xref: /qemu/hw/net/e1000x_common.c (revision 651ccdfa)
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/net/mii.h"
28 #include "hw/pci/pci_device.h"
29 #include "net/eth.h"
30 #include "net/net.h"
31 
32 #include "e1000_common.h"
33 #include "e1000x_common.h"
34 
35 #include "trace.h"
36 
37 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
38 {
39     bool link_up = mac[STATUS] & E1000_STATUS_LU;
40     bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
41     bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
42 
43     if (!link_up || !rx_enabled || !pci_master) {
44         trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
45         return false;
46     }
47 
48     return true;
49 }
50 
51 bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
52 {
53     uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
54     bool res = (eth_proto == vet);
55 
56     trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
57 
58     return res;
59 }
60 
61 bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
62 {
63     static const int mta_shift[] = { 4, 3, 2, 0 };
64     uint32_t f, ra[2], *rp, rctl = mac[RCTL];
65 
66     for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
67         if (!(rp[1] & E1000_RAH_AV)) {
68             continue;
69         }
70         ra[0] = cpu_to_le32(rp[0]);
71         ra[1] = cpu_to_le32(rp[1]);
72         if (!memcmp(buf, (uint8_t *)ra, ETH_ALEN)) {
73             trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
74                                             MAC_ARG(buf));
75             return true;
76         }
77     }
78     trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
79 
80     f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
81     f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
82     if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
83         e1000x_inc_reg_if_not_full(mac, MPRC);
84         return true;
85     }
86 
87     trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
88                                          (rctl >> E1000_RCTL_MO_SHIFT) & 3,
89                                          f >> 5,
90                                          mac[MTA + (f >> 5)]);
91 
92     return false;
93 }
94 
95 bool e1000x_hw_rx_enabled(uint32_t *mac)
96 {
97     if (!(mac[STATUS] & E1000_STATUS_LU)) {
98         trace_e1000x_rx_link_down(mac[STATUS]);
99         return false;
100     }
101 
102     if (!(mac[RCTL] & E1000_RCTL_EN)) {
103         trace_e1000x_rx_disabled(mac[RCTL]);
104         return false;
105     }
106 
107     return true;
108 }
109 
110 bool e1000x_is_oversized(uint32_t *mac, size_t size)
111 {
112     /* this is the size past which hardware will
113        drop packets when setting LPE=0 */
114     static const int maximum_ethernet_vlan_size = 1522;
115     /* this is the size past which hardware will
116        drop packets when setting LPE=1 */
117     static const int maximum_ethernet_lpe_size = 16 * KiB;
118 
119     if ((size > maximum_ethernet_lpe_size ||
120         (size > maximum_ethernet_vlan_size
121             && !(mac[RCTL] & E1000_RCTL_LPE)))
122         && !(mac[RCTL] & E1000_RCTL_SBP)) {
123         e1000x_inc_reg_if_not_full(mac, ROC);
124         trace_e1000x_rx_oversized(size);
125         return true;
126     }
127 
128     return false;
129 }
130 
131 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
132 {
133     e1000x_update_regs_on_link_down(mac, phy);
134     trace_e1000x_link_negotiation_start();
135     timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
136 }
137 
138 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
139                            uint8_t *mac_addr)
140 {
141     int i;
142 
143     mac_regs[RA] = 0;
144     mac_regs[RA + 1] = E1000_RAH_AV;
145     for (i = 0; i < 4; i++) {
146         mac_regs[RA] |= mac_addr[i] << (8 * i);
147         mac_regs[RA + 1] |=
148             (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
149     }
150 
151     qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
152     trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
153 }
154 
155 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
156 {
157     e1000x_update_regs_on_link_up(mac, phy);
158     phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
159     phy[MII_BMSR] |= MII_BMSR_AN_COMP;
160     trace_e1000x_link_negotiation_done();
161 }
162 
163 void
164 e1000x_core_prepare_eeprom(uint16_t       *eeprom,
165                            const uint16_t *templ,
166                            uint32_t        templ_size,
167                            uint16_t        dev_id,
168                            const uint8_t  *macaddr)
169 {
170     uint16_t checksum = 0;
171     int i;
172 
173     memmove(eeprom, templ, templ_size);
174 
175     for (i = 0; i < 3; i++) {
176         eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
177     }
178 
179     eeprom[11] = eeprom[13] = dev_id;
180 
181     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
182         checksum += eeprom[i];
183     }
184 
185     checksum = (uint16_t) EEPROM_SUM - checksum;
186 
187     eeprom[EEPROM_CHECKSUM_REG] = checksum;
188 }
189 
190 uint32_t
191 e1000x_rxbufsize(uint32_t rctl)
192 {
193     rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
194         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
195         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
196     switch (rctl) {
197     case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
198         return 16384;
199     case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
200         return 8192;
201     case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
202         return 4096;
203     case E1000_RCTL_SZ_1024:
204         return 1024;
205     case E1000_RCTL_SZ_512:
206         return 512;
207     case E1000_RCTL_SZ_256:
208         return 256;
209     }
210     return 2048;
211 }
212 
213 void
214 e1000x_update_rx_total_stats(uint32_t *mac,
215                              size_t data_size,
216                              size_t data_fcs_size)
217 {
218     static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
219                                     PRC1023, PRC1522 };
220 
221     e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
222     e1000x_inc_reg_if_not_full(mac, TPR);
223     mac[GPRC] = mac[TPR];
224     /* TOR - Total Octets Received:
225     * This register includes bytes received in a packet from the <Destination
226     * Address> field through the <CRC> field, inclusively.
227     * Always include FCS length (4) in size.
228     */
229     e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
230     mac[GORCL] = mac[TORL];
231     mac[GORCH] = mac[TORH];
232 }
233 
234 void
235 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
236 {
237     if (size > 1023) {
238         e1000x_inc_reg_if_not_full(mac, size_regs[5]);
239     } else if (size > 511) {
240         e1000x_inc_reg_if_not_full(mac, size_regs[4]);
241     } else if (size > 255) {
242         e1000x_inc_reg_if_not_full(mac, size_regs[3]);
243     } else if (size > 127) {
244         e1000x_inc_reg_if_not_full(mac, size_regs[2]);
245     } else if (size > 64) {
246         e1000x_inc_reg_if_not_full(mac, size_regs[1]);
247     } else if (size == 64) {
248         e1000x_inc_reg_if_not_full(mac, size_regs[0]);
249     }
250 }
251 
252 void
253 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
254                          e1000x_txd_props *props)
255 {
256     uint32_t op = le32_to_cpu(d->cmd_and_length);
257 
258     props->ipcss = d->lower_setup.ip_fields.ipcss;
259     props->ipcso = d->lower_setup.ip_fields.ipcso;
260     props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
261     props->tucss = d->upper_setup.tcp_fields.tucss;
262     props->tucso = d->upper_setup.tcp_fields.tucso;
263     props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
264     props->paylen = op & 0xfffff;
265     props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
266     props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
267     props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
268     props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
269     props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
270 }
271 
272 void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
273 {
274     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
275     uint32_t timinca = mac[TIMINCA];
276     uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
277     uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
278     int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
279 
280     mac[lo] = timestamp & 0xffffffff;
281     mac[hi] = timestamp >> 32;
282 }
283 
284 void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
285 {
286     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
287     uint32_t old_val = mac[TIMINCA];
288     uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
289     uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
290     uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
291     uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
292 
293     mac[TIMINCA] = val;
294     *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
295 }
296