xref: /qemu/hw/net/e1000e_core.c (revision 1fe8ac35)
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
43 
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
46 
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
49 
50 #include "trace.h"
51 
52 #define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
53                                      second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
55 
56 static inline void
57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
58 
59 static inline void
60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
61 {
62     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
63         trace_e1000e_wrn_no_ts_support();
64     }
65 }
66 
67 static inline void
68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
69 {
70     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
71         trace_e1000e_wrn_no_snap_support();
72     }
73 }
74 
75 static inline void
76 e1000e_raise_legacy_irq(E1000ECore *core)
77 {
78     trace_e1000e_irq_legacy_notify(true);
79     e1000x_inc_reg_if_not_full(core->mac, IAC);
80     pci_set_irq(core->owner, 1);
81 }
82 
83 static inline void
84 e1000e_lower_legacy_irq(E1000ECore *core)
85 {
86     trace_e1000e_irq_legacy_notify(false);
87     pci_set_irq(core->owner, 0);
88 }
89 
90 static inline void
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
92 {
93     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
94                                  timer->delay_resolution_ns;
95 
96     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
97 
98     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
99 
100     timer->running = true;
101 }
102 
103 static void
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
105 {
106     if (timer->running) {
107         e1000e_intrmgr_rearm_timer(timer);
108     }
109 }
110 
111 static void
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
113 {
114     if (timer->running) {
115         timer_del(timer->timer);
116     }
117 }
118 
119 static inline void
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
121 {
122     if (timer->running) {
123         timer_del(timer->timer);
124         timer->running = false;
125     }
126 }
127 
128 static inline void
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
130 {
131     trace_e1000e_irq_fire_delayed_interrupts();
132     e1000e_set_interrupt_cause(core, 0);
133 }
134 
135 static void
136 e1000e_intrmgr_on_timer(void *opaque)
137 {
138     E1000IntrDelayTimer *timer = opaque;
139 
140     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
141 
142     timer->running = false;
143     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
144 }
145 
146 static void
147 e1000e_intrmgr_on_throttling_timer(void *opaque)
148 {
149     E1000IntrDelayTimer *timer = opaque;
150 
151     assert(!msix_enabled(timer->core->owner));
152 
153     timer->running = false;
154 
155     if (!timer->core->itr_intr_pending) {
156         trace_e1000e_irq_throttling_no_pending_interrupts();
157         return;
158     }
159 
160     if (msi_enabled(timer->core->owner)) {
161         trace_e1000e_irq_msi_notify_postponed();
162         /* Clear msi_causes_pending to fire MSI eventually */
163         timer->core->msi_causes_pending = 0;
164         e1000e_set_interrupt_cause(timer->core, 0);
165     } else {
166         trace_e1000e_irq_legacy_notify_postponed();
167         e1000e_set_interrupt_cause(timer->core, 0);
168     }
169 }
170 
171 static void
172 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
173 {
174     E1000IntrDelayTimer *timer = opaque;
175     int idx = timer - &timer->core->eitr[0];
176 
177     assert(msix_enabled(timer->core->owner));
178 
179     timer->running = false;
180 
181     if (!timer->core->eitr_intr_pending[idx]) {
182         trace_e1000e_irq_throttling_no_pending_vec(idx);
183         return;
184     }
185 
186     trace_e1000e_irq_msix_notify_postponed_vec(idx);
187     msix_notify(timer->core->owner, idx);
188 }
189 
190 static void
191 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
192 {
193     int i;
194 
195     core->radv.delay_reg = RADV;
196     core->rdtr.delay_reg = RDTR;
197     core->raid.delay_reg = RAID;
198     core->tadv.delay_reg = TADV;
199     core->tidv.delay_reg = TIDV;
200 
201     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206 
207     core->radv.core = core;
208     core->rdtr.core = core;
209     core->raid.core = core;
210     core->tadv.core = core;
211     core->tidv.core = core;
212 
213     core->itr.core = core;
214     core->itr.delay_reg = ITR;
215     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
216 
217     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
218         core->eitr[i].core = core;
219         core->eitr[i].delay_reg = EITR + i;
220         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
221     }
222 
223     if (!create) {
224         return;
225     }
226 
227     core->radv.timer =
228         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
229     core->rdtr.timer =
230         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
231     core->raid.timer =
232         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
233 
234     core->tadv.timer =
235         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
236     core->tidv.timer =
237         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
238 
239     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
240                                    e1000e_intrmgr_on_throttling_timer,
241                                    &core->itr);
242 
243     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
244         core->eitr[i].timer =
245             timer_new_ns(QEMU_CLOCK_VIRTUAL,
246                          e1000e_intrmgr_on_msix_throttling_timer,
247                          &core->eitr[i]);
248     }
249 }
250 
251 static inline void
252 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
253 {
254     e1000e_intrmgr_stop_timer(&core->radv);
255     e1000e_intrmgr_stop_timer(&core->rdtr);
256     e1000e_intrmgr_stop_timer(&core->raid);
257     e1000e_intrmgr_stop_timer(&core->tidv);
258     e1000e_intrmgr_stop_timer(&core->tadv);
259 }
260 
261 static bool
262 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
263 {
264     uint32_t delayable_causes;
265     uint32_t rdtr = core->mac[RDTR];
266     uint32_t radv = core->mac[RADV];
267     uint32_t raid = core->mac[RAID];
268 
269     if (msix_enabled(core->owner)) {
270         return false;
271     }
272 
273     delayable_causes = E1000_ICR_RXQ0 |
274                        E1000_ICR_RXQ1 |
275                        E1000_ICR_RXT0;
276 
277     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
278         delayable_causes |= E1000_ICR_ACK;
279     }
280 
281     /* Clean up all causes that may be delayed */
282     core->delayed_causes |= *causes & delayable_causes;
283     *causes &= ~delayable_causes;
284 
285     /* Check if delayed RX interrupts disabled by client
286        or if there are causes that cannot be delayed */
287     if ((rdtr == 0) || (*causes != 0)) {
288         return false;
289     }
290 
291     /* Check if delayed RX ACK interrupts disabled by client
292        and there is an ACK packet received */
293     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
294         return false;
295     }
296 
297     /* All causes delayed */
298     e1000e_intrmgr_rearm_timer(&core->rdtr);
299 
300     if (!core->radv.running && (radv != 0)) {
301         e1000e_intrmgr_rearm_timer(&core->radv);
302     }
303 
304     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
305         e1000e_intrmgr_rearm_timer(&core->raid);
306     }
307 
308     return true;
309 }
310 
311 static bool
312 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
313 {
314     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
315                                              E1000_ICR_TXQ1 |
316                                              E1000_ICR_TXQE |
317                                              E1000_ICR_TXDW;
318 
319     if (msix_enabled(core->owner)) {
320         return false;
321     }
322 
323     /* Clean up all causes that may be delayed */
324     core->delayed_causes |= *causes & delayable_causes;
325     *causes &= ~delayable_causes;
326 
327     /* If there are causes that cannot be delayed */
328     if (*causes != 0) {
329         return false;
330     }
331 
332     /* All causes delayed */
333     e1000e_intrmgr_rearm_timer(&core->tidv);
334 
335     if (!core->tadv.running && (core->mac[TADV] != 0)) {
336         e1000e_intrmgr_rearm_timer(&core->tadv);
337     }
338 
339     return true;
340 }
341 
342 static uint32_t
343 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
344 {
345     uint32_t res;
346 
347     if (msix_enabled(core->owner)) {
348         assert(core->delayed_causes == 0);
349         return 0;
350     }
351 
352     res = core->delayed_causes;
353     core->delayed_causes = 0;
354 
355     e1000e_intrmgr_stop_delay_timers(core);
356 
357     return res;
358 }
359 
360 static void
361 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
362 {
363     int i;
364     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
365 
366     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
367     core->mac[ICR] |= val;
368 
369     if (core->itr.running) {
370         timer_del(core->itr.timer);
371         e1000e_intrmgr_on_throttling_timer(&core->itr);
372     }
373 
374     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
375         if (core->eitr[i].running) {
376             timer_del(core->eitr[i].timer);
377             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
378         }
379     }
380 }
381 
382 static void
383 e1000e_intrmgr_resume(E1000ECore *core)
384 {
385     int i;
386 
387     e1000e_intmgr_timer_resume(&core->radv);
388     e1000e_intmgr_timer_resume(&core->rdtr);
389     e1000e_intmgr_timer_resume(&core->raid);
390     e1000e_intmgr_timer_resume(&core->tidv);
391     e1000e_intmgr_timer_resume(&core->tadv);
392 
393     e1000e_intmgr_timer_resume(&core->itr);
394 
395     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
396         e1000e_intmgr_timer_resume(&core->eitr[i]);
397     }
398 }
399 
400 static void
401 e1000e_intrmgr_pause(E1000ECore *core)
402 {
403     int i;
404 
405     e1000e_intmgr_timer_pause(&core->radv);
406     e1000e_intmgr_timer_pause(&core->rdtr);
407     e1000e_intmgr_timer_pause(&core->raid);
408     e1000e_intmgr_timer_pause(&core->tidv);
409     e1000e_intmgr_timer_pause(&core->tadv);
410 
411     e1000e_intmgr_timer_pause(&core->itr);
412 
413     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
414         e1000e_intmgr_timer_pause(&core->eitr[i]);
415     }
416 }
417 
418 static void
419 e1000e_intrmgr_reset(E1000ECore *core)
420 {
421     int i;
422 
423     core->delayed_causes = 0;
424 
425     e1000e_intrmgr_stop_delay_timers(core);
426 
427     e1000e_intrmgr_stop_timer(&core->itr);
428 
429     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
430         e1000e_intrmgr_stop_timer(&core->eitr[i]);
431     }
432 }
433 
434 static void
435 e1000e_intrmgr_pci_unint(E1000ECore *core)
436 {
437     int i;
438 
439     timer_free(core->radv.timer);
440     timer_free(core->rdtr.timer);
441     timer_free(core->raid.timer);
442 
443     timer_free(core->tadv.timer);
444     timer_free(core->tidv.timer);
445 
446     timer_free(core->itr.timer);
447 
448     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
449         timer_free(core->eitr[i].timer);
450     }
451 }
452 
453 static void
454 e1000e_intrmgr_pci_realize(E1000ECore *core)
455 {
456     e1000e_intrmgr_initialize_all_timers(core, true);
457 }
458 
459 static inline bool
460 e1000e_rx_csum_enabled(E1000ECore *core)
461 {
462     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
463 }
464 
465 static inline bool
466 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
467 {
468     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
469 }
470 
471 static inline bool
472 e1000e_rx_use_ps_descriptor(E1000ECore *core)
473 {
474     return !e1000e_rx_use_legacy_descriptor(core) &&
475            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
476 }
477 
478 static inline bool
479 e1000e_rss_enabled(E1000ECore *core)
480 {
481     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
482            !e1000e_rx_csum_enabled(core) &&
483            !e1000e_rx_use_legacy_descriptor(core);
484 }
485 
486 typedef struct E1000E_RSSInfo_st {
487     bool enabled;
488     uint32_t hash;
489     uint32_t queue;
490     uint32_t type;
491 } E1000E_RSSInfo;
492 
493 static uint32_t
494 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
495 {
496     bool isip4, isip6, isudp, istcp;
497 
498     assert(e1000e_rss_enabled(core));
499 
500     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
501 
502     if (isip4) {
503         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
504 
505         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
506                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
507                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
508 
509         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
510             return E1000_MRQ_RSS_TYPE_IPV4TCP;
511         }
512 
513         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
514             return E1000_MRQ_RSS_TYPE_IPV4;
515         }
516     } else if (isip6) {
517         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
518 
519         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
520         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
521 
522         /*
523          * Following two traces must not be combined because resulting
524          * event will have 11 arguments totally and some trace backends
525          * (at least "ust") have limitation of maximum 10 arguments per
526          * event. Events with more arguments fail to compile for
527          * backends like these.
528          */
529         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
530         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
531                                 ip6info->has_ext_hdrs,
532                                 ip6info->rss_ex_dst_valid,
533                                 ip6info->rss_ex_src_valid,
534                                 core->mac[MRQC],
535                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
536                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
537                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
538 
539         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
540             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
541                               ip6info->rss_ex_src_valid))) {
542 
543             if (istcp && !ip6info->fragment &&
544                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
545                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
546             }
547 
548             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
549                 return E1000_MRQ_RSS_TYPE_IPV6EX;
550             }
551 
552         }
553 
554         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
555             return E1000_MRQ_RSS_TYPE_IPV6;
556         }
557 
558     }
559 
560     return E1000_MRQ_RSS_TYPE_NONE;
561 }
562 
563 static uint32_t
564 e1000e_rss_calc_hash(E1000ECore *core,
565                      struct NetRxPkt *pkt,
566                      E1000E_RSSInfo *info)
567 {
568     NetRxPktRssType type;
569 
570     assert(e1000e_rss_enabled(core));
571 
572     switch (info->type) {
573     case E1000_MRQ_RSS_TYPE_IPV4:
574         type = NetPktRssIpV4;
575         break;
576     case E1000_MRQ_RSS_TYPE_IPV4TCP:
577         type = NetPktRssIpV4Tcp;
578         break;
579     case E1000_MRQ_RSS_TYPE_IPV6TCP:
580         type = NetPktRssIpV6TcpEx;
581         break;
582     case E1000_MRQ_RSS_TYPE_IPV6:
583         type = NetPktRssIpV6;
584         break;
585     case E1000_MRQ_RSS_TYPE_IPV6EX:
586         type = NetPktRssIpV6Ex;
587         break;
588     default:
589         assert(false);
590         return 0;
591     }
592 
593     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
594 }
595 
596 static void
597 e1000e_rss_parse_packet(E1000ECore *core,
598                         struct NetRxPkt *pkt,
599                         E1000E_RSSInfo *info)
600 {
601     trace_e1000e_rx_rss_started();
602 
603     if (!e1000e_rss_enabled(core)) {
604         info->enabled = false;
605         info->hash = 0;
606         info->queue = 0;
607         info->type = 0;
608         trace_e1000e_rx_rss_disabled();
609         return;
610     }
611 
612     info->enabled = true;
613 
614     info->type = e1000e_rss_get_hash_type(core, pkt);
615 
616     trace_e1000e_rx_rss_type(info->type);
617 
618     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
619         info->hash = 0;
620         info->queue = 0;
621         return;
622     }
623 
624     info->hash = e1000e_rss_calc_hash(core, pkt, info);
625     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
626 }
627 
628 static void
629 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
630 {
631     if (tx->props.tse && tx->cptse) {
632         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
633         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
634         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
635         return;
636     }
637 
638     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
639         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
640     }
641 
642     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
643         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
644     }
645 }
646 
647 static bool
648 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
649 {
650     int target_queue = MIN(core->max_queue_num, queue_index);
651     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
652 
653     e1000e_setup_tx_offloads(core, tx);
654 
655     net_tx_pkt_dump(tx->tx_pkt);
656 
657     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
658         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
659         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
660     } else {
661         return net_tx_pkt_send(tx->tx_pkt, queue);
662     }
663 }
664 
665 static void
666 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
667 {
668     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
669                                     PTC1023, PTC1522 };
670 
671     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
672 
673     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
674     e1000x_inc_reg_if_not_full(core->mac, TPT);
675     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
676 
677     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
678     case ETH_PKT_BCAST:
679         e1000x_inc_reg_if_not_full(core->mac, BPTC);
680         break;
681     case ETH_PKT_MCAST:
682         e1000x_inc_reg_if_not_full(core->mac, MPTC);
683         break;
684     case ETH_PKT_UCAST:
685         break;
686     default:
687         g_assert_not_reached();
688     }
689 
690     core->mac[GPTC] = core->mac[TPT];
691     core->mac[GOTCL] = core->mac[TOTL];
692     core->mac[GOTCH] = core->mac[TOTH];
693 }
694 
695 static void
696 e1000e_process_tx_desc(E1000ECore *core,
697                        struct e1000e_tx *tx,
698                        struct e1000_tx_desc *dp,
699                        int queue_index)
700 {
701     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
702     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
703     unsigned int split_size = txd_lower & 0xffff;
704     uint64_t addr;
705     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
706     bool eop = txd_lower & E1000_TXD_CMD_EOP;
707 
708     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
709         e1000x_read_tx_ctx_descr(xp, &tx->props);
710         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
711         return;
712     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
713         /* data descriptor */
714         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
715         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
716         e1000e_process_ts_option(core, dp);
717     } else {
718         /* legacy descriptor */
719         e1000e_process_ts_option(core, dp);
720         tx->cptse = 0;
721     }
722 
723     addr = le64_to_cpu(dp->buffer_addr);
724 
725     if (!tx->skip_cp) {
726         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
727             tx->skip_cp = true;
728         }
729     }
730 
731     if (eop) {
732         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
733             if (e1000x_vlan_enabled(core->mac) &&
734                 e1000x_is_vlan_txd(txd_lower)) {
735                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
736                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
737             }
738             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
739                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
740             }
741         }
742 
743         tx->skip_cp = false;
744         net_tx_pkt_reset(tx->tx_pkt);
745 
746         tx->sum_needed = 0;
747         tx->cptse = 0;
748     }
749 }
750 
751 static inline uint32_t
752 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
753 {
754     if (!msix_enabled(core->owner)) {
755         return E1000_ICR_TXDW;
756     }
757 
758     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
759 }
760 
761 static inline uint32_t
762 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
763                              bool min_threshold_hit)
764 {
765     if (!msix_enabled(core->owner)) {
766         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
767     }
768 
769     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
770 }
771 
772 static uint32_t
773 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
774                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
775 {
776     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
777 
778     if (!(txd_lower & E1000_TXD_CMD_RS) &&
779         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
780         return 0;
781     }
782 
783     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
784 
785     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
786 
787     dp->upper.data = cpu_to_le32(txd_upper);
788     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
789                   &dp->upper, sizeof(dp->upper));
790     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
791 }
792 
793 typedef struct E1000E_RingInfo_st {
794     int dbah;
795     int dbal;
796     int dlen;
797     int dh;
798     int dt;
799     int idx;
800 } E1000E_RingInfo;
801 
802 static inline bool
803 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
804 {
805     return core->mac[r->dh] == core->mac[r->dt] ||
806                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
807 }
808 
809 static inline uint64_t
810 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
811 {
812     uint64_t bah = core->mac[r->dbah];
813     uint64_t bal = core->mac[r->dbal];
814 
815     return (bah << 32) + bal;
816 }
817 
818 static inline uint64_t
819 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
820 {
821     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
822 }
823 
824 static inline void
825 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
826 {
827     core->mac[r->dh] += count;
828 
829     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
830         core->mac[r->dh] = 0;
831     }
832 }
833 
834 static inline uint32_t
835 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
836 {
837     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
838                                  core->mac[r->dh],  core->mac[r->dt]);
839 
840     if (core->mac[r->dh] <= core->mac[r->dt]) {
841         return core->mac[r->dt] - core->mac[r->dh];
842     }
843 
844     if (core->mac[r->dh] > core->mac[r->dt]) {
845         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
846                core->mac[r->dt] - core->mac[r->dh];
847     }
848 
849     g_assert_not_reached();
850     return 0;
851 }
852 
853 static inline bool
854 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
855 {
856     return core->mac[r->dlen] > 0;
857 }
858 
859 static inline uint32_t
860 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
861 {
862     return core->mac[r->dlen];
863 }
864 
865 typedef struct E1000E_TxRing_st {
866     const E1000E_RingInfo *i;
867     struct e1000e_tx *tx;
868 } E1000E_TxRing;
869 
870 static inline int
871 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
872 {
873     return (reg_idx - base_reg_idx) / (0x100 >> 2);
874 }
875 
876 static inline void
877 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
878 {
879     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
880         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
881         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
882     };
883 
884     assert(idx < ARRAY_SIZE(i));
885 
886     txr->i     = &i[idx];
887     txr->tx    = &core->tx[idx];
888 }
889 
890 typedef struct E1000E_RxRing_st {
891     const E1000E_RingInfo *i;
892 } E1000E_RxRing;
893 
894 static inline void
895 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
896 {
897     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
898         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
899         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
900     };
901 
902     assert(idx < ARRAY_SIZE(i));
903 
904     rxr->i      = &i[idx];
905 }
906 
907 static void
908 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
909 {
910     dma_addr_t base;
911     struct e1000_tx_desc desc;
912     bool ide = false;
913     const E1000E_RingInfo *txi = txr->i;
914     uint32_t cause = E1000_ICS_TXQE;
915 
916     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
917         trace_e1000e_tx_disabled();
918         return;
919     }
920 
921     while (!e1000e_ring_empty(core, txi)) {
922         base = e1000e_ring_head_descr(core, txi);
923 
924         pci_dma_read(core->owner, base, &desc, sizeof(desc));
925 
926         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
927                               desc.lower.data, desc.upper.data);
928 
929         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
930         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
931 
932         e1000e_ring_advance(core, txi, 1);
933     }
934 
935     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
936         e1000e_set_interrupt_cause(core, cause);
937     }
938 }
939 
940 static bool
941 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
942                   size_t total_size)
943 {
944     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
945 
946     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
947                                 core->rx_desc_buf_size);
948 
949     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
950                          core->rx_desc_buf_size;
951 }
952 
953 void
954 e1000e_start_recv(E1000ECore *core)
955 {
956     int i;
957 
958     trace_e1000e_rx_start_recv();
959 
960     for (i = 0; i <= core->max_queue_num; i++) {
961         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
962     }
963 }
964 
965 bool
966 e1000e_can_receive(E1000ECore *core)
967 {
968     int i;
969 
970     if (!e1000x_rx_ready(core->owner, core->mac)) {
971         return false;
972     }
973 
974     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
975         E1000E_RxRing rxr;
976 
977         e1000e_rx_ring_init(core, &rxr, i);
978         if (e1000e_ring_enabled(core, rxr.i) &&
979             e1000e_has_rxbufs(core, rxr.i, 1)) {
980             trace_e1000e_rx_can_recv();
981             return true;
982         }
983     }
984 
985     trace_e1000e_rx_can_recv_rings_full();
986     return false;
987 }
988 
989 ssize_t
990 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
991 {
992     const struct iovec iov = {
993         .iov_base = (uint8_t *)buf,
994         .iov_len = size
995     };
996 
997     return e1000e_receive_iov(core, &iov, 1);
998 }
999 
1000 static inline bool
1001 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1002 {
1003     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1004 }
1005 
1006 static inline bool
1007 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1008 {
1009     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1010 }
1011 
1012 static bool
1013 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1014 {
1015     uint32_t rctl = core->mac[RCTL];
1016 
1017     if (e1000x_is_vlan_packet(buf, core->mac[VET]) &&
1018         e1000x_vlan_rx_filter_enabled(core->mac)) {
1019         uint16_t vid = lduw_be_p(buf + 14);
1020         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1021                                  ((vid >> 5) & 0x7f));
1022         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1023             trace_e1000e_rx_flt_vlan_mismatch(vid);
1024             return false;
1025         } else {
1026             trace_e1000e_rx_flt_vlan_match(vid);
1027         }
1028     }
1029 
1030     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1031     case ETH_PKT_UCAST:
1032         if (rctl & E1000_RCTL_UPE) {
1033             return true; /* promiscuous ucast */
1034         }
1035         break;
1036 
1037     case ETH_PKT_BCAST:
1038         if (rctl & E1000_RCTL_BAM) {
1039             return true; /* broadcast enabled */
1040         }
1041         break;
1042 
1043     case ETH_PKT_MCAST:
1044         if (rctl & E1000_RCTL_MPE) {
1045             return true; /* promiscuous mcast */
1046         }
1047         break;
1048 
1049     default:
1050         g_assert_not_reached();
1051     }
1052 
1053     return e1000x_rx_group_filter(core->mac, buf);
1054 }
1055 
1056 static inline void
1057 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1058 {
1059     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1060     *buff_addr = le64_to_cpu(d->buffer_addr);
1061 }
1062 
1063 static inline void
1064 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1065 {
1066     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1067     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1068 }
1069 
1070 static inline void
1071 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1072                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1073 {
1074     int i;
1075     union e1000_rx_desc_packet_split *d =
1076         (union e1000_rx_desc_packet_split *) desc;
1077 
1078     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1079         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1080     }
1081 
1082     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1083                                  (*buff_addr)[2], (*buff_addr)[3]);
1084 }
1085 
1086 static inline void
1087 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1088                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1089 {
1090     if (e1000e_rx_use_legacy_descriptor(core)) {
1091         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1092         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1093     } else {
1094         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1095             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1096         } else {
1097             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1098             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1099         }
1100     }
1101 }
1102 
1103 static void
1104 e1000e_verify_csum_in_sw(E1000ECore *core,
1105                          struct NetRxPkt *pkt,
1106                          uint32_t *status_flags,
1107                          bool istcp, bool isudp)
1108 {
1109     bool csum_valid;
1110     uint32_t csum_error;
1111 
1112     if (e1000e_rx_l3_cso_enabled(core)) {
1113         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1114             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1115         } else {
1116             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1117             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1118         }
1119     } else {
1120         trace_e1000e_rx_metadata_l3_cso_disabled();
1121     }
1122 
1123     if (!e1000e_rx_l4_cso_enabled(core)) {
1124         trace_e1000e_rx_metadata_l4_cso_disabled();
1125         return;
1126     }
1127 
1128     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1129         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1130         return;
1131     }
1132 
1133     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1134 
1135     if (istcp) {
1136         *status_flags |= E1000_RXD_STAT_TCPCS |
1137                          csum_error;
1138     } else if (isudp) {
1139         *status_flags |= E1000_RXD_STAT_TCPCS |
1140                          E1000_RXD_STAT_UDPCS |
1141                          csum_error;
1142     }
1143 }
1144 
1145 static inline bool
1146 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1147 {
1148     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1149         return false;
1150     }
1151 
1152     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1153         return !net_rx_pkt_has_tcp_data(rx_pkt);
1154     }
1155 
1156     return true;
1157 }
1158 
1159 static void
1160 e1000e_build_rx_metadata(E1000ECore *core,
1161                          struct NetRxPkt *pkt,
1162                          bool is_eop,
1163                          const E1000E_RSSInfo *rss_info,
1164                          uint32_t *rss, uint32_t *mrq,
1165                          uint32_t *status_flags,
1166                          uint16_t *ip_id,
1167                          uint16_t *vlan_tag)
1168 {
1169     struct virtio_net_hdr *vhdr;
1170     bool isip4, isip6, istcp, isudp;
1171     uint32_t pkt_type;
1172 
1173     *status_flags = E1000_RXD_STAT_DD;
1174 
1175     /* No additional metadata needed for non-EOP descriptors */
1176     if (!is_eop) {
1177         goto func_exit;
1178     }
1179 
1180     *status_flags |= E1000_RXD_STAT_EOP;
1181 
1182     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1183     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1184 
1185     /* VLAN state */
1186     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1187         *status_flags |= E1000_RXD_STAT_VP;
1188         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1189         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1190     }
1191 
1192     /* Packet parsing results */
1193     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1194         if (rss_info->enabled) {
1195             *rss = cpu_to_le32(rss_info->hash);
1196             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1197             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1198         }
1199     } else if (isip4) {
1200             *status_flags |= E1000_RXD_STAT_IPIDV;
1201             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1202             trace_e1000e_rx_metadata_ip_id(*ip_id);
1203     }
1204 
1205     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1206         *status_flags |= E1000_RXD_STAT_ACK;
1207         trace_e1000e_rx_metadata_ack();
1208     }
1209 
1210     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1211         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1212         pkt_type = E1000_RXD_PKT_MAC;
1213     } else if (istcp || isudp) {
1214         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1215     } else if (isip4 || isip6) {
1216         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1217     } else {
1218         pkt_type = E1000_RXD_PKT_MAC;
1219     }
1220 
1221     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1222     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1223 
1224     /* RX CSO information */
1225     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1226         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1227         goto func_exit;
1228     }
1229 
1230     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1231         trace_e1000e_rx_metadata_no_virthdr();
1232         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1233         goto func_exit;
1234     }
1235 
1236     vhdr = net_rx_pkt_get_vhdr(pkt);
1237 
1238     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1239         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1240         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1241         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1242         goto func_exit;
1243     }
1244 
1245     if (e1000e_rx_l3_cso_enabled(core)) {
1246         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1247     } else {
1248         trace_e1000e_rx_metadata_l3_cso_disabled();
1249     }
1250 
1251     if (e1000e_rx_l4_cso_enabled(core)) {
1252         if (istcp) {
1253             *status_flags |= E1000_RXD_STAT_TCPCS;
1254         } else if (isudp) {
1255             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1256         }
1257     } else {
1258         trace_e1000e_rx_metadata_l4_cso_disabled();
1259     }
1260 
1261     trace_e1000e_rx_metadata_status_flags(*status_flags);
1262 
1263 func_exit:
1264     *status_flags = cpu_to_le32(*status_flags);
1265 }
1266 
1267 static inline void
1268 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1269                            struct NetRxPkt *pkt,
1270                            const E1000E_RSSInfo *rss_info,
1271                            uint16_t length)
1272 {
1273     uint32_t status_flags, rss, mrq;
1274     uint16_t ip_id;
1275 
1276     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1277 
1278     assert(!rss_info->enabled);
1279 
1280     d->length = cpu_to_le16(length);
1281     d->csum = 0;
1282 
1283     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1284                              rss_info,
1285                              &rss, &mrq,
1286                              &status_flags, &ip_id,
1287                              &d->special);
1288     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1289     d->status = (uint8_t) le32_to_cpu(status_flags);
1290 }
1291 
1292 static inline void
1293 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1294                           struct NetRxPkt *pkt,
1295                           const E1000E_RSSInfo *rss_info,
1296                           uint16_t length)
1297 {
1298     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1299 
1300     memset(&d->wb, 0, sizeof(d->wb));
1301 
1302     d->wb.upper.length = cpu_to_le16(length);
1303 
1304     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1305                              rss_info,
1306                              &d->wb.lower.hi_dword.rss,
1307                              &d->wb.lower.mrq,
1308                              &d->wb.upper.status_error,
1309                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1310                              &d->wb.upper.vlan);
1311 }
1312 
1313 static inline void
1314 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1315                          struct NetRxPkt *pkt,
1316                          const E1000E_RSSInfo *rss_info,
1317                          size_t ps_hdr_len,
1318                          uint16_t(*written)[MAX_PS_BUFFERS])
1319 {
1320     int i;
1321     union e1000_rx_desc_packet_split *d =
1322         (union e1000_rx_desc_packet_split *) desc;
1323 
1324     memset(&d->wb, 0, sizeof(d->wb));
1325 
1326     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1327 
1328     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1329         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1330     }
1331 
1332     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1333                              rss_info,
1334                              &d->wb.lower.hi_dword.rss,
1335                              &d->wb.lower.mrq,
1336                              &d->wb.middle.status_error,
1337                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1338                              &d->wb.middle.vlan);
1339 
1340     d->wb.upper.header_status =
1341         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1342 
1343     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1344                                   (*written)[2], (*written)[3]);
1345 }
1346 
1347 static inline void
1348 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1349 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1350     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1351 {
1352     if (e1000e_rx_use_legacy_descriptor(core)) {
1353         assert(ps_hdr_len == 0);
1354         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1355     } else {
1356         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1357             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1358                                       ps_hdr_len, written);
1359         } else {
1360             assert(ps_hdr_len == 0);
1361             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1362                                        (*written)[0]);
1363         }
1364     }
1365 }
1366 
1367 typedef struct e1000e_ba_state_st {
1368     uint16_t written[MAX_PS_BUFFERS];
1369     uint8_t cur_idx;
1370 } e1000e_ba_state;
1371 
1372 static inline void
1373 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1374                                hwaddr (*ba)[MAX_PS_BUFFERS],
1375                                e1000e_ba_state *bastate,
1376                                const char *data,
1377                                dma_addr_t data_len)
1378 {
1379     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1380 
1381     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1382     bastate->written[0] += data_len;
1383 
1384     bastate->cur_idx = 1;
1385 }
1386 
1387 static void
1388 e1000e_write_to_rx_buffers(E1000ECore *core,
1389                            hwaddr (*ba)[MAX_PS_BUFFERS],
1390                            e1000e_ba_state *bastate,
1391                            const char *data,
1392                            dma_addr_t data_len)
1393 {
1394     while (data_len > 0) {
1395         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1396         uint32_t cur_buf_bytes_left = cur_buf_len -
1397                                       bastate->written[bastate->cur_idx];
1398         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1399 
1400         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1401                                         (*ba)[bastate->cur_idx],
1402                                         bastate->written[bastate->cur_idx],
1403                                         data,
1404                                         bytes_to_write);
1405 
1406         pci_dma_write(core->owner,
1407             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1408             data, bytes_to_write);
1409 
1410         bastate->written[bastate->cur_idx] += bytes_to_write;
1411         data += bytes_to_write;
1412         data_len -= bytes_to_write;
1413 
1414         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1415             bastate->cur_idx++;
1416         }
1417 
1418         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1419     }
1420 }
1421 
1422 static void
1423 e1000e_update_rx_stats(E1000ECore *core,
1424                        size_t data_size,
1425                        size_t data_fcs_size)
1426 {
1427     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1428 
1429     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1430     case ETH_PKT_BCAST:
1431         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1432         break;
1433 
1434     case ETH_PKT_MCAST:
1435         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1436         break;
1437 
1438     default:
1439         break;
1440     }
1441 }
1442 
1443 static inline bool
1444 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1445 {
1446     return e1000e_ring_free_descr_num(core, rxi) ==
1447            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1448 }
1449 
1450 static bool
1451 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1452 {
1453     bool isip4, isip6, isudp, istcp;
1454     bool fragment;
1455 
1456     if (!e1000e_rx_use_ps_descriptor(core)) {
1457         return false;
1458     }
1459 
1460     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1461 
1462     if (isip4) {
1463         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1464     } else if (isip6) {
1465         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1466     } else {
1467         return false;
1468     }
1469 
1470     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1471         return false;
1472     }
1473 
1474     if (!fragment && (isudp || istcp)) {
1475         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1476     } else {
1477         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1478     }
1479 
1480     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1481         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1482         return false;
1483     }
1484 
1485     return true;
1486 }
1487 
1488 static void
1489 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1490                              const E1000E_RxRing *rxr,
1491                              const E1000E_RSSInfo *rss_info)
1492 {
1493     PCIDevice *d = core->owner;
1494     dma_addr_t base;
1495     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1496     size_t desc_size;
1497     size_t desc_offset = 0;
1498     size_t iov_ofs = 0;
1499 
1500     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1501     size_t size = net_rx_pkt_get_total_len(pkt);
1502     size_t total_size = size + e1000x_fcs_len(core->mac);
1503     const E1000E_RingInfo *rxi;
1504     size_t ps_hdr_len = 0;
1505     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1506     bool is_first = true;
1507 
1508     rxi = rxr->i;
1509 
1510     do {
1511         hwaddr ba[MAX_PS_BUFFERS];
1512         e1000e_ba_state bastate = { { 0 } };
1513         bool is_last = false;
1514 
1515         desc_size = total_size - desc_offset;
1516 
1517         if (desc_size > core->rx_desc_buf_size) {
1518             desc_size = core->rx_desc_buf_size;
1519         }
1520 
1521         if (e1000e_ring_empty(core, rxi)) {
1522             return;
1523         }
1524 
1525         base = e1000e_ring_head_descr(core, rxi);
1526 
1527         pci_dma_read(d, base, &desc, core->rx_desc_len);
1528 
1529         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1530 
1531         e1000e_read_rx_descr(core, desc, &ba);
1532 
1533         if (ba[0]) {
1534             if (desc_offset < size) {
1535                 static const uint32_t fcs_pad;
1536                 size_t iov_copy;
1537                 size_t copy_size = size - desc_offset;
1538                 if (copy_size > core->rx_desc_buf_size) {
1539                     copy_size = core->rx_desc_buf_size;
1540                 }
1541 
1542                 /* For PS mode copy the packet header first */
1543                 if (do_ps) {
1544                     if (is_first) {
1545                         size_t ps_hdr_copied = 0;
1546                         do {
1547                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1548                                            iov->iov_len - iov_ofs);
1549 
1550                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1551                                                       iov->iov_base, iov_copy);
1552 
1553                             copy_size -= iov_copy;
1554                             ps_hdr_copied += iov_copy;
1555 
1556                             iov_ofs += iov_copy;
1557                             if (iov_ofs == iov->iov_len) {
1558                                 iov++;
1559                                 iov_ofs = 0;
1560                             }
1561                         } while (ps_hdr_copied < ps_hdr_len);
1562 
1563                         is_first = false;
1564                     } else {
1565                         /* Leave buffer 0 of each descriptor except first */
1566                         /* empty as per spec 7.1.5.1                      */
1567                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1568                                                        NULL, 0);
1569                     }
1570                 }
1571 
1572                 /* Copy packet payload */
1573                 while (copy_size) {
1574                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1575 
1576                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1577                                             iov->iov_base + iov_ofs, iov_copy);
1578 
1579                     copy_size -= iov_copy;
1580                     iov_ofs += iov_copy;
1581                     if (iov_ofs == iov->iov_len) {
1582                         iov++;
1583                         iov_ofs = 0;
1584                     }
1585                 }
1586 
1587                 if (desc_offset + desc_size >= total_size) {
1588                     /* Simulate FCS checksum presence in the last descriptor */
1589                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1590                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1591                 }
1592             }
1593         } else { /* as per intel docs; skip descriptors with null buf addr */
1594             trace_e1000e_rx_null_descriptor();
1595         }
1596         desc_offset += desc_size;
1597         if (desc_offset >= total_size) {
1598             is_last = true;
1599         }
1600 
1601         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1602                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1603         pci_dma_write(d, base, &desc, core->rx_desc_len);
1604 
1605         e1000e_ring_advance(core, rxi,
1606                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1607 
1608     } while (desc_offset < total_size);
1609 
1610     e1000e_update_rx_stats(core, size, total_size);
1611 }
1612 
1613 static inline void
1614 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1615 {
1616     if (net_rx_pkt_has_virt_hdr(pkt)) {
1617         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1618 
1619         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1620             net_rx_pkt_fix_l4_csum(pkt);
1621         }
1622     }
1623 }
1624 
1625 ssize_t
1626 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1627 {
1628     static const int maximum_ethernet_hdr_len = (14 + 4);
1629     /* Min. octets in an ethernet frame sans FCS */
1630     static const int min_buf_size = 60;
1631 
1632     uint32_t n = 0;
1633     uint8_t min_buf[min_buf_size];
1634     struct iovec min_iov;
1635     uint8_t *filter_buf;
1636     size_t size, orig_size;
1637     size_t iov_ofs = 0;
1638     E1000E_RxRing rxr;
1639     E1000E_RSSInfo rss_info;
1640     size_t total_size;
1641     ssize_t retval;
1642     bool rdmts_hit;
1643 
1644     trace_e1000e_rx_receive_iov(iovcnt);
1645 
1646     if (!e1000x_hw_rx_enabled(core->mac)) {
1647         return -1;
1648     }
1649 
1650     /* Pull virtio header in */
1651     if (core->has_vnet) {
1652         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1653         iov_ofs = sizeof(struct virtio_net_hdr);
1654     }
1655 
1656     filter_buf = iov->iov_base + iov_ofs;
1657     orig_size = iov_size(iov, iovcnt);
1658     size = orig_size - iov_ofs;
1659 
1660     /* Pad to minimum Ethernet frame length */
1661     if (size < sizeof(min_buf)) {
1662         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1663         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1664         e1000x_inc_reg_if_not_full(core->mac, RUC);
1665         min_iov.iov_base = filter_buf = min_buf;
1666         min_iov.iov_len = size = sizeof(min_buf);
1667         iovcnt = 1;
1668         iov = &min_iov;
1669         iov_ofs = 0;
1670     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1671         /* This is very unlikely, but may happen. */
1672         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1673         filter_buf = min_buf;
1674     }
1675 
1676     /* Discard oversized packets if !LPE and !SBP. */
1677     if (e1000x_is_oversized(core->mac, size)) {
1678         return orig_size;
1679     }
1680 
1681     net_rx_pkt_set_packet_type(core->rx_pkt,
1682         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1683 
1684     if (!e1000e_receive_filter(core, filter_buf, size)) {
1685         trace_e1000e_rx_flt_dropped();
1686         return orig_size;
1687     }
1688 
1689     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1690                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1691 
1692     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1693     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1694 
1695     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1696 
1697     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1698         e1000x_fcs_len(core->mac);
1699 
1700     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1701         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1702 
1703         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1704 
1705         retval = orig_size;
1706 
1707         /* Perform small receive detection (RSRPD) */
1708         if (total_size < core->mac[RSRPD]) {
1709             n |= E1000_ICS_SRPD;
1710         }
1711 
1712         /* Perform ACK receive detection */
1713         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1714              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1715             n |= E1000_ICS_ACK;
1716         }
1717 
1718         /* Check if receive descriptor minimum threshold hit */
1719         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1720         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1721 
1722         trace_e1000e_rx_written_to_guest(n);
1723     } else {
1724         n |= E1000_ICS_RXO;
1725         retval = 0;
1726 
1727         trace_e1000e_rx_not_written_to_guest(n);
1728     }
1729 
1730     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1731         trace_e1000e_rx_interrupt_set(n);
1732         e1000e_set_interrupt_cause(core, n);
1733     } else {
1734         trace_e1000e_rx_interrupt_delayed(n);
1735     }
1736 
1737     return retval;
1738 }
1739 
1740 static inline bool
1741 e1000e_have_autoneg(E1000ECore *core)
1742 {
1743     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1744 }
1745 
1746 static void e1000e_update_flowctl_status(E1000ECore *core)
1747 {
1748     if (e1000e_have_autoneg(core) &&
1749         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1750         trace_e1000e_link_autoneg_flowctl(true);
1751         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1752     } else {
1753         trace_e1000e_link_autoneg_flowctl(false);
1754     }
1755 }
1756 
1757 static inline void
1758 e1000e_link_down(E1000ECore *core)
1759 {
1760     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1761     e1000e_update_flowctl_status(core);
1762 }
1763 
1764 static inline void
1765 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1766 {
1767     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1768     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1769                                      MII_CR_RESET |
1770                                      MII_CR_RESTART_AUTO_NEG);
1771 
1772     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1773         e1000e_have_autoneg(core)) {
1774         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1775     }
1776 }
1777 
1778 static void
1779 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1780 {
1781     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1782 
1783     if (val & BIT(10)) {
1784         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1785     }
1786 }
1787 
1788 static void
1789 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1790 {
1791     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1792 }
1793 
1794 void
1795 e1000e_core_set_link_status(E1000ECore *core)
1796 {
1797     NetClientState *nc = qemu_get_queue(core->owner_nic);
1798     uint32_t old_status = core->mac[STATUS];
1799 
1800     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1801 
1802     if (nc->link_down) {
1803         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1804     } else {
1805         if (e1000e_have_autoneg(core) &&
1806             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1807             e1000x_restart_autoneg(core->mac, core->phy[0],
1808                                    core->autoneg_timer);
1809         } else {
1810             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1811             e1000e_start_recv(core);
1812         }
1813     }
1814 
1815     if (core->mac[STATUS] != old_status) {
1816         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1817     }
1818 }
1819 
1820 static void
1821 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1822 {
1823     trace_e1000e_core_ctrl_write(index, val);
1824 
1825     /* RST is self clearing */
1826     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1827     core->mac[CTRL_DUP] = core->mac[CTRL];
1828 
1829     trace_e1000e_link_set_params(
1830         !!(val & E1000_CTRL_ASDE),
1831         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1832         !!(val & E1000_CTRL_FRCSPD),
1833         !!(val & E1000_CTRL_FRCDPX),
1834         !!(val & E1000_CTRL_RFCE),
1835         !!(val & E1000_CTRL_TFCE));
1836 
1837     if (val & E1000_CTRL_RST) {
1838         trace_e1000e_core_ctrl_sw_reset();
1839         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1840     }
1841 
1842     if (val & E1000_CTRL_PHY_RST) {
1843         trace_e1000e_core_ctrl_phy_reset();
1844         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1845     }
1846 }
1847 
1848 static void
1849 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1850 {
1851     trace_e1000e_rx_set_rfctl(val);
1852 
1853     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1854         trace_e1000e_wrn_iscsi_filtering_not_supported();
1855     }
1856 
1857     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1858         trace_e1000e_wrn_nfsw_filtering_not_supported();
1859     }
1860 
1861     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1862         trace_e1000e_wrn_nfsr_filtering_not_supported();
1863     }
1864 
1865     core->mac[RFCTL] = val;
1866 }
1867 
1868 static void
1869 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1870 {
1871     int i;
1872     core->rx_desc_buf_size = 0;
1873 
1874     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1875         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1876     }
1877 }
1878 
1879 static void
1880 e1000e_parse_rxbufsize(E1000ECore *core)
1881 {
1882     uint32_t rctl = core->mac[RCTL];
1883 
1884     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1885 
1886     if (rctl & E1000_RCTL_DTYP_MASK) {
1887         uint32_t bsize;
1888 
1889         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1890         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1891 
1892         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1893         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1894 
1895         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1896         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1897 
1898         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1899         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1900     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1901         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1902         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1903     } else {
1904         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1905     }
1906 
1907     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1908                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1909 
1910     e1000e_calc_per_desc_buf_size(core);
1911 }
1912 
1913 static void
1914 e1000e_calc_rxdesclen(E1000ECore *core)
1915 {
1916     if (e1000e_rx_use_legacy_descriptor(core)) {
1917         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1918     } else {
1919         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1920             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1921         } else {
1922             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1923         }
1924     }
1925     trace_e1000e_rx_desc_len(core->rx_desc_len);
1926 }
1927 
1928 static void
1929 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1930 {
1931     core->mac[RCTL] = val;
1932     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1933 
1934     if (val & E1000_RCTL_EN) {
1935         e1000e_parse_rxbufsize(core);
1936         e1000e_calc_rxdesclen(core);
1937         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1938                                 E1000_RING_DESC_LEN_SHIFT;
1939 
1940         e1000e_start_recv(core);
1941     }
1942 }
1943 
1944 static
1945 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1946 (E1000ECore *, int, uint16_t) = {
1947     [0] = {
1948         [PHY_CTRL]     = e1000e_set_phy_ctrl,
1949         [PHY_PAGE]     = e1000e_set_phy_page,
1950         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1951     }
1952 };
1953 
1954 static inline void
1955 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1956 {
1957     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1958     core->mac[IMS] &= ~bits;
1959 }
1960 
1961 static inline bool
1962 e1000e_postpone_interrupt(bool *interrupt_pending,
1963                            E1000IntrDelayTimer *timer)
1964 {
1965     if (timer->running) {
1966         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1967 
1968         *interrupt_pending = true;
1969         return true;
1970     }
1971 
1972     if (timer->core->mac[timer->delay_reg] != 0) {
1973         e1000e_intrmgr_rearm_timer(timer);
1974     }
1975 
1976     return false;
1977 }
1978 
1979 static inline bool
1980 e1000e_itr_should_postpone(E1000ECore *core)
1981 {
1982     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1983 }
1984 
1985 static inline bool
1986 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1987 {
1988     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1989                                      &core->eitr[idx]);
1990 }
1991 
1992 static void
1993 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1994 {
1995     uint32_t effective_eiac;
1996 
1997     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1998         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1999         if (vec < E1000E_MSIX_VEC_NUM) {
2000             if (!e1000e_eitr_should_postpone(core, vec)) {
2001                 trace_e1000e_irq_msix_notify_vec(vec);
2002                 msix_notify(core->owner, vec);
2003             }
2004         } else {
2005             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2006         }
2007     } else {
2008         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2009     }
2010 
2011     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2012         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2013         core->mac[IAM] &= ~cause;
2014     }
2015 
2016     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2017 
2018     effective_eiac = core->mac[EIAC] & cause;
2019 
2020     core->mac[ICR] &= ~effective_eiac;
2021     core->msi_causes_pending &= ~effective_eiac;
2022 
2023     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2024         core->mac[IMS] &= ~effective_eiac;
2025     }
2026 }
2027 
2028 static void
2029 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2030 {
2031     if (causes & E1000_ICR_RXQ0) {
2032         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2033                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2034     }
2035 
2036     if (causes & E1000_ICR_RXQ1) {
2037         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2038                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2039     }
2040 
2041     if (causes & E1000_ICR_TXQ0) {
2042         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2043                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2044     }
2045 
2046     if (causes & E1000_ICR_TXQ1) {
2047         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2048                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2049     }
2050 
2051     if (causes & E1000_ICR_OTHER) {
2052         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2053                                E1000_IVAR_OTHER(core->mac[IVAR]));
2054     }
2055 }
2056 
2057 static void
2058 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2059 {
2060     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2061         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2062         if (vec < E1000E_MSIX_VEC_NUM) {
2063             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2064             msix_clr_pending(core->owner, vec);
2065         } else {
2066             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2067         }
2068     } else {
2069         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2070     }
2071 }
2072 
2073 static void
2074 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2075 {
2076     if (causes & E1000_ICR_RXQ0) {
2077         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2078                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2079     }
2080 
2081     if (causes & E1000_ICR_RXQ1) {
2082         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2083                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2084     }
2085 
2086     if (causes & E1000_ICR_TXQ0) {
2087         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2088                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2089     }
2090 
2091     if (causes & E1000_ICR_TXQ1) {
2092         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2093                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2094     }
2095 
2096     if (causes & E1000_ICR_OTHER) {
2097         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2098                               E1000_IVAR_OTHER(core->mac[IVAR]));
2099     }
2100 }
2101 
2102 static inline void
2103 e1000e_fix_icr_asserted(E1000ECore *core)
2104 {
2105     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2106     if (core->mac[ICR]) {
2107         core->mac[ICR] |= E1000_ICR_ASSERTED;
2108     }
2109 
2110     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2111 }
2112 
2113 static void
2114 e1000e_send_msi(E1000ECore *core, bool msix)
2115 {
2116     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2117 
2118     core->msi_causes_pending &= causes;
2119     causes ^= core->msi_causes_pending;
2120     if (causes == 0) {
2121         return;
2122     }
2123     core->msi_causes_pending |= causes;
2124 
2125     if (msix) {
2126         e1000e_msix_notify(core, causes);
2127     } else {
2128         if (!e1000e_itr_should_postpone(core)) {
2129             trace_e1000e_irq_msi_notify(causes);
2130             msi_notify(core->owner, 0);
2131         }
2132     }
2133 }
2134 
2135 static void
2136 e1000e_update_interrupt_state(E1000ECore *core)
2137 {
2138     bool interrupts_pending;
2139     bool is_msix = msix_enabled(core->owner);
2140 
2141     /* Set ICR[OTHER] for MSI-X */
2142     if (is_msix) {
2143         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2144             core->mac[ICR] |= E1000_ICR_OTHER;
2145             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2146         }
2147     }
2148 
2149     e1000e_fix_icr_asserted(core);
2150 
2151     /*
2152      * Make sure ICR and ICS registers have the same value.
2153      * The spec says that the ICS register is write-only.  However in practice,
2154      * on real hardware ICS is readable, and for reads it has the same value as
2155      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2156      *
2157      * The VxWorks PRO/1000 driver uses this behaviour.
2158      */
2159     core->mac[ICS] = core->mac[ICR];
2160 
2161     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2162     if (!interrupts_pending) {
2163         core->msi_causes_pending = 0;
2164     }
2165 
2166     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2167                                         core->mac[ICR], core->mac[IMS]);
2168 
2169     if (is_msix || msi_enabled(core->owner)) {
2170         if (interrupts_pending) {
2171             e1000e_send_msi(core, is_msix);
2172         }
2173     } else {
2174         if (interrupts_pending) {
2175             if (!e1000e_itr_should_postpone(core)) {
2176                 e1000e_raise_legacy_irq(core);
2177             }
2178         } else {
2179             e1000e_lower_legacy_irq(core);
2180         }
2181     }
2182 }
2183 
2184 static void
2185 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2186 {
2187     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2188 
2189     val |= e1000e_intmgr_collect_delayed_causes(core);
2190     core->mac[ICR] |= val;
2191 
2192     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2193 
2194     e1000e_update_interrupt_state(core);
2195 }
2196 
2197 static inline void
2198 e1000e_autoneg_timer(void *opaque)
2199 {
2200     E1000ECore *core = opaque;
2201     if (!qemu_get_queue(core->owner_nic)->link_down) {
2202         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2203         e1000e_start_recv(core);
2204 
2205         e1000e_update_flowctl_status(core);
2206         /* signal link status change to the guest */
2207         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2208     }
2209 }
2210 
2211 static inline uint16_t
2212 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2213 {
2214     uint16_t index = (addr & 0x1ffff) >> 2;
2215     return index + (mac_reg_access[index] & 0xfffe);
2216 }
2217 
2218 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2219     [0] = {
2220         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2221         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2222         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2223         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2224         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2225         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2226         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2227         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2228         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2229         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2230         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2231         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2232         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2233 
2234         [PHY_COPPER_CTRL1]      = PHY_RW,
2235         [PHY_COPPER_STAT1]      = PHY_R,
2236         [PHY_COPPER_CTRL3]      = PHY_RW,
2237         [PHY_RX_ERR_CNTR]       = PHY_R,
2238         [PHY_OEM_BITS]          = PHY_RW,
2239         [PHY_BIAS_1]            = PHY_RW,
2240         [PHY_BIAS_2]            = PHY_RW,
2241         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2242         [PHY_COPPER_STAT2]      = PHY_R,
2243         [PHY_COPPER_CTRL2]      = PHY_RW
2244     },
2245     [2] = {
2246         [PHY_MAC_CTRL1]         = PHY_RW,
2247         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2248         [PHY_MAC_STAT]          = PHY_R,
2249         [PHY_MAC_CTRL2]         = PHY_RW
2250     },
2251     [3] = {
2252         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2253         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2254         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2255         [PHY_LED_45_CTRL]       = PHY_RW
2256     },
2257     [5] = {
2258         [PHY_1000T_SKEW]        = PHY_R,
2259         [PHY_1000T_SWAP]        = PHY_R
2260     },
2261     [6] = {
2262         [PHY_CRC_COUNTERS]      = PHY_R
2263     }
2264 };
2265 
2266 static bool
2267 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2268                          char cap, uint8_t *page)
2269 {
2270     *page =
2271         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2272                                                     : core->phy[0][PHY_PAGE];
2273 
2274     if (*page >= E1000E_PHY_PAGES) {
2275         return false;
2276     }
2277 
2278     return e1000e_phy_regcap[*page][addr] & cap;
2279 }
2280 
2281 static void
2282 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2283                      uint32_t addr, uint16_t data)
2284 {
2285     assert(page < E1000E_PHY_PAGES);
2286     assert(addr < E1000E_PHY_PAGE_SIZE);
2287 
2288     if (e1000e_phyreg_writeops[page][addr]) {
2289         e1000e_phyreg_writeops[page][addr](core, addr, data);
2290     } else {
2291         core->phy[page][addr] = data;
2292     }
2293 }
2294 
2295 static void
2296 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2297 {
2298     uint32_t data = val & E1000_MDIC_DATA_MASK;
2299     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2300     uint8_t page;
2301 
2302     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2303         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2304     } else if (val & E1000_MDIC_OP_READ) {
2305         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2306             trace_e1000e_core_mdic_read_unhandled(page, addr);
2307             val |= E1000_MDIC_ERROR;
2308         } else {
2309             val = (val ^ data) | core->phy[page][addr];
2310             trace_e1000e_core_mdic_read(page, addr, val);
2311         }
2312     } else if (val & E1000_MDIC_OP_WRITE) {
2313         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2314             trace_e1000e_core_mdic_write_unhandled(page, addr);
2315             val |= E1000_MDIC_ERROR;
2316         } else {
2317             trace_e1000e_core_mdic_write(page, addr, data);
2318             e1000e_phy_reg_write(core, page, addr, data);
2319         }
2320     }
2321     core->mac[MDIC] = val | E1000_MDIC_READY;
2322 
2323     if (val & E1000_MDIC_INT_EN) {
2324         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2325     }
2326 }
2327 
2328 static void
2329 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2330 {
2331     core->mac[index] = val & 0xffff;
2332     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2333     e1000e_start_recv(core);
2334 }
2335 
2336 static void
2337 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2338 {
2339     if ((val & E1000_STATUS_PHYRA) == 0) {
2340         core->mac[index] &= ~E1000_STATUS_PHYRA;
2341     }
2342 }
2343 
2344 static void
2345 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2346 {
2347     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2348                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2349 
2350     /* Zero self-clearing bits */
2351     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2352     core->mac[CTRL_EXT] = val;
2353 }
2354 
2355 static void
2356 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2357 {
2358     int i;
2359 
2360     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2361 
2362     if (!msix_enabled(core->owner)) {
2363         return;
2364     }
2365 
2366     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2367         if (core->mac[PBACLR] & BIT(i)) {
2368             msix_clr_pending(core->owner, i);
2369         }
2370     }
2371 }
2372 
2373 static void
2374 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2375 {
2376     core->mac[FCRTH] = val & 0xFFF8;
2377 }
2378 
2379 static void
2380 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2381 {
2382     core->mac[FCRTL] = val & 0x8000FFF8;
2383 }
2384 
2385 static inline void
2386 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2387 {
2388     core->mac[index] = val & 0xffff;
2389 }
2390 
2391 static void
2392 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2393 {
2394     core->mac[index] = val & 0xfff;
2395 }
2396 
2397 static void
2398 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2399 {
2400     core->mac[VET] = val & 0xffff;
2401     trace_e1000e_vlan_vet(core->mac[VET]);
2402 }
2403 
2404 static void
2405 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2406 {
2407     core->mac[index] = val & E1000_XDLEN_MASK;
2408 }
2409 
2410 static void
2411 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2412 {
2413     core->mac[index] = val & E1000_XDBAL_MASK;
2414 }
2415 
2416 static void
2417 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2418 {
2419     E1000E_TxRing txr;
2420     core->mac[index] = val;
2421 
2422     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2423         e1000e_tx_ring_init(core, &txr, 0);
2424         e1000e_start_xmit(core, &txr);
2425     }
2426 
2427     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2428         e1000e_tx_ring_init(core, &txr, 1);
2429         e1000e_start_xmit(core, &txr);
2430     }
2431 }
2432 
2433 static void
2434 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2435 {
2436     E1000E_TxRing txr;
2437     int qidx = e1000e_mq_queue_idx(TDT, index);
2438     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2439 
2440     core->mac[index] = val & 0xffff;
2441 
2442     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2443         e1000e_tx_ring_init(core, &txr, qidx);
2444         e1000e_start_xmit(core, &txr);
2445     }
2446 }
2447 
2448 static void
2449 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2450 {
2451     trace_e1000e_irq_write_ics(val);
2452     e1000e_set_interrupt_cause(core, val);
2453 }
2454 
2455 static void
2456 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2457 {
2458     uint32_t icr = 0;
2459     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2460         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2461         trace_e1000e_irq_icr_process_iame();
2462         e1000e_clear_ims_bits(core, core->mac[IAM]);
2463     }
2464 
2465     icr = core->mac[ICR] & ~val;
2466     /* Windows driver expects that the "receive overrun" bit and other
2467      * ones to be cleared when the "Other" bit (#24) is cleared.
2468      */
2469     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2470     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2471     core->mac[ICR] = icr;
2472     e1000e_update_interrupt_state(core);
2473 }
2474 
2475 static void
2476 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2477 {
2478     trace_e1000e_irq_ims_clear_set_imc(val);
2479     e1000e_clear_ims_bits(core, val);
2480     e1000e_update_interrupt_state(core);
2481 }
2482 
2483 static void
2484 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2485 {
2486     static const uint32_t ims_ext_mask =
2487         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2488         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2489         E1000_IMS_OTHER;
2490 
2491     static const uint32_t ims_valid_mask =
2492         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2493         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2494         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2495         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2496         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2497         E1000_IMS_OTHER;
2498 
2499     uint32_t valid_val = val & ims_valid_mask;
2500 
2501     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2502     core->mac[IMS] |= valid_val;
2503 
2504     if ((valid_val & ims_ext_mask) &&
2505         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2506         msix_enabled(core->owner)) {
2507         e1000e_msix_clear(core, valid_val);
2508     }
2509 
2510     if ((valid_val == ims_valid_mask) &&
2511         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2512         trace_e1000e_irq_fire_all_timers(val);
2513         e1000e_intrmgr_fire_all_timers(core);
2514     }
2515 
2516     e1000e_update_interrupt_state(core);
2517 }
2518 
2519 static void
2520 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2521 {
2522     e1000e_set_16bit(core, index, val);
2523 
2524     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2525         trace_e1000e_irq_rdtr_fpd_running();
2526         e1000e_intrmgr_fire_delayed_interrupts(core);
2527     } else {
2528         trace_e1000e_irq_rdtr_fpd_not_running();
2529     }
2530 }
2531 
2532 static void
2533 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2534 {
2535     e1000e_set_16bit(core, index, val);
2536 
2537     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2538         trace_e1000e_irq_tidv_fpd_running();
2539         e1000e_intrmgr_fire_delayed_interrupts(core);
2540     } else {
2541         trace_e1000e_irq_tidv_fpd_not_running();
2542     }
2543 }
2544 
2545 static uint32_t
2546 e1000e_mac_readreg(E1000ECore *core, int index)
2547 {
2548     return core->mac[index];
2549 }
2550 
2551 static uint32_t
2552 e1000e_mac_ics_read(E1000ECore *core, int index)
2553 {
2554     trace_e1000e_irq_read_ics(core->mac[ICS]);
2555     return core->mac[ICS];
2556 }
2557 
2558 static uint32_t
2559 e1000e_mac_ims_read(E1000ECore *core, int index)
2560 {
2561     trace_e1000e_irq_read_ims(core->mac[IMS]);
2562     return core->mac[IMS];
2563 }
2564 
2565 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2566     static uint32_t                                         \
2567     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2568     {                                                       \
2569         return core->mac[index] & (BIT(num) - 1);           \
2570     }                                                       \
2571 
2572 #define E1000E_LOW_BITS_READ(num)                           \
2573     e1000e_mac_low##num##_read
2574 
2575 E1000E_LOW_BITS_READ_FUNC(4);
2576 E1000E_LOW_BITS_READ_FUNC(6);
2577 E1000E_LOW_BITS_READ_FUNC(11);
2578 E1000E_LOW_BITS_READ_FUNC(13);
2579 E1000E_LOW_BITS_READ_FUNC(16);
2580 
2581 static uint32_t
2582 e1000e_mac_swsm_read(E1000ECore *core, int index)
2583 {
2584     uint32_t val = core->mac[SWSM];
2585     core->mac[SWSM] = val | 1;
2586     return val;
2587 }
2588 
2589 static uint32_t
2590 e1000e_mac_itr_read(E1000ECore *core, int index)
2591 {
2592     return core->itr_guest_value;
2593 }
2594 
2595 static uint32_t
2596 e1000e_mac_eitr_read(E1000ECore *core, int index)
2597 {
2598     return core->eitr_guest_value[index - EITR];
2599 }
2600 
2601 static uint32_t
2602 e1000e_mac_icr_read(E1000ECore *core, int index)
2603 {
2604     uint32_t ret = core->mac[ICR];
2605     trace_e1000e_irq_icr_read_entry(ret);
2606 
2607     if (core->mac[IMS] == 0) {
2608         trace_e1000e_irq_icr_clear_zero_ims();
2609         core->mac[ICR] = 0;
2610     }
2611 
2612     if (!msix_enabled(core->owner)) {
2613         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2614         core->mac[ICR] = 0;
2615     }
2616 
2617     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2618         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2619         trace_e1000e_irq_icr_clear_iame();
2620         core->mac[ICR] = 0;
2621         trace_e1000e_irq_icr_process_iame();
2622         e1000e_clear_ims_bits(core, core->mac[IAM]);
2623     }
2624 
2625     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2626     e1000e_update_interrupt_state(core);
2627     return ret;
2628 }
2629 
2630 static uint32_t
2631 e1000e_mac_read_clr4(E1000ECore *core, int index)
2632 {
2633     uint32_t ret = core->mac[index];
2634 
2635     core->mac[index] = 0;
2636     return ret;
2637 }
2638 
2639 static uint32_t
2640 e1000e_mac_read_clr8(E1000ECore *core, int index)
2641 {
2642     uint32_t ret = core->mac[index];
2643 
2644     core->mac[index] = 0;
2645     core->mac[index - 1] = 0;
2646     return ret;
2647 }
2648 
2649 static uint32_t
2650 e1000e_get_ctrl(E1000ECore *core, int index)
2651 {
2652     uint32_t val = core->mac[CTRL];
2653 
2654     trace_e1000e_link_read_params(
2655         !!(val & E1000_CTRL_ASDE),
2656         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2657         !!(val & E1000_CTRL_FRCSPD),
2658         !!(val & E1000_CTRL_FRCDPX),
2659         !!(val & E1000_CTRL_RFCE),
2660         !!(val & E1000_CTRL_TFCE));
2661 
2662     return val;
2663 }
2664 
2665 static uint32_t
2666 e1000e_get_status(E1000ECore *core, int index)
2667 {
2668     uint32_t res = core->mac[STATUS];
2669 
2670     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2671         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2672     }
2673 
2674     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2675         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2676     } else {
2677         res |= E1000_STATUS_FD;
2678     }
2679 
2680     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2681         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2682         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2683         case E1000_CTRL_SPD_10:
2684             res |= E1000_STATUS_SPEED_10;
2685             break;
2686         case E1000_CTRL_SPD_100:
2687             res |= E1000_STATUS_SPEED_100;
2688             break;
2689         case E1000_CTRL_SPD_1000:
2690         default:
2691             res |= E1000_STATUS_SPEED_1000;
2692             break;
2693         }
2694     } else {
2695         res |= E1000_STATUS_SPEED_1000;
2696     }
2697 
2698     trace_e1000e_link_status(
2699         !!(res & E1000_STATUS_LU),
2700         !!(res & E1000_STATUS_FD),
2701         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2702         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2703 
2704     return res;
2705 }
2706 
2707 static uint32_t
2708 e1000e_get_tarc(E1000ECore *core, int index)
2709 {
2710     return core->mac[index] & ((BIT(11) - 1) |
2711                                 BIT(27)      |
2712                                 BIT(28)      |
2713                                 BIT(29)      |
2714                                 BIT(30));
2715 }
2716 
2717 static void
2718 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2719 {
2720     core->mac[index] = val;
2721 }
2722 
2723 static void
2724 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2725 {
2726     uint32_t macaddr[2];
2727 
2728     core->mac[index] = val;
2729 
2730     macaddr[0] = cpu_to_le32(core->mac[RA]);
2731     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2732     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2733         (uint8_t *) macaddr);
2734 
2735     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2736 }
2737 
2738 static void
2739 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2740 {
2741     static const uint32_t ro_bits = E1000_EECD_PRES          |
2742                                     E1000_EECD_AUTO_RD       |
2743                                     E1000_EECD_SIZE_EX_MASK;
2744 
2745     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2746 }
2747 
2748 static void
2749 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2750 {
2751     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2752     uint32_t flags = 0;
2753     uint32_t data = 0;
2754 
2755     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2756         data = core->eeprom[addr];
2757         flags = E1000_EERW_DONE;
2758     }
2759 
2760     core->mac[EERD] = flags                           |
2761                       (addr << E1000_EERW_ADDR_SHIFT) |
2762                       (data << E1000_EERW_DATA_SHIFT);
2763 }
2764 
2765 static void
2766 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2767 {
2768     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2769     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2770     uint32_t flags = 0;
2771 
2772     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2773         core->eeprom[addr] = data;
2774         flags = E1000_EERW_DONE;
2775     }
2776 
2777     core->mac[EERD] = flags                           |
2778                       (addr << E1000_EERW_ADDR_SHIFT) |
2779                       (data << E1000_EERW_DATA_SHIFT);
2780 }
2781 
2782 static void
2783 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2784 {
2785     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2786 }
2787 
2788 static void
2789 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2790 {
2791     uint32_t interval = val & 0xffff;
2792 
2793     trace_e1000e_irq_itr_set(val);
2794 
2795     core->itr_guest_value = interval;
2796     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2797 }
2798 
2799 static void
2800 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2801 {
2802     uint32_t interval = val & 0xffff;
2803     uint32_t eitr_num = index - EITR;
2804 
2805     trace_e1000e_irq_eitr_set(eitr_num, val);
2806 
2807     core->eitr_guest_value[eitr_num] = interval;
2808     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2809 }
2810 
2811 static void
2812 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2813 {
2814     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2815 
2816         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2817             qemu_log_mask(LOG_GUEST_ERROR,
2818                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2819             return;
2820         }
2821 
2822         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2823             qemu_log_mask(LOG_GUEST_ERROR,
2824                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2825             return;
2826         }
2827     }
2828 
2829     core->mac[PSRCTL] = val;
2830 }
2831 
2832 static void
2833 e1000e_update_rx_offloads(E1000ECore *core)
2834 {
2835     int cso_state = e1000e_rx_l4_cso_enabled(core);
2836 
2837     trace_e1000e_rx_set_cso(cso_state);
2838 
2839     if (core->has_vnet) {
2840         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2841                          cso_state, 0, 0, 0, 0);
2842     }
2843 }
2844 
2845 static void
2846 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2847 {
2848     core->mac[RXCSUM] = val;
2849     e1000e_update_rx_offloads(core);
2850 }
2851 
2852 static void
2853 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2854 {
2855     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2856     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2857 }
2858 
2859 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2860 typedef uint32_t (*readops)(E1000ECore *, int);
2861 static const readops e1000e_macreg_readops[] = {
2862     e1000e_getreg(PBA),
2863     e1000e_getreg(WUFC),
2864     e1000e_getreg(MANC),
2865     e1000e_getreg(TOTL),
2866     e1000e_getreg(RDT0),
2867     e1000e_getreg(RDBAH0),
2868     e1000e_getreg(TDBAL1),
2869     e1000e_getreg(RDLEN0),
2870     e1000e_getreg(RDH1),
2871     e1000e_getreg(LATECOL),
2872     e1000e_getreg(SEQEC),
2873     e1000e_getreg(XONTXC),
2874     e1000e_getreg(WUS),
2875     e1000e_getreg(GORCL),
2876     e1000e_getreg(MGTPRC),
2877     e1000e_getreg(EERD),
2878     e1000e_getreg(EIAC),
2879     e1000e_getreg(PSRCTL),
2880     e1000e_getreg(MANC2H),
2881     e1000e_getreg(RXCSUM),
2882     e1000e_getreg(GSCL_3),
2883     e1000e_getreg(GSCN_2),
2884     e1000e_getreg(RSRPD),
2885     e1000e_getreg(RDBAL1),
2886     e1000e_getreg(FCAH),
2887     e1000e_getreg(FCRTH),
2888     e1000e_getreg(FLOP),
2889     e1000e_getreg(FLASHT),
2890     e1000e_getreg(RXSTMPH),
2891     e1000e_getreg(TXSTMPL),
2892     e1000e_getreg(TIMADJL),
2893     e1000e_getreg(TXDCTL),
2894     e1000e_getreg(RDH0),
2895     e1000e_getreg(TDT1),
2896     e1000e_getreg(TNCRS),
2897     e1000e_getreg(RJC),
2898     e1000e_getreg(IAM),
2899     e1000e_getreg(GSCL_2),
2900     e1000e_getreg(RDBAH1),
2901     e1000e_getreg(FLSWDATA),
2902     e1000e_getreg(RXSATRH),
2903     e1000e_getreg(TIPG),
2904     e1000e_getreg(FLMNGCTL),
2905     e1000e_getreg(FLMNGCNT),
2906     e1000e_getreg(TSYNCTXCTL),
2907     e1000e_getreg(EXTCNF_SIZE),
2908     e1000e_getreg(EXTCNF_CTRL),
2909     e1000e_getreg(EEMNGDATA),
2910     e1000e_getreg(CTRL_EXT),
2911     e1000e_getreg(SYSTIMH),
2912     e1000e_getreg(EEMNGCTL),
2913     e1000e_getreg(FLMNGDATA),
2914     e1000e_getreg(TSYNCRXCTL),
2915     e1000e_getreg(TDH),
2916     e1000e_getreg(LEDCTL),
2917     e1000e_getreg(TCTL),
2918     e1000e_getreg(TDBAL),
2919     e1000e_getreg(TDLEN),
2920     e1000e_getreg(TDH1),
2921     e1000e_getreg(RADV),
2922     e1000e_getreg(ECOL),
2923     e1000e_getreg(DC),
2924     e1000e_getreg(RLEC),
2925     e1000e_getreg(XOFFTXC),
2926     e1000e_getreg(RFC),
2927     e1000e_getreg(RNBC),
2928     e1000e_getreg(MGTPTC),
2929     e1000e_getreg(TIMINCA),
2930     e1000e_getreg(RXCFGL),
2931     e1000e_getreg(MFUTP01),
2932     e1000e_getreg(FACTPS),
2933     e1000e_getreg(GSCL_1),
2934     e1000e_getreg(GSCN_0),
2935     e1000e_getreg(GCR2),
2936     e1000e_getreg(RDT1),
2937     e1000e_getreg(PBACLR),
2938     e1000e_getreg(FCTTV),
2939     e1000e_getreg(EEWR),
2940     e1000e_getreg(FLSWCTL),
2941     e1000e_getreg(RXDCTL1),
2942     e1000e_getreg(RXSATRL),
2943     e1000e_getreg(SYSTIML),
2944     e1000e_getreg(RXUDP),
2945     e1000e_getreg(TORL),
2946     e1000e_getreg(TDLEN1),
2947     e1000e_getreg(MCC),
2948     e1000e_getreg(WUC),
2949     e1000e_getreg(EECD),
2950     e1000e_getreg(MFUTP23),
2951     e1000e_getreg(RAID),
2952     e1000e_getreg(FCRTV),
2953     e1000e_getreg(TXDCTL1),
2954     e1000e_getreg(RCTL),
2955     e1000e_getreg(TDT),
2956     e1000e_getreg(MDIC),
2957     e1000e_getreg(FCRUC),
2958     e1000e_getreg(VET),
2959     e1000e_getreg(RDBAL0),
2960     e1000e_getreg(TDBAH1),
2961     e1000e_getreg(RDTR),
2962     e1000e_getreg(SCC),
2963     e1000e_getreg(COLC),
2964     e1000e_getreg(CEXTERR),
2965     e1000e_getreg(XOFFRXC),
2966     e1000e_getreg(IPAV),
2967     e1000e_getreg(GOTCL),
2968     e1000e_getreg(MGTPDC),
2969     e1000e_getreg(GCR),
2970     e1000e_getreg(IVAR),
2971     e1000e_getreg(POEMB),
2972     e1000e_getreg(MFVAL),
2973     e1000e_getreg(FUNCTAG),
2974     e1000e_getreg(GSCL_4),
2975     e1000e_getreg(GSCN_3),
2976     e1000e_getreg(MRQC),
2977     e1000e_getreg(RDLEN1),
2978     e1000e_getreg(FCT),
2979     e1000e_getreg(FLA),
2980     e1000e_getreg(FLOL),
2981     e1000e_getreg(RXDCTL),
2982     e1000e_getreg(RXSTMPL),
2983     e1000e_getreg(TXSTMPH),
2984     e1000e_getreg(TIMADJH),
2985     e1000e_getreg(FCRTL),
2986     e1000e_getreg(TDBAH),
2987     e1000e_getreg(TADV),
2988     e1000e_getreg(XONRXC),
2989     e1000e_getreg(TSCTFC),
2990     e1000e_getreg(RFCTL),
2991     e1000e_getreg(GSCN_1),
2992     e1000e_getreg(FCAL),
2993     e1000e_getreg(FLSWCNT),
2994 
2995     [TOTH]    = e1000e_mac_read_clr8,
2996     [GOTCH]   = e1000e_mac_read_clr8,
2997     [PRC64]   = e1000e_mac_read_clr4,
2998     [PRC255]  = e1000e_mac_read_clr4,
2999     [PRC1023] = e1000e_mac_read_clr4,
3000     [PTC64]   = e1000e_mac_read_clr4,
3001     [PTC255]  = e1000e_mac_read_clr4,
3002     [PTC1023] = e1000e_mac_read_clr4,
3003     [GPRC]    = e1000e_mac_read_clr4,
3004     [TPT]     = e1000e_mac_read_clr4,
3005     [RUC]     = e1000e_mac_read_clr4,
3006     [BPRC]    = e1000e_mac_read_clr4,
3007     [MPTC]    = e1000e_mac_read_clr4,
3008     [IAC]     = e1000e_mac_read_clr4,
3009     [ICR]     = e1000e_mac_icr_read,
3010     [RDFH]    = E1000E_LOW_BITS_READ(13),
3011     [RDFHS]   = E1000E_LOW_BITS_READ(13),
3012     [RDFPC]   = E1000E_LOW_BITS_READ(13),
3013     [TDFH]    = E1000E_LOW_BITS_READ(13),
3014     [TDFHS]   = E1000E_LOW_BITS_READ(13),
3015     [STATUS]  = e1000e_get_status,
3016     [TARC0]   = e1000e_get_tarc,
3017     [PBS]     = E1000E_LOW_BITS_READ(6),
3018     [ICS]     = e1000e_mac_ics_read,
3019     [AIT]     = E1000E_LOW_BITS_READ(16),
3020     [TORH]    = e1000e_mac_read_clr8,
3021     [GORCH]   = e1000e_mac_read_clr8,
3022     [PRC127]  = e1000e_mac_read_clr4,
3023     [PRC511]  = e1000e_mac_read_clr4,
3024     [PRC1522] = e1000e_mac_read_clr4,
3025     [PTC127]  = e1000e_mac_read_clr4,
3026     [PTC511]  = e1000e_mac_read_clr4,
3027     [PTC1522] = e1000e_mac_read_clr4,
3028     [GPTC]    = e1000e_mac_read_clr4,
3029     [TPR]     = e1000e_mac_read_clr4,
3030     [ROC]     = e1000e_mac_read_clr4,
3031     [MPRC]    = e1000e_mac_read_clr4,
3032     [BPTC]    = e1000e_mac_read_clr4,
3033     [TSCTC]   = e1000e_mac_read_clr4,
3034     [ITR]     = e1000e_mac_itr_read,
3035     [RDFT]    = E1000E_LOW_BITS_READ(13),
3036     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3037     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3038     [TDFT]    = E1000E_LOW_BITS_READ(13),
3039     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3040     [CTRL]    = e1000e_get_ctrl,
3041     [TARC1]   = e1000e_get_tarc,
3042     [SWSM]    = e1000e_mac_swsm_read,
3043     [IMS]     = e1000e_mac_ims_read,
3044 
3045     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3046     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3047     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3048     [RA ... RA + 31]       = e1000e_mac_readreg,
3049     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3050     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3051     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3052     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3053     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3054     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3055     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3056     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3057     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3058     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3059     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3060     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3061     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3062 };
3063 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3064 
3065 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3066 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3067 static const writeops e1000e_macreg_writeops[] = {
3068     e1000e_putreg(PBA),
3069     e1000e_putreg(SWSM),
3070     e1000e_putreg(WUFC),
3071     e1000e_putreg(RDBAH1),
3072     e1000e_putreg(TDBAH),
3073     e1000e_putreg(TXDCTL),
3074     e1000e_putreg(RDBAH0),
3075     e1000e_putreg(LEDCTL),
3076     e1000e_putreg(FCAL),
3077     e1000e_putreg(FCRUC),
3078     e1000e_putreg(AIT),
3079     e1000e_putreg(TDFH),
3080     e1000e_putreg(TDFT),
3081     e1000e_putreg(TDFHS),
3082     e1000e_putreg(TDFTS),
3083     e1000e_putreg(TDFPC),
3084     e1000e_putreg(WUC),
3085     e1000e_putreg(WUS),
3086     e1000e_putreg(RDFH),
3087     e1000e_putreg(RDFT),
3088     e1000e_putreg(RDFHS),
3089     e1000e_putreg(RDFTS),
3090     e1000e_putreg(RDFPC),
3091     e1000e_putreg(IPAV),
3092     e1000e_putreg(TDBAH1),
3093     e1000e_putreg(TIMINCA),
3094     e1000e_putreg(IAM),
3095     e1000e_putreg(EIAC),
3096     e1000e_putreg(IVAR),
3097     e1000e_putreg(TARC0),
3098     e1000e_putreg(TARC1),
3099     e1000e_putreg(FLSWDATA),
3100     e1000e_putreg(POEMB),
3101     e1000e_putreg(PBS),
3102     e1000e_putreg(MFUTP01),
3103     e1000e_putreg(MFUTP23),
3104     e1000e_putreg(MANC),
3105     e1000e_putreg(MANC2H),
3106     e1000e_putreg(MFVAL),
3107     e1000e_putreg(EXTCNF_CTRL),
3108     e1000e_putreg(FACTPS),
3109     e1000e_putreg(FUNCTAG),
3110     e1000e_putreg(GSCL_1),
3111     e1000e_putreg(GSCL_2),
3112     e1000e_putreg(GSCL_3),
3113     e1000e_putreg(GSCL_4),
3114     e1000e_putreg(GSCN_0),
3115     e1000e_putreg(GSCN_1),
3116     e1000e_putreg(GSCN_2),
3117     e1000e_putreg(GSCN_3),
3118     e1000e_putreg(GCR2),
3119     e1000e_putreg(MRQC),
3120     e1000e_putreg(FLOP),
3121     e1000e_putreg(FLOL),
3122     e1000e_putreg(FLSWCTL),
3123     e1000e_putreg(FLSWCNT),
3124     e1000e_putreg(FLA),
3125     e1000e_putreg(RXDCTL1),
3126     e1000e_putreg(TXDCTL1),
3127     e1000e_putreg(TIPG),
3128     e1000e_putreg(RXSTMPH),
3129     e1000e_putreg(RXSTMPL),
3130     e1000e_putreg(RXSATRL),
3131     e1000e_putreg(RXSATRH),
3132     e1000e_putreg(TXSTMPL),
3133     e1000e_putreg(TXSTMPH),
3134     e1000e_putreg(SYSTIML),
3135     e1000e_putreg(SYSTIMH),
3136     e1000e_putreg(TIMADJL),
3137     e1000e_putreg(TIMADJH),
3138     e1000e_putreg(RXUDP),
3139     e1000e_putreg(RXCFGL),
3140     e1000e_putreg(TSYNCRXCTL),
3141     e1000e_putreg(TSYNCTXCTL),
3142     e1000e_putreg(EXTCNF_SIZE),
3143     e1000e_putreg(EEMNGCTL),
3144     e1000e_putreg(RA),
3145 
3146     [TDH1]     = e1000e_set_16bit,
3147     [TDT1]     = e1000e_set_tdt,
3148     [TCTL]     = e1000e_set_tctl,
3149     [TDT]      = e1000e_set_tdt,
3150     [MDIC]     = e1000e_set_mdic,
3151     [ICS]      = e1000e_set_ics,
3152     [TDH]      = e1000e_set_16bit,
3153     [RDH0]     = e1000e_set_16bit,
3154     [RDT0]     = e1000e_set_rdt,
3155     [IMC]      = e1000e_set_imc,
3156     [IMS]      = e1000e_set_ims,
3157     [ICR]      = e1000e_set_icr,
3158     [EECD]     = e1000e_set_eecd,
3159     [RCTL]     = e1000e_set_rx_control,
3160     [CTRL]     = e1000e_set_ctrl,
3161     [RDTR]     = e1000e_set_rdtr,
3162     [RADV]     = e1000e_set_16bit,
3163     [TADV]     = e1000e_set_16bit,
3164     [ITR]      = e1000e_set_itr,
3165     [EERD]     = e1000e_set_eerd,
3166     [GCR]      = e1000e_set_gcr,
3167     [PSRCTL]   = e1000e_set_psrctl,
3168     [RXCSUM]   = e1000e_set_rxcsum,
3169     [RAID]     = e1000e_set_16bit,
3170     [RSRPD]    = e1000e_set_12bit,
3171     [TIDV]     = e1000e_set_tidv,
3172     [TDLEN1]   = e1000e_set_dlen,
3173     [TDLEN]    = e1000e_set_dlen,
3174     [RDLEN0]   = e1000e_set_dlen,
3175     [RDLEN1]   = e1000e_set_dlen,
3176     [TDBAL]    = e1000e_set_dbal,
3177     [TDBAL1]   = e1000e_set_dbal,
3178     [RDBAL0]   = e1000e_set_dbal,
3179     [RDBAL1]   = e1000e_set_dbal,
3180     [RDH1]     = e1000e_set_16bit,
3181     [RDT1]     = e1000e_set_rdt,
3182     [STATUS]   = e1000e_set_status,
3183     [PBACLR]   = e1000e_set_pbaclr,
3184     [CTRL_EXT] = e1000e_set_ctrlext,
3185     [FCAH]     = e1000e_set_16bit,
3186     [FCT]      = e1000e_set_16bit,
3187     [FCTTV]    = e1000e_set_16bit,
3188     [FCRTV]    = e1000e_set_16bit,
3189     [FCRTH]    = e1000e_set_fcrth,
3190     [FCRTL]    = e1000e_set_fcrtl,
3191     [VET]      = e1000e_set_vet,
3192     [RXDCTL]   = e1000e_set_rxdctl,
3193     [FLASHT]   = e1000e_set_16bit,
3194     [EEWR]     = e1000e_set_eewr,
3195     [CTRL_DUP] = e1000e_set_ctrl,
3196     [RFCTL]    = e1000e_set_rfctl,
3197     [RA + 1]   = e1000e_mac_setmacaddr,
3198 
3199     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3200     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3201     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3202     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3203     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3204     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3205     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3206     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3207     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3208     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3209     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3210     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3211     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3212     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3213     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3214     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3215 };
3216 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3217 
3218 enum { MAC_ACCESS_PARTIAL = 1 };
3219 
3220 /* The array below combines alias offsets of the index values for the
3221  * MAC registers that have aliases, with the indication of not fully
3222  * implemented registers (lowest bit). This combination is possible
3223  * because all of the offsets are even. */
3224 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3225     /* Alias index offsets */
3226     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3227     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3228     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3229     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3230     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3231     [RA_A ... RA_A + 31]      = 0x14f0,
3232     [VFTA_A ... VFTA_A + 127] = 0x1400,
3233     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3234     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3235     /* Access options */
3236     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3237     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3238     [RDFPC] = MAC_ACCESS_PARTIAL,
3239     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3240     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3241     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3242     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3243     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3244     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3245     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3246     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3247     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3248     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3249 };
3250 
3251 void
3252 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3253 {
3254     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3255 
3256     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3257         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3258             trace_e1000e_wrn_regs_write_trivial(index << 2);
3259         }
3260         trace_e1000e_core_write(index << 2, size, val);
3261         e1000e_macreg_writeops[index](core, index, val);
3262     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3263         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3264     } else {
3265         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3266     }
3267 }
3268 
3269 uint64_t
3270 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3271 {
3272     uint64_t val;
3273     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3274 
3275     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3276         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3277             trace_e1000e_wrn_regs_read_trivial(index << 2);
3278         }
3279         val = e1000e_macreg_readops[index](core, index);
3280         trace_e1000e_core_read(index << 2, size, val);
3281         return val;
3282     } else {
3283         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3284     }
3285     return 0;
3286 }
3287 
3288 static inline void
3289 e1000e_autoneg_pause(E1000ECore *core)
3290 {
3291     timer_del(core->autoneg_timer);
3292 }
3293 
3294 static void
3295 e1000e_autoneg_resume(E1000ECore *core)
3296 {
3297     if (e1000e_have_autoneg(core) &&
3298         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3299         qemu_get_queue(core->owner_nic)->link_down = false;
3300         timer_mod(core->autoneg_timer,
3301                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3302     }
3303 }
3304 
3305 static void
3306 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3307 {
3308     E1000ECore *core = opaque;
3309 
3310     if (running) {
3311         trace_e1000e_vm_state_running();
3312         e1000e_intrmgr_resume(core);
3313         e1000e_autoneg_resume(core);
3314     } else {
3315         trace_e1000e_vm_state_stopped();
3316         e1000e_autoneg_pause(core);
3317         e1000e_intrmgr_pause(core);
3318     }
3319 }
3320 
3321 void
3322 e1000e_core_pci_realize(E1000ECore     *core,
3323                         const uint16_t *eeprom_templ,
3324                         uint32_t        eeprom_size,
3325                         const uint8_t  *macaddr)
3326 {
3327     int i;
3328 
3329     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3330                                        e1000e_autoneg_timer, core);
3331     e1000e_intrmgr_pci_realize(core);
3332 
3333     core->vmstate =
3334         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3335 
3336     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3337         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3338                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3339     }
3340 
3341     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3342 
3343     e1000x_core_prepare_eeprom(core->eeprom,
3344                                eeprom_templ,
3345                                eeprom_size,
3346                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3347                                macaddr);
3348     e1000e_update_rx_offloads(core);
3349 }
3350 
3351 void
3352 e1000e_core_pci_uninit(E1000ECore *core)
3353 {
3354     int i;
3355 
3356     timer_free(core->autoneg_timer);
3357 
3358     e1000e_intrmgr_pci_unint(core);
3359 
3360     qemu_del_vm_change_state_handler(core->vmstate);
3361 
3362     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3363         net_tx_pkt_reset(core->tx[i].tx_pkt);
3364         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3365     }
3366 
3367     net_rx_pkt_uninit(core->rx_pkt);
3368 }
3369 
3370 static const uint16_t
3371 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3372     [0] = {
3373         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3374                        MII_CR_FULL_DUPLEX       |
3375                        MII_CR_AUTO_NEG_EN,
3376 
3377         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3378                        MII_SR_LINK_STATUS       |
3379                        MII_SR_AUTONEG_CAPS      |
3380                        MII_SR_PREAMBLE_SUPPRESS |
3381                        MII_SR_EXTENDED_STATUS   |
3382                        MII_SR_10T_HD_CAPS       |
3383                        MII_SR_10T_FD_CAPS       |
3384                        MII_SR_100X_HD_CAPS      |
3385                        MII_SR_100X_FD_CAPS,
3386 
3387         [PHY_ID1]               = 0x141,
3388         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3389         [PHY_AUTONEG_ADV]       = 0xde1,
3390         [PHY_LP_ABILITY]        = 0x7e0,
3391         [PHY_AUTONEG_EXP]       = BIT(2),
3392         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3393         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3394         [PHY_1000T_STATUS]      = 0x3c00,
3395         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3396 
3397         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3398                                   BIT(12) | BIT(13),
3399         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3400     },
3401     [2] = {
3402         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3403         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3404     },
3405     [3] = {
3406         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3407     }
3408 };
3409 
3410 static const uint32_t e1000e_mac_reg_init[] = {
3411     [PBA]           =     0x00140014,
3412     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3413     [EXTCNF_CTRL]   = BIT(3),
3414     [EEMNGCTL]      = BIT(31),
3415     [FLASHT]        = 0x2,
3416     [FLSWCTL]       = BIT(30) | BIT(31),
3417     [FLOL]          = BIT(0),
3418     [RXDCTL]        = BIT(16),
3419     [RXDCTL1]       = BIT(16),
3420     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3421     [RXCFGL]        = 0x88F7,
3422     [RXUDP]         = 0x319,
3423     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3424                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3425                       E1000_CTRL_ADVD3WUC,
3426     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3427     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3428                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3429                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3430     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3431     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3432     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3433     [EERD]          = E1000_EERW_DONE,
3434     [EEWR]          = E1000_EERW_DONE,
3435     [GCR]           = E1000_L0S_ADJUST |
3436                       E1000_L1_ENTRY_LATENCY_MSB |
3437                       E1000_L1_ENTRY_LATENCY_LSB,
3438     [TDFH]          = 0x600,
3439     [TDFT]          = 0x600,
3440     [TDFHS]         = 0x600,
3441     [TDFTS]         = 0x600,
3442     [POEMB]         = 0x30D,
3443     [PBS]           = 0x028,
3444     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3445     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3446     [SWSM]          = 1,
3447     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3448     [ITR]           = E1000E_MIN_XITR,
3449     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3450 };
3451 
3452 void
3453 e1000e_core_reset(E1000ECore *core)
3454 {
3455     int i;
3456 
3457     timer_del(core->autoneg_timer);
3458 
3459     e1000e_intrmgr_reset(core);
3460 
3461     memset(core->phy, 0, sizeof core->phy);
3462     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3463     memset(core->mac, 0, sizeof core->mac);
3464     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3465 
3466     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3467 
3468     if (qemu_get_queue(core->owner_nic)->link_down) {
3469         e1000e_link_down(core);
3470     }
3471 
3472     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3473 
3474     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3475         net_tx_pkt_reset(core->tx[i].tx_pkt);
3476         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3477         core->tx[i].skip_cp = false;
3478     }
3479 }
3480 
3481 void e1000e_core_pre_save(E1000ECore *core)
3482 {
3483     int i;
3484     NetClientState *nc = qemu_get_queue(core->owner_nic);
3485 
3486     /*
3487     * If link is down and auto-negotiation is supported and ongoing,
3488     * complete auto-negotiation immediately. This allows us to look
3489     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3490     */
3491     if (nc->link_down && e1000e_have_autoneg(core)) {
3492         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3493         e1000e_update_flowctl_status(core);
3494     }
3495 
3496     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3497         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3498             core->tx[i].skip_cp = true;
3499         }
3500     }
3501 }
3502 
3503 int
3504 e1000e_core_post_load(E1000ECore *core)
3505 {
3506     NetClientState *nc = qemu_get_queue(core->owner_nic);
3507 
3508     /* nc.link_down can't be migrated, so infer link_down according
3509      * to link status bit in core.mac[STATUS].
3510      */
3511     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3512 
3513     return 0;
3514 }
3515