xref: /qemu/hw/net/e1000x_common.c (revision ebda3036)
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/net/mii.h"
28 #include "hw/pci/pci_device.h"
29 #include "net/eth.h"
30 #include "net/net.h"
31 
32 #include "e1000_common.h"
33 #include "e1000x_common.h"
34 
35 #include "trace.h"
36 
37 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
38 {
39     bool link_up = mac[STATUS] & E1000_STATUS_LU;
40     bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
41     bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
42 
43     if (!link_up || !rx_enabled || !pci_master) {
44         trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
45         return false;
46     }
47 
48     return true;
49 }
50 
51 bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
52 {
53     uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
54     bool res = (eth_proto == vet);
55 
56     trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
57 
58     return res;
59 }
60 
61 bool e1000x_rx_vlan_filter(uint32_t *mac, const struct vlan_header *vhdr)
62 {
63     if (e1000x_vlan_rx_filter_enabled(mac)) {
64         uint16_t vid = lduw_be_p(&vhdr->h_tci);
65         uint32_t vfta =
66             ldl_le_p((uint32_t *)(mac + VFTA) +
67                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
68         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
69             trace_e1000x_rx_flt_vlan_mismatch(vid);
70             return false;
71         }
72 
73         trace_e1000x_rx_flt_vlan_match(vid);
74     }
75 
76     return true;
77 }
78 
79 bool e1000x_rx_group_filter(uint32_t *mac, const struct eth_header *ehdr)
80 {
81     static const int mta_shift[] = { 4, 3, 2, 0 };
82     uint32_t f, ra[2], *rp, rctl = mac[RCTL];
83 
84     if (is_broadcast_ether_addr(ehdr->h_dest)) {
85         if (rctl & E1000_RCTL_BAM) {
86             return true;
87         }
88     } else if (is_multicast_ether_addr(ehdr->h_dest)) {
89         if (rctl & E1000_RCTL_MPE) {
90             return true;
91         }
92     } else {
93         if (rctl & E1000_RCTL_UPE) {
94             return true;
95         }
96     }
97 
98     for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
99         if (!(rp[1] & E1000_RAH_AV)) {
100             continue;
101         }
102         ra[0] = cpu_to_le32(rp[0]);
103         ra[1] = cpu_to_le32(rp[1]);
104         if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
105             trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
106                                             MAC_ARG(ehdr->h_dest));
107             return true;
108         }
109     }
110     trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(ehdr->h_dest));
111 
112     f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
113     f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
114     if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
115         return true;
116     }
117 
118     trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(ehdr->h_dest),
119                                          (rctl >> E1000_RCTL_MO_SHIFT) & 3,
120                                          f >> 5,
121                                          mac[MTA + (f >> 5)]);
122 
123     return false;
124 }
125 
126 bool e1000x_hw_rx_enabled(uint32_t *mac)
127 {
128     if (!(mac[STATUS] & E1000_STATUS_LU)) {
129         trace_e1000x_rx_link_down(mac[STATUS]);
130         return false;
131     }
132 
133     if (!(mac[RCTL] & E1000_RCTL_EN)) {
134         trace_e1000x_rx_disabled(mac[RCTL]);
135         return false;
136     }
137 
138     return true;
139 }
140 
141 bool e1000x_is_oversized(uint32_t *mac, size_t size)
142 {
143     size_t header_size = sizeof(struct eth_header) + sizeof(struct vlan_header);
144     /* this is the size past which hardware will
145        drop packets when setting LPE=0 */
146     size_t maximum_short_size = header_size + ETH_MTU;
147     /* this is the size past which hardware will
148        drop packets when setting LPE=1 */
149     size_t maximum_large_size = 16 * KiB - ETH_FCS_LEN;
150 
151     if ((size > maximum_large_size ||
152         (size > maximum_short_size && !(mac[RCTL] & E1000_RCTL_LPE)))
153         && !(mac[RCTL] & E1000_RCTL_SBP)) {
154         e1000x_inc_reg_if_not_full(mac, ROC);
155         trace_e1000x_rx_oversized(size);
156         return true;
157     }
158 
159     return false;
160 }
161 
162 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
163 {
164     e1000x_update_regs_on_link_down(mac, phy);
165     trace_e1000x_link_negotiation_start();
166     timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
167 }
168 
169 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
170                            uint8_t *mac_addr)
171 {
172     int i;
173 
174     mac_regs[RA] = 0;
175     mac_regs[RA + 1] = E1000_RAH_AV;
176     for (i = 0; i < 4; i++) {
177         mac_regs[RA] |= mac_addr[i] << (8 * i);
178         mac_regs[RA + 1] |=
179             (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
180     }
181 
182     qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
183     trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
184 }
185 
186 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
187 {
188     e1000x_update_regs_on_link_up(mac, phy);
189     phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
190     phy[MII_BMSR] |= MII_BMSR_AN_COMP;
191     trace_e1000x_link_negotiation_done();
192 }
193 
194 void
195 e1000x_core_prepare_eeprom(uint16_t       *eeprom,
196                            const uint16_t *templ,
197                            uint32_t        templ_size,
198                            uint16_t        dev_id,
199                            const uint8_t  *macaddr)
200 {
201     uint16_t checksum = 0;
202     int i;
203 
204     memmove(eeprom, templ, templ_size);
205 
206     for (i = 0; i < 3; i++) {
207         eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
208     }
209 
210     eeprom[11] = eeprom[13] = dev_id;
211 
212     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
213         checksum += eeprom[i];
214     }
215 
216     checksum = (uint16_t) EEPROM_SUM - checksum;
217 
218     eeprom[EEPROM_CHECKSUM_REG] = checksum;
219 }
220 
221 uint32_t
222 e1000x_rxbufsize(uint32_t rctl)
223 {
224     rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
225         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
226         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
227     switch (rctl) {
228     case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
229         return 16384;
230     case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
231         return 8192;
232     case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
233         return 4096;
234     case E1000_RCTL_SZ_1024:
235         return 1024;
236     case E1000_RCTL_SZ_512:
237         return 512;
238     case E1000_RCTL_SZ_256:
239         return 256;
240     }
241     return 2048;
242 }
243 
244 void
245 e1000x_update_rx_total_stats(uint32_t *mac,
246                              eth_pkt_types_e pkt_type,
247                              size_t pkt_size,
248                              size_t pkt_fcs_size)
249 {
250     static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
251                                     PRC1023, PRC1522 };
252 
253     e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size);
254     e1000x_inc_reg_if_not_full(mac, TPR);
255     e1000x_inc_reg_if_not_full(mac, GPRC);
256     /* TOR - Total Octets Received:
257     * This register includes bytes received in a packet from the <Destination
258     * Address> field through the <CRC> field, inclusively.
259     * Always include FCS length (4) in size.
260     */
261     e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4);
262     e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4);
263 
264     switch (pkt_type) {
265     case ETH_PKT_BCAST:
266         e1000x_inc_reg_if_not_full(mac, BPRC);
267         break;
268 
269     case ETH_PKT_MCAST:
270         e1000x_inc_reg_if_not_full(mac, MPRC);
271         break;
272 
273     default:
274         break;
275     }
276 }
277 
278 void
279 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
280 {
281     if (size > 1023) {
282         e1000x_inc_reg_if_not_full(mac, size_regs[5]);
283     } else if (size > 511) {
284         e1000x_inc_reg_if_not_full(mac, size_regs[4]);
285     } else if (size > 255) {
286         e1000x_inc_reg_if_not_full(mac, size_regs[3]);
287     } else if (size > 127) {
288         e1000x_inc_reg_if_not_full(mac, size_regs[2]);
289     } else if (size > 64) {
290         e1000x_inc_reg_if_not_full(mac, size_regs[1]);
291     } else if (size == 64) {
292         e1000x_inc_reg_if_not_full(mac, size_regs[0]);
293     }
294 }
295 
296 void
297 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
298                          e1000x_txd_props *props)
299 {
300     uint32_t op = le32_to_cpu(d->cmd_and_length);
301 
302     props->ipcss = d->lower_setup.ip_fields.ipcss;
303     props->ipcso = d->lower_setup.ip_fields.ipcso;
304     props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
305     props->tucss = d->upper_setup.tcp_fields.tucss;
306     props->tucso = d->upper_setup.tcp_fields.tucso;
307     props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
308     props->paylen = op & 0xfffff;
309     props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
310     props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
311     props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
312     props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
313     props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
314 }
315 
316 void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
317 {
318     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
319     uint32_t timinca = mac[TIMINCA];
320     uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
321     uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
322     int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
323 
324     mac[lo] = timestamp & 0xffffffff;
325     mac[hi] = timestamp >> 32;
326 }
327 
328 void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
329 {
330     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
331     uint32_t old_val = mac[TIMINCA];
332     uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
333     uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
334     uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
335     uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
336 
337     mac[TIMINCA] = val;
338     *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
339 }
340