xref: /qemu/hw/net/e1000.c (revision 7e563bfb)
1 /*
2  * QEMU e1000 emulation
3  *
4  * Software developer's manual:
5  * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
6  *
7  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8  * Copyright (c) 2008 Qumranet
9  * Based on work done by:
10  * Copyright (c) 2007 Dan Aloni
11  * Copyright (c) 2004 Antony T Curtis
12  *
13  * This library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2 of the License, or (at your option) any later version.
17  *
18  * This library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25  */
26 
27 
28 #include "qemu/osdep.h"
29 #include "hw/hw.h"
30 #include "hw/pci/pci.h"
31 #include "net/net.h"
32 #include "net/checksum.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/dma.h"
35 #include "qemu/iov.h"
36 #include "qemu/range.h"
37 
38 #include "e1000x_common.h"
39 
40 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
41 
42 /* #define E1000_DEBUG */
43 
44 #ifdef E1000_DEBUG
45 enum {
46     DEBUG_GENERAL,      DEBUG_IO,       DEBUG_MMIO,     DEBUG_INTERRUPT,
47     DEBUG_RX,           DEBUG_TX,       DEBUG_MDIC,     DEBUG_EEPROM,
48     DEBUG_UNKNOWN,      DEBUG_TXSUM,    DEBUG_TXERR,    DEBUG_RXERR,
49     DEBUG_RXFILTER,     DEBUG_PHY,      DEBUG_NOTYET,
50 };
51 #define DBGBIT(x)    (1<<DEBUG_##x)
52 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
53 
54 #define DBGOUT(what, fmt, ...) do { \
55     if (debugflags & DBGBIT(what)) \
56         fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
57     } while (0)
58 #else
59 #define DBGOUT(what, fmt, ...) do {} while (0)
60 #endif
61 
62 #define IOPORT_SIZE       0x40
63 #define PNPMMIO_SIZE      0x20000
64 #define MIN_BUF_SIZE      60 /* Min. octets in an ethernet frame sans FCS */
65 
66 #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
67 
68 /*
69  * HW models:
70  *  E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
71  *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
72  *  E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
73  *  Others never tested
74  */
75 
76 typedef struct E1000State_st {
77     /*< private >*/
78     PCIDevice parent_obj;
79     /*< public >*/
80 
81     NICState *nic;
82     NICConf conf;
83     MemoryRegion mmio;
84     MemoryRegion io;
85 
86     uint32_t mac_reg[0x8000];
87     uint16_t phy_reg[0x20];
88     uint16_t eeprom_data[64];
89 
90     uint32_t rxbuf_size;
91     uint32_t rxbuf_min_shift;
92     struct e1000_tx {
93         unsigned char header[256];
94         unsigned char vlan_header[4];
95         /* Fields vlan and data must not be reordered or separated. */
96         unsigned char vlan[4];
97         unsigned char data[0x10000];
98         uint16_t size;
99         unsigned char vlan_needed;
100         unsigned char sum_needed;
101         bool cptse;
102         e1000x_txd_props props;
103         e1000x_txd_props tso_props;
104         uint16_t tso_frames;
105     } tx;
106 
107     struct {
108         uint32_t val_in;    /* shifted in from guest driver */
109         uint16_t bitnum_in;
110         uint16_t bitnum_out;
111         uint16_t reading;
112         uint32_t old_eecd;
113     } eecd_state;
114 
115     QEMUTimer *autoneg_timer;
116 
117     QEMUTimer *mit_timer;      /* Mitigation timer. */
118     bool mit_timer_on;         /* Mitigation timer is running. */
119     bool mit_irq_level;        /* Tracks interrupt pin level. */
120     uint32_t mit_ide;          /* Tracks E1000_TXD_CMD_IDE bit. */
121 
122 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
123 #define E1000_FLAG_AUTONEG_BIT 0
124 #define E1000_FLAG_MIT_BIT 1
125 #define E1000_FLAG_MAC_BIT 2
126 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
127 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
128 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
129     uint32_t compat_flags;
130 } E1000State;
131 
132 #define chkflag(x)     (s->compat_flags & E1000_FLAG_##x)
133 
134 typedef struct E1000BaseClass {
135     PCIDeviceClass parent_class;
136     uint16_t phy_id2;
137 } E1000BaseClass;
138 
139 #define TYPE_E1000_BASE "e1000-base"
140 
141 #define E1000(obj) \
142     OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)
143 
144 #define E1000_DEVICE_CLASS(klass) \
145      OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
146 #define E1000_DEVICE_GET_CLASS(obj) \
147     OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
148 
149 static void
150 e1000_link_up(E1000State *s)
151 {
152     e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
153 
154     /* E1000_STATUS_LU is tested by e1000_can_receive() */
155     qemu_flush_queued_packets(qemu_get_queue(s->nic));
156 }
157 
158 static void
159 e1000_autoneg_done(E1000State *s)
160 {
161     e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
162 
163     /* E1000_STATUS_LU is tested by e1000_can_receive() */
164     qemu_flush_queued_packets(qemu_get_queue(s->nic));
165 }
166 
167 static bool
168 have_autoneg(E1000State *s)
169 {
170     return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
171 }
172 
173 static void
174 set_phy_ctrl(E1000State *s, int index, uint16_t val)
175 {
176     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
177     s->phy_reg[PHY_CTRL] = val & ~(0x3f |
178                                    MII_CR_RESET |
179                                    MII_CR_RESTART_AUTO_NEG);
180 
181     /*
182      * QEMU 1.3 does not support link auto-negotiation emulation, so if we
183      * migrate during auto negotiation, after migration the link will be
184      * down.
185      */
186     if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
187         e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
188     }
189 }
190 
191 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
192     [PHY_CTRL] = set_phy_ctrl,
193 };
194 
195 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
196 
197 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
198 static const char phy_regcap[0x20] = {
199     [PHY_STATUS]      = PHY_R,     [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
200     [PHY_ID1]         = PHY_R,     [M88E1000_PHY_SPEC_CTRL]     = PHY_RW,
201     [PHY_CTRL]        = PHY_RW,    [PHY_1000T_CTRL]             = PHY_RW,
202     [PHY_LP_ABILITY]  = PHY_R,     [PHY_1000T_STATUS]           = PHY_R,
203     [PHY_AUTONEG_ADV] = PHY_RW,    [M88E1000_RX_ERR_CNTR]       = PHY_R,
204     [PHY_ID2]         = PHY_R,     [M88E1000_PHY_SPEC_STATUS]   = PHY_R,
205     [PHY_AUTONEG_EXP] = PHY_R,
206 };
207 
208 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
209 static const uint16_t phy_reg_init[] = {
210     [PHY_CTRL]   = MII_CR_SPEED_SELECT_MSB |
211                    MII_CR_FULL_DUPLEX |
212                    MII_CR_AUTO_NEG_EN,
213 
214     [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
215                    MII_SR_LINK_STATUS |   /* link initially up */
216                    MII_SR_AUTONEG_CAPS |
217                    /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
218                    MII_SR_PREAMBLE_SUPPRESS |
219                    MII_SR_EXTENDED_STATUS |
220                    MII_SR_10T_HD_CAPS |
221                    MII_SR_10T_FD_CAPS |
222                    MII_SR_100X_HD_CAPS |
223                    MII_SR_100X_FD_CAPS,
224 
225     [PHY_ID1] = 0x141,
226     /* [PHY_ID2] configured per DevId, from e1000_reset() */
227     [PHY_AUTONEG_ADV] = 0xde1,
228     [PHY_LP_ABILITY] = 0x1e0,
229     [PHY_1000T_CTRL] = 0x0e00,
230     [PHY_1000T_STATUS] = 0x3c00,
231     [M88E1000_PHY_SPEC_CTRL] = 0x360,
232     [M88E1000_PHY_SPEC_STATUS] = 0xac00,
233     [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
234 };
235 
236 static const uint32_t mac_reg_init[] = {
237     [PBA]     = 0x00100030,
238     [LEDCTL]  = 0x602,
239     [CTRL]    = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
240                 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
241     [STATUS]  = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
242                 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
243                 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
244                 E1000_STATUS_LU,
245     [MANC]    = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
246                 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
247                 E1000_MANC_RMCP_EN,
248 };
249 
250 /* Helper function, *curr == 0 means the value is not set */
251 static inline void
252 mit_update_delay(uint32_t *curr, uint32_t value)
253 {
254     if (value && (*curr == 0 || value < *curr)) {
255         *curr = value;
256     }
257 }
258 
259 static void
260 set_interrupt_cause(E1000State *s, int index, uint32_t val)
261 {
262     PCIDevice *d = PCI_DEVICE(s);
263     uint32_t pending_ints;
264     uint32_t mit_delay;
265 
266     s->mac_reg[ICR] = val;
267 
268     /*
269      * Make sure ICR and ICS registers have the same value.
270      * The spec says that the ICS register is write-only.  However in practice,
271      * on real hardware ICS is readable, and for reads it has the same value as
272      * ICR (except that ICS does not have the clear on read behaviour of ICR).
273      *
274      * The VxWorks PRO/1000 driver uses this behaviour.
275      */
276     s->mac_reg[ICS] = val;
277 
278     pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
279     if (!s->mit_irq_level && pending_ints) {
280         /*
281          * Here we detect a potential raising edge. We postpone raising the
282          * interrupt line if we are inside the mitigation delay window
283          * (s->mit_timer_on == 1).
284          * We provide a partial implementation of interrupt mitigation,
285          * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
286          * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
287          * RADV; relative timers based on TIDV and RDTR are not implemented.
288          */
289         if (s->mit_timer_on) {
290             return;
291         }
292         if (chkflag(MIT)) {
293             /* Compute the next mitigation delay according to pending
294              * interrupts and the current values of RADV (provided
295              * RDTR!=0), TADV and ITR.
296              * Then rearm the timer.
297              */
298             mit_delay = 0;
299             if (s->mit_ide &&
300                     (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
301                 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
302             }
303             if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
304                 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
305             }
306             mit_update_delay(&mit_delay, s->mac_reg[ITR]);
307 
308             /*
309              * According to e1000 SPEC, the Ethernet controller guarantees
310              * a maximum observable interrupt rate of 7813 interrupts/sec.
311              * Thus if mit_delay < 500 then the delay should be set to the
312              * minimum delay possible which is 500.
313              */
314             mit_delay = (mit_delay < 500) ? 500 : mit_delay;
315 
316             s->mit_timer_on = 1;
317             timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
318                       mit_delay * 256);
319             s->mit_ide = 0;
320         }
321     }
322 
323     s->mit_irq_level = (pending_ints != 0);
324     pci_set_irq(d, s->mit_irq_level);
325 }
326 
327 static void
328 e1000_mit_timer(void *opaque)
329 {
330     E1000State *s = opaque;
331 
332     s->mit_timer_on = 0;
333     /* Call set_interrupt_cause to update the irq level (if necessary). */
334     set_interrupt_cause(s, 0, s->mac_reg[ICR]);
335 }
336 
337 static void
338 set_ics(E1000State *s, int index, uint32_t val)
339 {
340     DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
341         s->mac_reg[IMS]);
342     set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
343 }
344 
345 static void
346 e1000_autoneg_timer(void *opaque)
347 {
348     E1000State *s = opaque;
349     if (!qemu_get_queue(s->nic)->link_down) {
350         e1000_autoneg_done(s);
351         set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
352     }
353 }
354 
355 static void e1000_reset(void *opaque)
356 {
357     E1000State *d = opaque;
358     E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
359     uint8_t *macaddr = d->conf.macaddr.a;
360 
361     timer_del(d->autoneg_timer);
362     timer_del(d->mit_timer);
363     d->mit_timer_on = 0;
364     d->mit_irq_level = 0;
365     d->mit_ide = 0;
366     memset(d->phy_reg, 0, sizeof d->phy_reg);
367     memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
368     d->phy_reg[PHY_ID2] = edc->phy_id2;
369     memset(d->mac_reg, 0, sizeof d->mac_reg);
370     memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
371     d->rxbuf_min_shift = 1;
372     memset(&d->tx, 0, sizeof d->tx);
373 
374     if (qemu_get_queue(d->nic)->link_down) {
375         e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
376     }
377 
378     e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
379 }
380 
381 static void
382 set_ctrl(E1000State *s, int index, uint32_t val)
383 {
384     /* RST is self clearing */
385     s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
386 }
387 
388 static void
389 set_rx_control(E1000State *s, int index, uint32_t val)
390 {
391     s->mac_reg[RCTL] = val;
392     s->rxbuf_size = e1000x_rxbufsize(val);
393     s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
394     DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
395            s->mac_reg[RCTL]);
396     qemu_flush_queued_packets(qemu_get_queue(s->nic));
397 }
398 
399 static void
400 set_mdic(E1000State *s, int index, uint32_t val)
401 {
402     uint32_t data = val & E1000_MDIC_DATA_MASK;
403     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
404 
405     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
406         val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
407     else if (val & E1000_MDIC_OP_READ) {
408         DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
409         if (!(phy_regcap[addr] & PHY_R)) {
410             DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
411             val |= E1000_MDIC_ERROR;
412         } else
413             val = (val ^ data) | s->phy_reg[addr];
414     } else if (val & E1000_MDIC_OP_WRITE) {
415         DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
416         if (!(phy_regcap[addr] & PHY_W)) {
417             DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
418             val |= E1000_MDIC_ERROR;
419         } else {
420             if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
421                 phyreg_writeops[addr](s, index, data);
422             } else {
423                 s->phy_reg[addr] = data;
424             }
425         }
426     }
427     s->mac_reg[MDIC] = val | E1000_MDIC_READY;
428 
429     if (val & E1000_MDIC_INT_EN) {
430         set_ics(s, 0, E1000_ICR_MDAC);
431     }
432 }
433 
434 static uint32_t
435 get_eecd(E1000State *s, int index)
436 {
437     uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
438 
439     DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
440            s->eecd_state.bitnum_out, s->eecd_state.reading);
441     if (!s->eecd_state.reading ||
442         ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
443           ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
444         ret |= E1000_EECD_DO;
445     return ret;
446 }
447 
448 static void
449 set_eecd(E1000State *s, int index, uint32_t val)
450 {
451     uint32_t oldval = s->eecd_state.old_eecd;
452 
453     s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
454             E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
455     if (!(E1000_EECD_CS & val)) {            /* CS inactive; nothing to do */
456         return;
457     }
458     if (E1000_EECD_CS & (val ^ oldval)) {    /* CS rise edge; reset state */
459         s->eecd_state.val_in = 0;
460         s->eecd_state.bitnum_in = 0;
461         s->eecd_state.bitnum_out = 0;
462         s->eecd_state.reading = 0;
463     }
464     if (!(E1000_EECD_SK & (val ^ oldval))) {    /* no clock edge */
465         return;
466     }
467     if (!(E1000_EECD_SK & val)) {               /* falling edge */
468         s->eecd_state.bitnum_out++;
469         return;
470     }
471     s->eecd_state.val_in <<= 1;
472     if (val & E1000_EECD_DI)
473         s->eecd_state.val_in |= 1;
474     if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
475         s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
476         s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
477             EEPROM_READ_OPCODE_MICROWIRE);
478     }
479     DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
480            s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
481            s->eecd_state.reading);
482 }
483 
484 static uint32_t
485 flash_eerd_read(E1000State *s, int x)
486 {
487     unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
488 
489     if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
490         return (s->mac_reg[EERD]);
491 
492     if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
493         return (E1000_EEPROM_RW_REG_DONE | r);
494 
495     return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
496            E1000_EEPROM_RW_REG_DONE | r);
497 }
498 
499 static void
500 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
501 {
502     uint32_t sum;
503 
504     if (cse && cse < n)
505         n = cse + 1;
506     if (sloc < n-1) {
507         sum = net_checksum_add(n-css, data+css);
508         stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
509     }
510 }
511 
512 static inline void
513 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
514 {
515     if (!memcmp(arr, bcast, sizeof bcast)) {
516         e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
517     } else if (arr[0] & 1) {
518         e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
519     }
520 }
521 
522 static void
523 e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
524 {
525     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
526                                     PTC1023, PTC1522 };
527 
528     NetClientState *nc = qemu_get_queue(s->nic);
529     if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
530         nc->info->receive(nc, buf, size);
531     } else {
532         qemu_send_packet(nc, buf, size);
533     }
534     inc_tx_bcast_or_mcast_count(s, buf);
535     e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
536 }
537 
538 static void
539 xmit_seg(E1000State *s)
540 {
541     uint16_t len;
542     unsigned int frames = s->tx.tso_frames, css, sofar;
543     struct e1000_tx *tp = &s->tx;
544     struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
545 
546     if (tp->cptse) {
547         css = props->ipcss;
548         DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
549                frames, tp->size, css);
550         if (props->ip) {    /* IPv4 */
551             stw_be_p(tp->data+css+2, tp->size - css);
552             stw_be_p(tp->data+css+4,
553                      lduw_be_p(tp->data + css + 4) + frames);
554         } else {         /* IPv6 */
555             stw_be_p(tp->data+css+4, tp->size - css);
556         }
557         css = props->tucss;
558         len = tp->size - css;
559         DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
560         if (props->tcp) {
561             sofar = frames * props->mss;
562             stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
563             if (props->paylen - sofar > props->mss) {
564                 tp->data[css + 13] &= ~9;    /* PSH, FIN */
565             } else if (frames) {
566                 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
567             }
568         } else {    /* UDP */
569             stw_be_p(tp->data+css+4, len);
570         }
571         if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
572             unsigned int phsum;
573             // add pseudo-header length before checksum calculation
574             void *sp = tp->data + props->tucso;
575 
576             phsum = lduw_be_p(sp) + len;
577             phsum = (phsum >> 16) + (phsum & 0xffff);
578             stw_be_p(sp, phsum);
579         }
580         tp->tso_frames++;
581     }
582 
583     if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
584         putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
585     }
586     if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
587         putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
588     }
589     if (tp->vlan_needed) {
590         memmove(tp->vlan, tp->data, 4);
591         memmove(tp->data, tp->data + 4, 8);
592         memcpy(tp->data + 8, tp->vlan_header, 4);
593         e1000_send_packet(s, tp->vlan, tp->size + 4);
594     } else {
595         e1000_send_packet(s, tp->data, tp->size);
596     }
597 
598     e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
599     e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
600     s->mac_reg[GPTC] = s->mac_reg[TPT];
601     s->mac_reg[GOTCL] = s->mac_reg[TOTL];
602     s->mac_reg[GOTCH] = s->mac_reg[TOTH];
603 }
604 
605 static void
606 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
607 {
608     PCIDevice *d = PCI_DEVICE(s);
609     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
610     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
611     unsigned int split_size = txd_lower & 0xffff, bytes, sz;
612     unsigned int msh = 0xfffff;
613     uint64_t addr;
614     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
615     struct e1000_tx *tp = &s->tx;
616 
617     s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
618     if (dtype == E1000_TXD_CMD_DEXT) {    /* context descriptor */
619         if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
620             e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
621             tp->tso_frames = 0;
622         } else {
623             e1000x_read_tx_ctx_descr(xp, &tp->props);
624         }
625         return;
626     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
627         // data descriptor
628         if (tp->size == 0) {
629             tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
630         }
631         tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
632     } else {
633         // legacy descriptor
634         tp->cptse = 0;
635     }
636 
637     if (e1000x_vlan_enabled(s->mac_reg) &&
638         e1000x_is_vlan_txd(txd_lower) &&
639         (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
640         tp->vlan_needed = 1;
641         stw_be_p(tp->vlan_header,
642                       le16_to_cpu(s->mac_reg[VET]));
643         stw_be_p(tp->vlan_header + 2,
644                       le16_to_cpu(dp->upper.fields.special));
645     }
646 
647     addr = le64_to_cpu(dp->buffer_addr);
648     if (tp->cptse) {
649         msh = tp->tso_props.hdr_len + tp->tso_props.mss;
650         do {
651             bytes = split_size;
652             if (tp->size + bytes > msh)
653                 bytes = msh - tp->size;
654 
655             bytes = MIN(sizeof(tp->data) - tp->size, bytes);
656             pci_dma_read(d, addr, tp->data + tp->size, bytes);
657             sz = tp->size + bytes;
658             if (sz >= tp->tso_props.hdr_len
659                 && tp->size < tp->tso_props.hdr_len) {
660                 memmove(tp->header, tp->data, tp->tso_props.hdr_len);
661             }
662             tp->size = sz;
663             addr += bytes;
664             if (sz == msh) {
665                 xmit_seg(s);
666                 memmove(tp->data, tp->header, tp->tso_props.hdr_len);
667                 tp->size = tp->tso_props.hdr_len;
668             }
669             split_size -= bytes;
670         } while (bytes && split_size);
671     } else {
672         split_size = MIN(sizeof(tp->data) - tp->size, split_size);
673         pci_dma_read(d, addr, tp->data + tp->size, split_size);
674         tp->size += split_size;
675     }
676 
677     if (!(txd_lower & E1000_TXD_CMD_EOP))
678         return;
679     if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
680         xmit_seg(s);
681     }
682     tp->tso_frames = 0;
683     tp->sum_needed = 0;
684     tp->vlan_needed = 0;
685     tp->size = 0;
686     tp->cptse = 0;
687 }
688 
689 static uint32_t
690 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
691 {
692     PCIDevice *d = PCI_DEVICE(s);
693     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
694 
695     if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
696         return 0;
697     txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
698                 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
699     dp->upper.data = cpu_to_le32(txd_upper);
700     pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
701                   &dp->upper, sizeof(dp->upper));
702     return E1000_ICR_TXDW;
703 }
704 
705 static uint64_t tx_desc_base(E1000State *s)
706 {
707     uint64_t bah = s->mac_reg[TDBAH];
708     uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
709 
710     return (bah << 32) + bal;
711 }
712 
713 static void
714 start_xmit(E1000State *s)
715 {
716     PCIDevice *d = PCI_DEVICE(s);
717     dma_addr_t base;
718     struct e1000_tx_desc desc;
719     uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
720 
721     if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
722         DBGOUT(TX, "tx disabled\n");
723         return;
724     }
725 
726     while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
727         base = tx_desc_base(s) +
728                sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
729         pci_dma_read(d, base, &desc, sizeof(desc));
730 
731         DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
732                (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
733                desc.upper.data);
734 
735         process_tx_desc(s, &desc);
736         cause |= txdesc_writeback(s, base, &desc);
737 
738         if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
739             s->mac_reg[TDH] = 0;
740         /*
741          * the following could happen only if guest sw assigns
742          * bogus values to TDT/TDLEN.
743          * there's nothing too intelligent we could do about this.
744          */
745         if (s->mac_reg[TDH] == tdh_start ||
746             tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
747             DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
748                    tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
749             break;
750         }
751     }
752     set_ics(s, 0, cause);
753 }
754 
755 static int
756 receive_filter(E1000State *s, const uint8_t *buf, int size)
757 {
758     uint32_t rctl = s->mac_reg[RCTL];
759     int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
760 
761     if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
762         e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
763         uint16_t vid = lduw_be_p(buf + 14);
764         uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) +
765                                  ((vid >> 5) & 0x7f));
766         if ((vfta & (1 << (vid & 0x1f))) == 0)
767             return 0;
768     }
769 
770     if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
771         return 1;
772     }
773 
774     if (ismcast && (rctl & E1000_RCTL_MPE)) {          /* promiscuous mcast */
775         e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
776         return 1;
777     }
778 
779     if (isbcast && (rctl & E1000_RCTL_BAM)) {          /* broadcast enabled */
780         e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
781         return 1;
782     }
783 
784     return e1000x_rx_group_filter(s->mac_reg, buf);
785 }
786 
787 static void
788 e1000_set_link_status(NetClientState *nc)
789 {
790     E1000State *s = qemu_get_nic_opaque(nc);
791     uint32_t old_status = s->mac_reg[STATUS];
792 
793     if (nc->link_down) {
794         e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
795     } else {
796         if (have_autoneg(s) &&
797             !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
798             e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
799         } else {
800             e1000_link_up(s);
801         }
802     }
803 
804     if (s->mac_reg[STATUS] != old_status)
805         set_ics(s, 0, E1000_ICR_LSC);
806 }
807 
808 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
809 {
810     int bufs;
811     /* Fast-path short packets */
812     if (total_size <= s->rxbuf_size) {
813         return s->mac_reg[RDH] != s->mac_reg[RDT];
814     }
815     if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
816         bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
817     } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
818         bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) +
819             s->mac_reg[RDT] - s->mac_reg[RDH];
820     } else {
821         return false;
822     }
823     return total_size <= bufs * s->rxbuf_size;
824 }
825 
826 static int
827 e1000_can_receive(NetClientState *nc)
828 {
829     E1000State *s = qemu_get_nic_opaque(nc);
830 
831     return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
832         e1000_has_rxbufs(s, 1);
833 }
834 
835 static uint64_t rx_desc_base(E1000State *s)
836 {
837     uint64_t bah = s->mac_reg[RDBAH];
838     uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
839 
840     return (bah << 32) + bal;
841 }
842 
843 static ssize_t
844 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
845 {
846     E1000State *s = qemu_get_nic_opaque(nc);
847     PCIDevice *d = PCI_DEVICE(s);
848     struct e1000_rx_desc desc;
849     dma_addr_t base;
850     unsigned int n, rdt;
851     uint32_t rdh_start;
852     uint16_t vlan_special = 0;
853     uint8_t vlan_status = 0;
854     uint8_t min_buf[MIN_BUF_SIZE];
855     struct iovec min_iov;
856     uint8_t *filter_buf = iov->iov_base;
857     size_t size = iov_size(iov, iovcnt);
858     size_t iov_ofs = 0;
859     size_t desc_offset;
860     size_t desc_size;
861     size_t total_size;
862 
863     if (!e1000x_hw_rx_enabled(s->mac_reg)) {
864         return -1;
865     }
866 
867     /* Pad to minimum Ethernet frame length */
868     if (size < sizeof(min_buf)) {
869         iov_to_buf(iov, iovcnt, 0, min_buf, size);
870         memset(&min_buf[size], 0, sizeof(min_buf) - size);
871         e1000x_inc_reg_if_not_full(s->mac_reg, RUC);
872         min_iov.iov_base = filter_buf = min_buf;
873         min_iov.iov_len = size = sizeof(min_buf);
874         iovcnt = 1;
875         iov = &min_iov;
876     } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
877         /* This is very unlikely, but may happen. */
878         iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
879         filter_buf = min_buf;
880     }
881 
882     /* Discard oversized packets if !LPE and !SBP. */
883     if (e1000x_is_oversized(s->mac_reg, size)) {
884         return size;
885     }
886 
887     if (!receive_filter(s, filter_buf, size)) {
888         return size;
889     }
890 
891     if (e1000x_vlan_enabled(s->mac_reg) &&
892         e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
893         vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
894         iov_ofs = 4;
895         if (filter_buf == iov->iov_base) {
896             memmove(filter_buf + 4, filter_buf, 12);
897         } else {
898             iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
899             while (iov->iov_len <= iov_ofs) {
900                 iov_ofs -= iov->iov_len;
901                 iov++;
902             }
903         }
904         vlan_status = E1000_RXD_STAT_VP;
905         size -= 4;
906     }
907 
908     rdh_start = s->mac_reg[RDH];
909     desc_offset = 0;
910     total_size = size + e1000x_fcs_len(s->mac_reg);
911     if (!e1000_has_rxbufs(s, total_size)) {
912             set_ics(s, 0, E1000_ICS_RXO);
913             return -1;
914     }
915     do {
916         desc_size = total_size - desc_offset;
917         if (desc_size > s->rxbuf_size) {
918             desc_size = s->rxbuf_size;
919         }
920         base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
921         pci_dma_read(d, base, &desc, sizeof(desc));
922         desc.special = vlan_special;
923         desc.status |= (vlan_status | E1000_RXD_STAT_DD);
924         if (desc.buffer_addr) {
925             if (desc_offset < size) {
926                 size_t iov_copy;
927                 hwaddr ba = le64_to_cpu(desc.buffer_addr);
928                 size_t copy_size = size - desc_offset;
929                 if (copy_size > s->rxbuf_size) {
930                     copy_size = s->rxbuf_size;
931                 }
932                 do {
933                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
934                     pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
935                     copy_size -= iov_copy;
936                     ba += iov_copy;
937                     iov_ofs += iov_copy;
938                     if (iov_ofs == iov->iov_len) {
939                         iov++;
940                         iov_ofs = 0;
941                     }
942                 } while (copy_size);
943             }
944             desc_offset += desc_size;
945             desc.length = cpu_to_le16(desc_size);
946             if (desc_offset >= total_size) {
947                 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
948             } else {
949                 /* Guest zeroing out status is not a hardware requirement.
950                    Clear EOP in case guest didn't do it. */
951                 desc.status &= ~E1000_RXD_STAT_EOP;
952             }
953         } else { // as per intel docs; skip descriptors with null buf addr
954             DBGOUT(RX, "Null RX descriptor!!\n");
955         }
956         pci_dma_write(d, base, &desc, sizeof(desc));
957 
958         if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
959             s->mac_reg[RDH] = 0;
960         /* see comment in start_xmit; same here */
961         if (s->mac_reg[RDH] == rdh_start ||
962             rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
963             DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
964                    rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
965             set_ics(s, 0, E1000_ICS_RXO);
966             return -1;
967         }
968     } while (desc_offset < total_size);
969 
970     e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
971 
972     n = E1000_ICS_RXT0;
973     if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
974         rdt += s->mac_reg[RDLEN] / sizeof(desc);
975     if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
976         s->rxbuf_min_shift)
977         n |= E1000_ICS_RXDMT0;
978 
979     set_ics(s, 0, n);
980 
981     return size;
982 }
983 
984 static ssize_t
985 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
986 {
987     const struct iovec iov = {
988         .iov_base = (uint8_t *)buf,
989         .iov_len = size
990     };
991 
992     return e1000_receive_iov(nc, &iov, 1);
993 }
994 
995 static uint32_t
996 mac_readreg(E1000State *s, int index)
997 {
998     return s->mac_reg[index];
999 }
1000 
1001 static uint32_t
1002 mac_low4_read(E1000State *s, int index)
1003 {
1004     return s->mac_reg[index] & 0xf;
1005 }
1006 
1007 static uint32_t
1008 mac_low11_read(E1000State *s, int index)
1009 {
1010     return s->mac_reg[index] & 0x7ff;
1011 }
1012 
1013 static uint32_t
1014 mac_low13_read(E1000State *s, int index)
1015 {
1016     return s->mac_reg[index] & 0x1fff;
1017 }
1018 
1019 static uint32_t
1020 mac_low16_read(E1000State *s, int index)
1021 {
1022     return s->mac_reg[index] & 0xffff;
1023 }
1024 
1025 static uint32_t
1026 mac_icr_read(E1000State *s, int index)
1027 {
1028     uint32_t ret = s->mac_reg[ICR];
1029 
1030     DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1031     set_interrupt_cause(s, 0, 0);
1032     return ret;
1033 }
1034 
1035 static uint32_t
1036 mac_read_clr4(E1000State *s, int index)
1037 {
1038     uint32_t ret = s->mac_reg[index];
1039 
1040     s->mac_reg[index] = 0;
1041     return ret;
1042 }
1043 
1044 static uint32_t
1045 mac_read_clr8(E1000State *s, int index)
1046 {
1047     uint32_t ret = s->mac_reg[index];
1048 
1049     s->mac_reg[index] = 0;
1050     s->mac_reg[index-1] = 0;
1051     return ret;
1052 }
1053 
1054 static void
1055 mac_writereg(E1000State *s, int index, uint32_t val)
1056 {
1057     uint32_t macaddr[2];
1058 
1059     s->mac_reg[index] = val;
1060 
1061     if (index == RA + 1) {
1062         macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1063         macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1064         qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1065     }
1066 }
1067 
1068 static void
1069 set_rdt(E1000State *s, int index, uint32_t val)
1070 {
1071     s->mac_reg[index] = val & 0xffff;
1072     if (e1000_has_rxbufs(s, 1)) {
1073         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1074     }
1075 }
1076 
1077 static void
1078 set_16bit(E1000State *s, int index, uint32_t val)
1079 {
1080     s->mac_reg[index] = val & 0xffff;
1081 }
1082 
1083 static void
1084 set_dlen(E1000State *s, int index, uint32_t val)
1085 {
1086     s->mac_reg[index] = val & 0xfff80;
1087 }
1088 
1089 static void
1090 set_tctl(E1000State *s, int index, uint32_t val)
1091 {
1092     s->mac_reg[index] = val;
1093     s->mac_reg[TDT] &= 0xffff;
1094     start_xmit(s);
1095 }
1096 
1097 static void
1098 set_icr(E1000State *s, int index, uint32_t val)
1099 {
1100     DBGOUT(INTERRUPT, "set_icr %x\n", val);
1101     set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1102 }
1103 
1104 static void
1105 set_imc(E1000State *s, int index, uint32_t val)
1106 {
1107     s->mac_reg[IMS] &= ~val;
1108     set_ics(s, 0, 0);
1109 }
1110 
1111 static void
1112 set_ims(E1000State *s, int index, uint32_t val)
1113 {
1114     s->mac_reg[IMS] |= val;
1115     set_ics(s, 0, 0);
1116 }
1117 
1118 #define getreg(x)    [x] = mac_readreg
1119 static uint32_t (*macreg_readops[])(E1000State *, int) = {
1120     getreg(PBA),      getreg(RCTL),     getreg(TDH),      getreg(TXDCTL),
1121     getreg(WUFC),     getreg(TDT),      getreg(CTRL),     getreg(LEDCTL),
1122     getreg(MANC),     getreg(MDIC),     getreg(SWSM),     getreg(STATUS),
1123     getreg(TORL),     getreg(TOTL),     getreg(IMS),      getreg(TCTL),
1124     getreg(RDH),      getreg(RDT),      getreg(VET),      getreg(ICS),
1125     getreg(TDBAL),    getreg(TDBAH),    getreg(RDBAH),    getreg(RDBAL),
1126     getreg(TDLEN),    getreg(RDLEN),    getreg(RDTR),     getreg(RADV),
1127     getreg(TADV),     getreg(ITR),      getreg(FCRUC),    getreg(IPAV),
1128     getreg(WUC),      getreg(WUS),      getreg(SCC),      getreg(ECOL),
1129     getreg(MCC),      getreg(LATECOL),  getreg(COLC),     getreg(DC),
1130     getreg(TNCRS),    getreg(SEQEC),    getreg(CEXTERR),  getreg(RLEC),
1131     getreg(XONRXC),   getreg(XONTXC),   getreg(XOFFRXC),  getreg(XOFFTXC),
1132     getreg(RFC),      getreg(RJC),      getreg(RNBC),     getreg(TSCTFC),
1133     getreg(MGTPRC),   getreg(MGTPDC),   getreg(MGTPTC),   getreg(GORCL),
1134     getreg(GOTCL),
1135 
1136     [TOTH]    = mac_read_clr8,      [TORH]    = mac_read_clr8,
1137     [GOTCH]   = mac_read_clr8,      [GORCH]   = mac_read_clr8,
1138     [PRC64]   = mac_read_clr4,      [PRC127]  = mac_read_clr4,
1139     [PRC255]  = mac_read_clr4,      [PRC511]  = mac_read_clr4,
1140     [PRC1023] = mac_read_clr4,      [PRC1522] = mac_read_clr4,
1141     [PTC64]   = mac_read_clr4,      [PTC127]  = mac_read_clr4,
1142     [PTC255]  = mac_read_clr4,      [PTC511]  = mac_read_clr4,
1143     [PTC1023] = mac_read_clr4,      [PTC1522] = mac_read_clr4,
1144     [GPRC]    = mac_read_clr4,      [GPTC]    = mac_read_clr4,
1145     [TPT]     = mac_read_clr4,      [TPR]     = mac_read_clr4,
1146     [RUC]     = mac_read_clr4,      [ROC]     = mac_read_clr4,
1147     [BPRC]    = mac_read_clr4,      [MPRC]    = mac_read_clr4,
1148     [TSCTC]   = mac_read_clr4,      [BPTC]    = mac_read_clr4,
1149     [MPTC]    = mac_read_clr4,
1150     [ICR]     = mac_icr_read,       [EECD]    = get_eecd,
1151     [EERD]    = flash_eerd_read,
1152     [RDFH]    = mac_low13_read,     [RDFT]    = mac_low13_read,
1153     [RDFHS]   = mac_low13_read,     [RDFTS]   = mac_low13_read,
1154     [RDFPC]   = mac_low13_read,
1155     [TDFH]    = mac_low11_read,     [TDFT]    = mac_low11_read,
1156     [TDFHS]   = mac_low13_read,     [TDFTS]   = mac_low13_read,
1157     [TDFPC]   = mac_low13_read,
1158     [AIT]     = mac_low16_read,
1159 
1160     [CRCERRS ... MPC]   = &mac_readreg,
1161     [IP6AT ... IP6AT+3] = &mac_readreg,    [IP4AT ... IP4AT+6] = &mac_readreg,
1162     [FFLT ... FFLT+6]   = &mac_low11_read,
1163     [RA ... RA+31]      = &mac_readreg,
1164     [WUPM ... WUPM+31]  = &mac_readreg,
1165     [MTA ... MTA+127]   = &mac_readreg,
1166     [VFTA ... VFTA+127] = &mac_readreg,
1167     [FFMT ... FFMT+254] = &mac_low4_read,
1168     [FFVT ... FFVT+254] = &mac_readreg,
1169     [PBM ... PBM+16383] = &mac_readreg,
1170 };
1171 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1172 
1173 #define putreg(x)    [x] = mac_writereg
1174 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
1175     putreg(PBA),      putreg(EERD),     putreg(SWSM),     putreg(WUFC),
1176     putreg(TDBAL),    putreg(TDBAH),    putreg(TXDCTL),   putreg(RDBAH),
1177     putreg(RDBAL),    putreg(LEDCTL),   putreg(VET),      putreg(FCRUC),
1178     putreg(TDFH),     putreg(TDFT),     putreg(TDFHS),    putreg(TDFTS),
1179     putreg(TDFPC),    putreg(RDFH),     putreg(RDFT),     putreg(RDFHS),
1180     putreg(RDFTS),    putreg(RDFPC),    putreg(IPAV),     putreg(WUC),
1181     putreg(WUS),      putreg(AIT),
1182 
1183     [TDLEN]  = set_dlen,   [RDLEN]  = set_dlen,       [TCTL] = set_tctl,
1184     [TDT]    = set_tctl,   [MDIC]   = set_mdic,       [ICS]  = set_ics,
1185     [TDH]    = set_16bit,  [RDH]    = set_16bit,      [RDT]  = set_rdt,
1186     [IMC]    = set_imc,    [IMS]    = set_ims,        [ICR]  = set_icr,
1187     [EECD]   = set_eecd,   [RCTL]   = set_rx_control, [CTRL] = set_ctrl,
1188     [RDTR]   = set_16bit,  [RADV]   = set_16bit,      [TADV] = set_16bit,
1189     [ITR]    = set_16bit,
1190 
1191     [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg,
1192     [FFLT ... FFLT+6]   = &mac_writereg,
1193     [RA ... RA+31]      = &mac_writereg,
1194     [WUPM ... WUPM+31]  = &mac_writereg,
1195     [MTA ... MTA+127]   = &mac_writereg,
1196     [VFTA ... VFTA+127] = &mac_writereg,
1197     [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg,
1198     [PBM ... PBM+16383] = &mac_writereg,
1199 };
1200 
1201 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1202 
1203 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1204 
1205 #define markflag(x)    ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1206 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1207  * f - flag bits (up to 6 possible flags)
1208  * n - flag needed
1209  * p - partially implenented */
1210 static const uint8_t mac_reg_access[0x8000] = {
1211     [RDTR]    = markflag(MIT),    [TADV]    = markflag(MIT),
1212     [RADV]    = markflag(MIT),    [ITR]     = markflag(MIT),
1213 
1214     [IPAV]    = markflag(MAC),    [WUC]     = markflag(MAC),
1215     [IP6AT]   = markflag(MAC),    [IP4AT]   = markflag(MAC),
1216     [FFVT]    = markflag(MAC),    [WUPM]    = markflag(MAC),
1217     [ECOL]    = markflag(MAC),    [MCC]     = markflag(MAC),
1218     [DC]      = markflag(MAC),    [TNCRS]   = markflag(MAC),
1219     [RLEC]    = markflag(MAC),    [XONRXC]  = markflag(MAC),
1220     [XOFFTXC] = markflag(MAC),    [RFC]     = markflag(MAC),
1221     [TSCTFC]  = markflag(MAC),    [MGTPRC]  = markflag(MAC),
1222     [WUS]     = markflag(MAC),    [AIT]     = markflag(MAC),
1223     [FFLT]    = markflag(MAC),    [FFMT]    = markflag(MAC),
1224     [SCC]     = markflag(MAC),    [FCRUC]   = markflag(MAC),
1225     [LATECOL] = markflag(MAC),    [COLC]    = markflag(MAC),
1226     [SEQEC]   = markflag(MAC),    [CEXTERR] = markflag(MAC),
1227     [XONTXC]  = markflag(MAC),    [XOFFRXC] = markflag(MAC),
1228     [RJC]     = markflag(MAC),    [RNBC]    = markflag(MAC),
1229     [MGTPDC]  = markflag(MAC),    [MGTPTC]  = markflag(MAC),
1230     [RUC]     = markflag(MAC),    [ROC]     = markflag(MAC),
1231     [GORCL]   = markflag(MAC),    [GORCH]   = markflag(MAC),
1232     [GOTCL]   = markflag(MAC),    [GOTCH]   = markflag(MAC),
1233     [BPRC]    = markflag(MAC),    [MPRC]    = markflag(MAC),
1234     [TSCTC]   = markflag(MAC),    [PRC64]   = markflag(MAC),
1235     [PRC127]  = markflag(MAC),    [PRC255]  = markflag(MAC),
1236     [PRC511]  = markflag(MAC),    [PRC1023] = markflag(MAC),
1237     [PRC1522] = markflag(MAC),    [PTC64]   = markflag(MAC),
1238     [PTC127]  = markflag(MAC),    [PTC255]  = markflag(MAC),
1239     [PTC511]  = markflag(MAC),    [PTC1023] = markflag(MAC),
1240     [PTC1522] = markflag(MAC),    [MPTC]    = markflag(MAC),
1241     [BPTC]    = markflag(MAC),
1242 
1243     [TDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1244     [TDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1245     [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1246     [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1247     [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1248     [RDFH]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1249     [RDFT]  = markflag(MAC) | MAC_ACCESS_PARTIAL,
1250     [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1251     [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1252     [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1253     [PBM]   = markflag(MAC) | MAC_ACCESS_PARTIAL,
1254 };
1255 
1256 static void
1257 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1258                  unsigned size)
1259 {
1260     E1000State *s = opaque;
1261     unsigned int index = (addr & 0x1ffff) >> 2;
1262 
1263     if (index < NWRITEOPS && macreg_writeops[index]) {
1264         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1265             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1266             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1267                 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1268                        "It is not fully implemented.\n", index<<2);
1269             }
1270             macreg_writeops[index](s, index, val);
1271         } else {    /* "flag needed" bit is set, but the flag is not active */
1272             DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1273                    index<<2);
1274         }
1275     } else if (index < NREADOPS && macreg_readops[index]) {
1276         DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1277                index<<2, val);
1278     } else {
1279         DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1280                index<<2, val);
1281     }
1282 }
1283 
1284 static uint64_t
1285 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1286 {
1287     E1000State *s = opaque;
1288     unsigned int index = (addr & 0x1ffff) >> 2;
1289 
1290     if (index < NREADOPS && macreg_readops[index]) {
1291         if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1292             || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1293             if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1294                 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1295                        "It is not fully implemented.\n", index<<2);
1296             }
1297             return macreg_readops[index](s, index);
1298         } else {    /* "flag needed" bit is set, but the flag is not active */
1299             DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1300                    index<<2);
1301         }
1302     } else {
1303         DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1304     }
1305     return 0;
1306 }
1307 
1308 static const MemoryRegionOps e1000_mmio_ops = {
1309     .read = e1000_mmio_read,
1310     .write = e1000_mmio_write,
1311     .endianness = DEVICE_LITTLE_ENDIAN,
1312     .impl = {
1313         .min_access_size = 4,
1314         .max_access_size = 4,
1315     },
1316 };
1317 
1318 static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1319                               unsigned size)
1320 {
1321     E1000State *s = opaque;
1322 
1323     (void)s;
1324     return 0;
1325 }
1326 
1327 static void e1000_io_write(void *opaque, hwaddr addr,
1328                            uint64_t val, unsigned size)
1329 {
1330     E1000State *s = opaque;
1331 
1332     (void)s;
1333 }
1334 
1335 static const MemoryRegionOps e1000_io_ops = {
1336     .read = e1000_io_read,
1337     .write = e1000_io_write,
1338     .endianness = DEVICE_LITTLE_ENDIAN,
1339 };
1340 
1341 static bool is_version_1(void *opaque, int version_id)
1342 {
1343     return version_id == 1;
1344 }
1345 
1346 static int e1000_pre_save(void *opaque)
1347 {
1348     E1000State *s = opaque;
1349     NetClientState *nc = qemu_get_queue(s->nic);
1350 
1351     /* If the mitigation timer is active, emulate a timeout now. */
1352     if (s->mit_timer_on) {
1353         e1000_mit_timer(s);
1354     }
1355 
1356     /*
1357      * If link is down and auto-negotiation is supported and ongoing,
1358      * complete auto-negotiation immediately. This allows us to look
1359      * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
1360      */
1361     if (nc->link_down && have_autoneg(s)) {
1362         s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
1363     }
1364 
1365     return 0;
1366 }
1367 
1368 static int e1000_post_load(void *opaque, int version_id)
1369 {
1370     E1000State *s = opaque;
1371     NetClientState *nc = qemu_get_queue(s->nic);
1372 
1373     if (!chkflag(MIT)) {
1374         s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1375             s->mac_reg[TADV] = 0;
1376         s->mit_irq_level = false;
1377     }
1378     s->mit_ide = 0;
1379     s->mit_timer_on = false;
1380 
1381     /* nc.link_down can't be migrated, so infer link_down according
1382      * to link status bit in mac_reg[STATUS].
1383      * Alternatively, restart link negotiation if it was in progress. */
1384     nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1385 
1386     if (have_autoneg(s) &&
1387         !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1388         nc->link_down = false;
1389         timer_mod(s->autoneg_timer,
1390                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1391     }
1392 
1393     return 0;
1394 }
1395 
1396 static bool e1000_mit_state_needed(void *opaque)
1397 {
1398     E1000State *s = opaque;
1399 
1400     return chkflag(MIT);
1401 }
1402 
1403 static bool e1000_full_mac_needed(void *opaque)
1404 {
1405     E1000State *s = opaque;
1406 
1407     return chkflag(MAC);
1408 }
1409 
1410 static const VMStateDescription vmstate_e1000_mit_state = {
1411     .name = "e1000/mit_state",
1412     .version_id = 1,
1413     .minimum_version_id = 1,
1414     .needed = e1000_mit_state_needed,
1415     .fields = (VMStateField[]) {
1416         VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1417         VMSTATE_UINT32(mac_reg[RADV], E1000State),
1418         VMSTATE_UINT32(mac_reg[TADV], E1000State),
1419         VMSTATE_UINT32(mac_reg[ITR], E1000State),
1420         VMSTATE_BOOL(mit_irq_level, E1000State),
1421         VMSTATE_END_OF_LIST()
1422     }
1423 };
1424 
1425 static const VMStateDescription vmstate_e1000_full_mac_state = {
1426     .name = "e1000/full_mac_state",
1427     .version_id = 1,
1428     .minimum_version_id = 1,
1429     .needed = e1000_full_mac_needed,
1430     .fields = (VMStateField[]) {
1431         VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1432         VMSTATE_END_OF_LIST()
1433     }
1434 };
1435 
1436 static const VMStateDescription vmstate_e1000 = {
1437     .name = "e1000",
1438     .version_id = 3,
1439     .minimum_version_id = 1,
1440     .pre_save = e1000_pre_save,
1441     .post_load = e1000_post_load,
1442     .fields = (VMStateField[]) {
1443         VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1444         VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
1445         VMSTATE_UNUSED(4), /* Was mmio_base.  */
1446         VMSTATE_UINT32(rxbuf_size, E1000State),
1447         VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1448         VMSTATE_UINT32(eecd_state.val_in, E1000State),
1449         VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1450         VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1451         VMSTATE_UINT16(eecd_state.reading, E1000State),
1452         VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1453         VMSTATE_UINT8(tx.props.ipcss, E1000State),
1454         VMSTATE_UINT8(tx.props.ipcso, E1000State),
1455         VMSTATE_UINT16(tx.props.ipcse, E1000State),
1456         VMSTATE_UINT8(tx.props.tucss, E1000State),
1457         VMSTATE_UINT8(tx.props.tucso, E1000State),
1458         VMSTATE_UINT16(tx.props.tucse, E1000State),
1459         VMSTATE_UINT32(tx.props.paylen, E1000State),
1460         VMSTATE_UINT8(tx.props.hdr_len, E1000State),
1461         VMSTATE_UINT16(tx.props.mss, E1000State),
1462         VMSTATE_UINT16(tx.size, E1000State),
1463         VMSTATE_UINT16(tx.tso_frames, E1000State),
1464         VMSTATE_UINT8(tx.sum_needed, E1000State),
1465         VMSTATE_INT8(tx.props.ip, E1000State),
1466         VMSTATE_INT8(tx.props.tcp, E1000State),
1467         VMSTATE_BUFFER(tx.header, E1000State),
1468         VMSTATE_BUFFER(tx.data, E1000State),
1469         VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1470         VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1471         VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1472         VMSTATE_UINT32(mac_reg[EECD], E1000State),
1473         VMSTATE_UINT32(mac_reg[EERD], E1000State),
1474         VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1475         VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1476         VMSTATE_UINT32(mac_reg[ICR], E1000State),
1477         VMSTATE_UINT32(mac_reg[ICS], E1000State),
1478         VMSTATE_UINT32(mac_reg[IMC], E1000State),
1479         VMSTATE_UINT32(mac_reg[IMS], E1000State),
1480         VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1481         VMSTATE_UINT32(mac_reg[MANC], E1000State),
1482         VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1483         VMSTATE_UINT32(mac_reg[MPC], E1000State),
1484         VMSTATE_UINT32(mac_reg[PBA], E1000State),
1485         VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1486         VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1487         VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1488         VMSTATE_UINT32(mac_reg[RDH], E1000State),
1489         VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1490         VMSTATE_UINT32(mac_reg[RDT], E1000State),
1491         VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1492         VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1493         VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1494         VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1495         VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1496         VMSTATE_UINT32(mac_reg[TDH], E1000State),
1497         VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1498         VMSTATE_UINT32(mac_reg[TDT], E1000State),
1499         VMSTATE_UINT32(mac_reg[TORH], E1000State),
1500         VMSTATE_UINT32(mac_reg[TORL], E1000State),
1501         VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1502         VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1503         VMSTATE_UINT32(mac_reg[TPR], E1000State),
1504         VMSTATE_UINT32(mac_reg[TPT], E1000State),
1505         VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1506         VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1507         VMSTATE_UINT32(mac_reg[VET], E1000State),
1508         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1509         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1510         VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1511         VMSTATE_UINT8_V(tx.tso_props.ipcss, E1000State, 3),
1512         VMSTATE_UINT8_V(tx.tso_props.ipcso, E1000State, 3),
1513         VMSTATE_UINT16_V(tx.tso_props.ipcse, E1000State, 3),
1514         VMSTATE_UINT8_V(tx.tso_props.tucss, E1000State, 3),
1515         VMSTATE_UINT8_V(tx.tso_props.tucso, E1000State, 3),
1516         VMSTATE_UINT16_V(tx.tso_props.tucse, E1000State, 3),
1517         VMSTATE_UINT32_V(tx.tso_props.paylen, E1000State, 3),
1518         VMSTATE_UINT8_V(tx.tso_props.hdr_len, E1000State, 3),
1519         VMSTATE_UINT16_V(tx.tso_props.mss, E1000State, 3),
1520         VMSTATE_INT8_V(tx.tso_props.ip, E1000State, 3),
1521         VMSTATE_INT8_V(tx.tso_props.tcp, E1000State, 3),
1522         VMSTATE_END_OF_LIST()
1523     },
1524     .subsections = (const VMStateDescription*[]) {
1525         &vmstate_e1000_mit_state,
1526         &vmstate_e1000_full_mac_state,
1527         NULL
1528     }
1529 };
1530 
1531 /*
1532  * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1533  * Note: A valid DevId will be inserted during pci_e1000_init().
1534  */
1535 static const uint16_t e1000_eeprom_template[64] = {
1536     0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000,
1537     0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1538     0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700,
1539     0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706,
1540     0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff,
1541     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1542     0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
1543     0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000,
1544 };
1545 
1546 /* PCI interface */
1547 
1548 static void
1549 e1000_mmio_setup(E1000State *d)
1550 {
1551     int i;
1552     const uint32_t excluded_regs[] = {
1553         E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1554         E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1555     };
1556 
1557     memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1558                           "e1000-mmio", PNPMMIO_SIZE);
1559     memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1560     for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1561         memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1562                                      excluded_regs[i+1] - excluded_regs[i] - 4);
1563     memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1564 }
1565 
1566 static void
1567 pci_e1000_uninit(PCIDevice *dev)
1568 {
1569     E1000State *d = E1000(dev);
1570 
1571     timer_del(d->autoneg_timer);
1572     timer_free(d->autoneg_timer);
1573     timer_del(d->mit_timer);
1574     timer_free(d->mit_timer);
1575     qemu_del_nic(d->nic);
1576 }
1577 
1578 static NetClientInfo net_e1000_info = {
1579     .type = NET_CLIENT_DRIVER_NIC,
1580     .size = sizeof(NICState),
1581     .can_receive = e1000_can_receive,
1582     .receive = e1000_receive,
1583     .receive_iov = e1000_receive_iov,
1584     .link_status_changed = e1000_set_link_status,
1585 };
1586 
1587 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1588                                 uint32_t val, int len)
1589 {
1590     E1000State *s = E1000(pci_dev);
1591 
1592     pci_default_write_config(pci_dev, address, val, len);
1593 
1594     if (range_covers_byte(address, len, PCI_COMMAND) &&
1595         (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1596         qemu_flush_queued_packets(qemu_get_queue(s->nic));
1597     }
1598 }
1599 
1600 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1601 {
1602     DeviceState *dev = DEVICE(pci_dev);
1603     E1000State *d = E1000(pci_dev);
1604     uint8_t *pci_conf;
1605     uint8_t *macaddr;
1606 
1607     pci_dev->config_write = e1000_write_config;
1608 
1609     pci_conf = pci_dev->config;
1610 
1611     /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1612     pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1613 
1614     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1615 
1616     e1000_mmio_setup(d);
1617 
1618     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1619 
1620     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1621 
1622     qemu_macaddr_default_if_unset(&d->conf.macaddr);
1623     macaddr = d->conf.macaddr.a;
1624 
1625     e1000x_core_prepare_eeprom(d->eeprom_data,
1626                                e1000_eeprom_template,
1627                                sizeof(e1000_eeprom_template),
1628                                PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1629                                macaddr);
1630 
1631     d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1632                           object_get_typename(OBJECT(d)), dev->id, d);
1633 
1634     qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1635 
1636     d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1637     d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1638 }
1639 
1640 static void qdev_e1000_reset(DeviceState *dev)
1641 {
1642     E1000State *d = E1000(dev);
1643     e1000_reset(d);
1644 }
1645 
1646 static Property e1000_properties[] = {
1647     DEFINE_NIC_PROPERTIES(E1000State, conf),
1648     DEFINE_PROP_BIT("autonegotiation", E1000State,
1649                     compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1650     DEFINE_PROP_BIT("mitigation", E1000State,
1651                     compat_flags, E1000_FLAG_MIT_BIT, true),
1652     DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1653                     compat_flags, E1000_FLAG_MAC_BIT, true),
1654     DEFINE_PROP_END_OF_LIST(),
1655 };
1656 
1657 typedef struct E1000Info {
1658     const char *name;
1659     uint16_t   device_id;
1660     uint8_t    revision;
1661     uint16_t   phy_id2;
1662 } E1000Info;
1663 
1664 static void e1000_class_init(ObjectClass *klass, void *data)
1665 {
1666     DeviceClass *dc = DEVICE_CLASS(klass);
1667     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1668     E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
1669     const E1000Info *info = data;
1670 
1671     k->realize = pci_e1000_realize;
1672     k->exit = pci_e1000_uninit;
1673     k->romfile = "efi-e1000.rom";
1674     k->vendor_id = PCI_VENDOR_ID_INTEL;
1675     k->device_id = info->device_id;
1676     k->revision = info->revision;
1677     e->phy_id2 = info->phy_id2;
1678     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1679     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1680     dc->desc = "Intel Gigabit Ethernet";
1681     dc->reset = qdev_e1000_reset;
1682     dc->vmsd = &vmstate_e1000;
1683     dc->props = e1000_properties;
1684 }
1685 
1686 static void e1000_instance_init(Object *obj)
1687 {
1688     E1000State *n = E1000(obj);
1689     device_add_bootindex_property(obj, &n->conf.bootindex,
1690                                   "bootindex", "/ethernet-phy@0",
1691                                   DEVICE(n), NULL);
1692 }
1693 
1694 static const TypeInfo e1000_base_info = {
1695     .name          = TYPE_E1000_BASE,
1696     .parent        = TYPE_PCI_DEVICE,
1697     .instance_size = sizeof(E1000State),
1698     .instance_init = e1000_instance_init,
1699     .class_size    = sizeof(E1000BaseClass),
1700     .abstract      = true,
1701     .interfaces = (InterfaceInfo[]) {
1702         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1703         { },
1704     },
1705 };
1706 
1707 static const E1000Info e1000_devices[] = {
1708     {
1709         .name      = "e1000",
1710         .device_id = E1000_DEV_ID_82540EM,
1711         .revision  = 0x03,
1712         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1713     },
1714     {
1715         .name      = "e1000-82544gc",
1716         .device_id = E1000_DEV_ID_82544GC_COPPER,
1717         .revision  = 0x03,
1718         .phy_id2   = E1000_PHY_ID2_82544x,
1719     },
1720     {
1721         .name      = "e1000-82545em",
1722         .device_id = E1000_DEV_ID_82545EM_COPPER,
1723         .revision  = 0x03,
1724         .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
1725     },
1726 };
1727 
1728 static void e1000_register_types(void)
1729 {
1730     int i;
1731 
1732     type_register_static(&e1000_base_info);
1733     for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1734         const E1000Info *info = &e1000_devices[i];
1735         TypeInfo type_info = {};
1736 
1737         type_info.name = info->name;
1738         type_info.parent = TYPE_E1000_BASE;
1739         type_info.class_data = (void *)info;
1740         type_info.class_init = e1000_class_init;
1741         type_info.instance_init = e1000_instance_init;
1742 
1743         type_register(&type_info);
1744     }
1745 }
1746 
1747 type_init(e1000_register_types)
1748