xref: /qemu/hw/net/e1000e.c (revision 1108b2f8)
1 /*
2 * QEMU INTEL 82574 GbE NIC emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "net/net.h"
38 #include "net/tap.h"
39 #include "qemu/range.h"
40 #include "sysemu/sysemu.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 
44 #include "hw/net/e1000_regs.h"
45 
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
48 
49 #include "trace.h"
50 
51 #define TYPE_E1000E "e1000e"
52 #define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E)
53 
54 typedef struct E1000EState {
55     PCIDevice parent_obj;
56     NICState *nic;
57     NICConf conf;
58 
59     MemoryRegion mmio;
60     MemoryRegion flash;
61     MemoryRegion io;
62     MemoryRegion msix;
63 
64     uint32_t ioaddr;
65 
66     uint16_t subsys_ven;
67     uint16_t subsys;
68 
69     uint16_t subsys_ven_used;
70     uint16_t subsys_used;
71 
72     uint32_t intr_state;
73     bool disable_vnet;
74 
75     E1000ECore core;
76 
77 } E1000EState;
78 
79 #define E1000E_MMIO_IDX     0
80 #define E1000E_FLASH_IDX    1
81 #define E1000E_IO_IDX       2
82 #define E1000E_MSIX_IDX     3
83 
84 #define E1000E_MMIO_SIZE    (128 * 1024)
85 #define E1000E_FLASH_SIZE   (128 * 1024)
86 #define E1000E_IO_SIZE      (32)
87 #define E1000E_MSIX_SIZE    (16 * 1024)
88 
89 #define E1000E_MSIX_TABLE   (0x0000)
90 #define E1000E_MSIX_PBA     (0x2000)
91 
92 #define E1000E_USE_MSI     BIT(0)
93 #define E1000E_USE_MSIX    BIT(1)
94 
95 static uint64_t
96 e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size)
97 {
98     E1000EState *s = opaque;
99     return e1000e_core_read(&s->core, addr, size);
100 }
101 
102 static void
103 e1000e_mmio_write(void *opaque, hwaddr addr,
104                    uint64_t val, unsigned size)
105 {
106     E1000EState *s = opaque;
107     e1000e_core_write(&s->core, addr, val, size);
108 }
109 
110 static bool
111 e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx)
112 {
113     if (s->ioaddr < 0x1FFFF) {
114         *idx = s->ioaddr;
115         return true;
116     }
117 
118     if (s->ioaddr < 0x7FFFF) {
119         trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
120         return false;
121     }
122 
123     if (s->ioaddr < 0xFFFFF) {
124         trace_e1000e_wrn_io_addr_flash(s->ioaddr);
125         return false;
126     }
127 
128     trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
129     return false;
130 }
131 
132 static uint64_t
133 e1000e_io_read(void *opaque, hwaddr addr, unsigned size)
134 {
135     E1000EState *s = opaque;
136     uint32_t idx = 0;
137     uint64_t val;
138 
139     switch (addr) {
140     case E1000_IOADDR:
141         trace_e1000e_io_read_addr(s->ioaddr);
142         return s->ioaddr;
143     case E1000_IODATA:
144         if (e1000e_io_get_reg_index(s, &idx)) {
145             val = e1000e_core_read(&s->core, idx, sizeof(val));
146             trace_e1000e_io_read_data(idx, val);
147             return val;
148         }
149         return 0;
150     default:
151         trace_e1000e_wrn_io_read_unknown(addr);
152         return 0;
153     }
154 }
155 
156 static void
157 e1000e_io_write(void *opaque, hwaddr addr,
158                 uint64_t val, unsigned size)
159 {
160     E1000EState *s = opaque;
161     uint32_t idx = 0;
162 
163     switch (addr) {
164     case E1000_IOADDR:
165         trace_e1000e_io_write_addr(val);
166         s->ioaddr = (uint32_t) val;
167         return;
168     case E1000_IODATA:
169         if (e1000e_io_get_reg_index(s, &idx)) {
170             trace_e1000e_io_write_data(idx, val);
171             e1000e_core_write(&s->core, idx, val, sizeof(val));
172         }
173         return;
174     default:
175         trace_e1000e_wrn_io_write_unknown(addr);
176         return;
177     }
178 }
179 
180 static const MemoryRegionOps mmio_ops = {
181     .read = e1000e_mmio_read,
182     .write = e1000e_mmio_write,
183     .endianness = DEVICE_LITTLE_ENDIAN,
184     .impl = {
185         .min_access_size = 4,
186         .max_access_size = 4,
187     },
188 };
189 
190 static const MemoryRegionOps io_ops = {
191     .read = e1000e_io_read,
192     .write = e1000e_io_write,
193     .endianness = DEVICE_LITTLE_ENDIAN,
194     .impl = {
195         .min_access_size = 4,
196         .max_access_size = 4,
197     },
198 };
199 
200 static int
201 e1000e_nc_can_receive(NetClientState *nc)
202 {
203     E1000EState *s = qemu_get_nic_opaque(nc);
204     return e1000e_can_receive(&s->core);
205 }
206 
207 static ssize_t
208 e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
209 {
210     E1000EState *s = qemu_get_nic_opaque(nc);
211     return e1000e_receive_iov(&s->core, iov, iovcnt);
212 }
213 
214 static ssize_t
215 e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
216 {
217     E1000EState *s = qemu_get_nic_opaque(nc);
218     return e1000e_receive(&s->core, buf, size);
219 }
220 
221 static void
222 e1000e_set_link_status(NetClientState *nc)
223 {
224     E1000EState *s = qemu_get_nic_opaque(nc);
225     e1000e_core_set_link_status(&s->core);
226 }
227 
228 static NetClientInfo net_e1000e_info = {
229     .type = NET_CLIENT_OPTIONS_KIND_NIC,
230     .size = sizeof(NICState),
231     .can_receive = e1000e_nc_can_receive,
232     .receive = e1000e_nc_receive,
233     .receive_iov = e1000e_nc_receive_iov,
234     .link_status_changed = e1000e_set_link_status,
235 };
236 
237 /*
238 * EEPROM (NVM) contents documented in Table 36, section 6.1
239 * and generally 6.1.2 Software accessed words.
240 */
241 static const uint16_t e1000e_eeprom_template[64] = {
242   /*        Address        |    Compat.    | ImVer |   Compat.     */
243     0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff,
244   /*      PBA      |ICtrl1 | SSID  | SVID  | DevID |-------|ICtrl2 */
245     0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058,
246   /*    NVM words 1,2,3    |-------------------------------|PCI-EID*/
247     0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704,
248   /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */
249     0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706,
250   /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/
251     0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff,
252   /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP  */
253     0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff,
254   /*                            SW Section                         */
255     0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff,
256   /*                      SW Section                       |CHKSUM */
257     0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000,
258 };
259 
260 static void e1000e_core_realize(E1000EState *s)
261 {
262     s->core.owner = &s->parent_obj;
263     s->core.owner_nic = s->nic;
264 }
265 
266 static void
267 e1000e_init_msi(E1000EState *s)
268 {
269     int res;
270 
271     res = msi_init(PCI_DEVICE(s), 0xD0, 1, true, false, NULL);
272 
273     if (!res) {
274         s->intr_state |= E1000E_USE_MSI;
275     } else {
276         trace_e1000e_msi_init_fail(res);
277     }
278 }
279 
280 static void
281 e1000e_cleanup_msi(E1000EState *s)
282 {
283     if (s->intr_state & E1000E_USE_MSI) {
284         msi_uninit(PCI_DEVICE(s));
285     }
286 }
287 
288 static void
289 e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors)
290 {
291     int i;
292     for (i = 0; i < num_vectors; i++) {
293         msix_vector_unuse(PCI_DEVICE(s), i);
294     }
295 }
296 
297 static bool
298 e1000e_use_msix_vectors(E1000EState *s, int num_vectors)
299 {
300     int i;
301     for (i = 0; i < num_vectors; i++) {
302         int res = msix_vector_use(PCI_DEVICE(s), i);
303         if (res < 0) {
304             trace_e1000e_msix_use_vector_fail(i, res);
305             e1000e_unuse_msix_vectors(s, i);
306             return false;
307         }
308     }
309     return true;
310 }
311 
312 static void
313 e1000e_init_msix(E1000EState *s)
314 {
315     PCIDevice *d = PCI_DEVICE(s);
316     int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM,
317                         &s->msix,
318                         E1000E_MSIX_IDX, E1000E_MSIX_TABLE,
319                         &s->msix,
320                         E1000E_MSIX_IDX, E1000E_MSIX_PBA,
321                         0xA0);
322 
323     if (res < 0) {
324         trace_e1000e_msix_init_fail(res);
325     } else {
326         if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) {
327             msix_uninit(d, &s->msix, &s->msix);
328         } else {
329             s->intr_state |= E1000E_USE_MSIX;
330         }
331     }
332 }
333 
334 static void
335 e1000e_cleanup_msix(E1000EState *s)
336 {
337     if (s->intr_state & E1000E_USE_MSIX) {
338         e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM);
339         msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
340     }
341 }
342 
343 static void
344 e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr)
345 {
346     DeviceState *dev = DEVICE(pci_dev);
347     NetClientState *nc;
348     int i;
349 
350     s->nic = qemu_new_nic(&net_e1000e_info, &s->conf,
351         object_get_typename(OBJECT(s)), dev->id, s);
352 
353     s->core.max_queue_num = s->conf.peers.queues - 1;
354 
355     trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
356     memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
357 
358     qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
359 
360     /* Setup virtio headers */
361     if (s->disable_vnet) {
362         s->core.has_vnet = false;
363         trace_e1000e_cfg_support_virtio(false);
364         return;
365     } else {
366         s->core.has_vnet = true;
367     }
368 
369     for (i = 0; i < s->conf.peers.queues; i++) {
370         nc = qemu_get_subqueue(s->nic, i);
371         if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
372             s->core.has_vnet = false;
373             trace_e1000e_cfg_support_virtio(false);
374             return;
375         }
376     }
377 
378     trace_e1000e_cfg_support_virtio(true);
379 
380     for (i = 0; i < s->conf.peers.queues; i++) {
381         nc = qemu_get_subqueue(s->nic, i);
382         qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
383         qemu_using_vnet_hdr(nc->peer, true);
384     }
385 }
386 
387 static inline uint64_t
388 e1000e_gen_dsn(uint8_t *mac)
389 {
390     return (uint64_t)(mac[5])        |
391            (uint64_t)(mac[4])  << 8  |
392            (uint64_t)(mac[3])  << 16 |
393            (uint64_t)(0x00FF)  << 24 |
394            (uint64_t)(0x00FF)  << 32 |
395            (uint64_t)(mac[2])  << 40 |
396            (uint64_t)(mac[1])  << 48 |
397            (uint64_t)(mac[0])  << 56;
398 }
399 
400 static int
401 e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
402 {
403     int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF);
404 
405     if (ret >= 0) {
406         pci_set_word(pdev->config + offset + PCI_PM_PMC,
407                      PCI_PM_CAP_VER_1_1 |
408                      pmc);
409 
410         pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
411                      PCI_PM_CTRL_STATE_MASK |
412                      PCI_PM_CTRL_PME_ENABLE |
413                      PCI_PM_CTRL_DATA_SEL_MASK);
414 
415         pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
416                      PCI_PM_CTRL_PME_STATUS);
417     }
418 
419     return ret;
420 }
421 
422 static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address,
423                                 uint32_t val, int len)
424 {
425     E1000EState *s = E1000E(pci_dev);
426 
427     pci_default_write_config(pci_dev, address, val, len);
428 
429     if (range_covers_byte(address, len, PCI_COMMAND) &&
430         (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
431         qemu_flush_queued_packets(qemu_get_queue(s->nic));
432     }
433 }
434 
435 static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp)
436 {
437     static const uint16_t e1000e_pmrb_offset = 0x0C8;
438     static const uint16_t e1000e_pcie_offset = 0x0E0;
439     static const uint16_t e1000e_aer_offset =  0x100;
440     static const uint16_t e1000e_dsn_offset =  0x140;
441     E1000EState *s = E1000E(pci_dev);
442     uint8_t *macaddr;
443 
444     trace_e1000e_cb_pci_realize();
445 
446     pci_dev->config_write = e1000e_write_config;
447 
448     pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
449     pci_dev->config[PCI_INTERRUPT_PIN] = 1;
450 
451     pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven);
452     pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys);
453 
454     s->subsys_ven_used = s->subsys_ven;
455     s->subsys_used = s->subsys;
456 
457     /* Define IO/MMIO regions */
458     memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
459                           "e1000e-mmio", E1000E_MMIO_SIZE);
460     pci_register_bar(pci_dev, E1000E_MMIO_IDX,
461                      PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
462 
463     /*
464      * We provide a dummy implementation for the flash BAR
465      * for drivers that may theoretically probe for its presence.
466      */
467     memory_region_init(&s->flash, OBJECT(s),
468                        "e1000e-flash", E1000E_FLASH_SIZE);
469     pci_register_bar(pci_dev, E1000E_FLASH_IDX,
470                      PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
471 
472     memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
473                           "e1000e-io", E1000E_IO_SIZE);
474     pci_register_bar(pci_dev, E1000E_IO_IDX,
475                      PCI_BASE_ADDRESS_SPACE_IO, &s->io);
476 
477     memory_region_init(&s->msix, OBJECT(s), "e1000e-msix",
478                        E1000E_MSIX_SIZE);
479     pci_register_bar(pci_dev, E1000E_MSIX_IDX,
480                      PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix);
481 
482     /* Create networking backend */
483     qemu_macaddr_default_if_unset(&s->conf.macaddr);
484     macaddr = s->conf.macaddr.a;
485 
486     e1000e_init_msix(s);
487 
488     if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) {
489         hw_error("Failed to initialize PCIe capability");
490     }
491 
492     e1000e_init_msi(s);
493 
494     if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset,
495                                   PCI_PM_CAP_DSI) < 0) {
496         hw_error("Failed to initialize PM capability");
497     }
498 
499     if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) {
500         hw_error("Failed to initialize AER capability");
501     }
502 
503     pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset,
504                           e1000e_gen_dsn(macaddr));
505 
506     e1000e_init_net_peer(s, pci_dev, macaddr);
507 
508     /* Initialize core */
509     e1000e_core_realize(s);
510 
511     e1000e_core_pci_realize(&s->core,
512                             e1000e_eeprom_template,
513                             sizeof(e1000e_eeprom_template),
514                             macaddr);
515 }
516 
517 static void e1000e_pci_uninit(PCIDevice *pci_dev)
518 {
519     E1000EState *s = E1000E(pci_dev);
520 
521     trace_e1000e_cb_pci_uninit();
522 
523     e1000e_core_pci_uninit(&s->core);
524 
525     pcie_aer_exit(pci_dev);
526     pcie_cap_exit(pci_dev);
527 
528     qemu_del_nic(s->nic);
529 
530     e1000e_cleanup_msix(s);
531     e1000e_cleanup_msi(s);
532 }
533 
534 static void e1000e_qdev_reset(DeviceState *dev)
535 {
536     E1000EState *s = E1000E(dev);
537 
538     trace_e1000e_cb_qdev_reset();
539 
540     e1000e_core_reset(&s->core);
541 }
542 
543 static void e1000e_pre_save(void *opaque)
544 {
545     E1000EState *s = opaque;
546 
547     trace_e1000e_cb_pre_save();
548 
549     e1000e_core_pre_save(&s->core);
550 }
551 
552 static int e1000e_post_load(void *opaque, int version_id)
553 {
554     E1000EState *s = opaque;
555 
556     trace_e1000e_cb_post_load();
557 
558     if ((s->subsys != s->subsys_used) ||
559         (s->subsys_ven != s->subsys_ven_used)) {
560         fprintf(stderr,
561             "ERROR: Cannot migrate while device properties "
562             "(subsys/subsys_ven) differ");
563         return -1;
564     }
565 
566     return e1000e_core_post_load(&s->core);
567 }
568 
569 static const VMStateDescription e1000e_vmstate_tx = {
570     .name = "e1000e-tx",
571     .version_id = 1,
572     .minimum_version_id = 1,
573     .fields = (VMStateField[]) {
574         VMSTATE_UINT8(props.sum_needed, struct e1000e_tx),
575         VMSTATE_UINT8(props.ipcss, struct e1000e_tx),
576         VMSTATE_UINT8(props.ipcso, struct e1000e_tx),
577         VMSTATE_UINT16(props.ipcse, struct e1000e_tx),
578         VMSTATE_UINT8(props.tucss, struct e1000e_tx),
579         VMSTATE_UINT8(props.tucso, struct e1000e_tx),
580         VMSTATE_UINT16(props.tucse, struct e1000e_tx),
581         VMSTATE_UINT8(props.hdr_len, struct e1000e_tx),
582         VMSTATE_UINT16(props.mss, struct e1000e_tx),
583         VMSTATE_UINT32(props.paylen, struct e1000e_tx),
584         VMSTATE_INT8(props.ip, struct e1000e_tx),
585         VMSTATE_INT8(props.tcp, struct e1000e_tx),
586         VMSTATE_BOOL(props.tse, struct e1000e_tx),
587         VMSTATE_BOOL(props.cptse, struct e1000e_tx),
588         VMSTATE_BOOL(skip_cp, struct e1000e_tx),
589         VMSTATE_END_OF_LIST()
590     }
591 };
592 
593 static const VMStateDescription e1000e_vmstate_intr_timer = {
594     .name = "e1000e-intr-timer",
595     .version_id = 1,
596     .minimum_version_id = 1,
597     .fields = (VMStateField[]) {
598         VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer),
599         VMSTATE_BOOL(running, E1000IntrDelayTimer),
600         VMSTATE_END_OF_LIST()
601     }
602 };
603 
604 #define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s)                     \
605     VMSTATE_STRUCT(_f, _s, 0,                                       \
606                    e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
607 
608 #define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num)         \
609     VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0,                           \
610                          e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
611 
612 static const VMStateDescription e1000e_vmstate = {
613     .name = "e1000e",
614     .version_id = 1,
615     .minimum_version_id = 1,
616     .pre_save = e1000e_pre_save,
617     .post_load = e1000e_post_load,
618     .fields = (VMStateField[]) {
619         VMSTATE_PCIE_DEVICE(parent_obj, E1000EState),
620         VMSTATE_MSIX(parent_obj, E1000EState),
621 
622         VMSTATE_UINT32(ioaddr, E1000EState),
623         VMSTATE_UINT32(intr_state, E1000EState),
624         VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState),
625         VMSTATE_UINT8(core.rx_desc_len, E1000EState),
626         VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState,
627                              E1000_PSRCTL_BUFFS_PER_DESC),
628         VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState),
629         VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE),
630         VMSTATE_UINT16_2DARRAY(core.phy, E1000EState,
631                                E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE),
632         VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE),
633         VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN),
634 
635         VMSTATE_UINT32(core.delayed_causes, E1000EState),
636 
637         VMSTATE_UINT16(subsys, E1000EState),
638         VMSTATE_UINT16(subsys_ven, E1000EState),
639 
640         VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState),
641         VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState),
642         VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState),
643         VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState),
644         VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState),
645 
646         VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState),
647         VMSTATE_BOOL(core.itr_intr_pending, E1000EState),
648 
649         VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState,
650                                               E1000E_MSIX_VEC_NUM),
651         VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState,
652                            E1000E_MSIX_VEC_NUM),
653 
654         VMSTATE_UINT32(core.itr_guest_value, E1000EState),
655         VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState,
656                              E1000E_MSIX_VEC_NUM),
657 
658         VMSTATE_UINT16(core.vet, E1000EState),
659 
660         VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0,
661                              e1000e_vmstate_tx, struct e1000e_tx),
662         VMSTATE_END_OF_LIST()
663     }
664 };
665 
666 static PropertyInfo e1000e_prop_disable_vnet,
667                     e1000e_prop_subsys_ven,
668                     e1000e_prop_subsys;
669 
670 static Property e1000e_properties[] = {
671     DEFINE_NIC_PROPERTIES(E1000EState, conf),
672     DEFINE_PROP_DEFAULT("disable_vnet_hdr", E1000EState, disable_vnet, false,
673                         e1000e_prop_disable_vnet, bool),
674     DEFINE_PROP_DEFAULT("subsys_ven", E1000EState, subsys_ven,
675                         PCI_VENDOR_ID_INTEL,
676                         e1000e_prop_subsys_ven, uint16_t),
677     DEFINE_PROP_DEFAULT("subsys", E1000EState, subsys, 0,
678                         e1000e_prop_subsys, uint16_t),
679     DEFINE_PROP_END_OF_LIST(),
680 };
681 
682 static void e1000e_class_init(ObjectClass *class, void *data)
683 {
684     DeviceClass *dc = DEVICE_CLASS(class);
685     PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
686 
687     c->realize = e1000e_pci_realize;
688     c->exit = e1000e_pci_uninit;
689     c->vendor_id = PCI_VENDOR_ID_INTEL;
690     c->device_id = E1000_DEV_ID_82574L;
691     c->revision = 0;
692     c->class_id = PCI_CLASS_NETWORK_ETHERNET;
693     c->is_express = 1;
694 
695     dc->desc = "Intel 82574L GbE Controller";
696     dc->reset = e1000e_qdev_reset;
697     dc->vmsd = &e1000e_vmstate;
698     dc->props = e1000e_properties;
699 
700     e1000e_prop_disable_vnet = qdev_prop_uint8;
701     e1000e_prop_disable_vnet.description = "Do not use virtio headers, "
702                                            "perform SW offloads emulation "
703                                            "instead";
704 
705     e1000e_prop_subsys_ven = qdev_prop_uint16;
706     e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID";
707 
708     e1000e_prop_subsys = qdev_prop_uint16;
709     e1000e_prop_subsys.description = "PCI device Subsystem ID";
710 
711     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
712 }
713 
714 static void e1000e_instance_init(Object *obj)
715 {
716     E1000EState *s = E1000E(obj);
717     device_add_bootindex_property(obj, &s->conf.bootindex,
718                                   "bootindex", "/ethernet-phy@0",
719                                   DEVICE(obj), NULL);
720 }
721 
722 static const TypeInfo e1000e_info = {
723     .name = TYPE_E1000E,
724     .parent = TYPE_PCI_DEVICE,
725     .instance_size = sizeof(E1000EState),
726     .class_init = e1000e_class_init,
727     .instance_init = e1000e_instance_init,
728 };
729 
730 static void e1000e_register_types(void)
731 {
732     type_register_static(&e1000e_info);
733 }
734 
735 type_init(e1000e_register_types)
736