
787     case 0x1f4:	/* GPMC_ECC_CONFIG */
788         s->ecc_cs = 0x8f;
789         break;
790     case 0x1f8:	/* GPMC_ECC_CONTROL */
791         if (value & (1 << 8))
792             for (cs = 0; cs < 9; cs ++)
793                 ecc_reset(&s->ecc[cs]);
794         s->ecc_ptr = value & 0xf;
795         if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
796             s->ecc_ptr = 0;
797             s->ecc_cs &= ~1;
798         }
799         break;
800     case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
801         s->ecc_cfg = value & 0x3fcff1ff;
802         break;
803     case 0x230:	/* GPMC_TESTMODE_CTRL */
804         if (value & 7)
805             fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
806         break;
807 
808     default:
809     bad_reg:
810         OMAP_BAD_REG(addr);
811         return;
812     }
813 }
814 
815 static const MemoryRegionOps omap_gpmc_ops = {
816     .read = omap_gpmc_read,
817     .write = omap_gpmc_write,
818     .endianness = DEVICE_NATIVE_ENDIAN,
819 };
820 
821 struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
822                                    hwaddr base,
823                                    qemu_irq irq, qemu_irq drq)
824 {
825     int cs;
826     struct omap_gpmc_s *s = (struct omap_gpmc_s *)
827             g_malloc0(sizeof(struct omap_gpmc_s));
828 
829     memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
830     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
831 
832     s->irq = irq;
833     s->drq = drq;
834     s->accept_256 = cpu_is_omap3630(mpu);
835     s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
836     s->lastirq = 0;
837     omap_gpmc_reset(s);
838 
839     /* We have to register a different IO memory handler for each
840      * chip select region in case a NAND device is mapped there. We
841      * make the region the worst-case size of 256MB and rely on the
842      * container memory region in cs_map to chop it down to the actual
843      * guest-requested size.
844      */
845     for (cs = 0; cs < 8; cs++) {
846         memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
847                               &omap_nand_ops,
848                               &s->cs_file[cs],
849                               "omap-nand",
850                               256 * 1024 * 1024);
851     }
852 
853     memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
854                           "omap-gpmc-prefetch", 256 * 1024 * 1024);
855     return s;
856 }
857 
858 void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
859 {
860     struct omap_gpmc_cs_file_s *f;
861     assert(iomem);
862 
863     if (cs < 0 || cs >= 8) {
864         fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
865         exit(-1);
866     }
867     f = &s->cs_file[cs];
868 
869     omap_gpmc_cs_unmap(s, cs);
870     f->config[0] &= ~(0xf << 10);
871     f->iomem = iomem;
872     omap_gpmc_cs_map(s, cs);
873 }
874 
875 void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
876 {
877     struct omap_gpmc_cs_file_s *f;
878     assert(nand);
879 
880     if (cs < 0 || cs >= 8) {
881         fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
882         exit(-1);
883     }
884     f = &s->cs_file[cs];
885 
886     omap_gpmc_cs_unmap(s, cs);
887     f->config[0] &= ~(0xf << 10);
888     f->config[0] |= (OMAP_GPMC_NAND << 10);
889     f->dev = nand;
890     if (nand_getbuswidth(f->dev) == 16) {
891         f->config[0] |= OMAP_GPMC_16BIT << 12;
892     }
893     omap_gpmc_cs_map(s, cs);
894 }
895