xref: /qemu/hw/net/igb_core.c (revision 651ccdfa)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 static ssize_t
71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
72                      bool has_vnet, bool *external_tx);
73 
74 static inline void
75 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
76 
77 static void igb_update_interrupt_state(IGBCore *core);
78 static void igb_reset(IGBCore *core, bool sw);
79 
80 static inline void
81 igb_raise_legacy_irq(IGBCore *core)
82 {
83     trace_e1000e_irq_legacy_notify(true);
84     e1000x_inc_reg_if_not_full(core->mac, IAC);
85     pci_set_irq(core->owner, 1);
86 }
87 
88 static inline void
89 igb_lower_legacy_irq(IGBCore *core)
90 {
91     trace_e1000e_irq_legacy_notify(false);
92     pci_set_irq(core->owner, 0);
93 }
94 
95 static void igb_msix_notify(IGBCore *core, unsigned int vector)
96 {
97     PCIDevice *dev = core->owner;
98     uint16_t vfn;
99 
100     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
101     if (vfn < pcie_sriov_num_vfs(core->owner)) {
102         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
103         assert(dev);
104         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
105     } else if (vector >= IGB_MSIX_VEC_NUM) {
106         qemu_log_mask(LOG_GUEST_ERROR,
107                       "igb: Tried to use vector unavailable for PF");
108         return;
109     }
110 
111     msix_notify(dev, vector);
112 }
113 
114 static inline void
115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
116 {
117     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
118                                  timer->delay_resolution_ns;
119 
120     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
121 
122     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
123 
124     timer->running = true;
125 }
126 
127 static void
128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
129 {
130     if (timer->running) {
131         igb_intrmgr_rearm_timer(timer);
132     }
133 }
134 
135 static void
136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
137 {
138     if (timer->running) {
139         timer_del(timer->timer);
140     }
141 }
142 
143 static void
144 igb_intrmgr_on_msix_throttling_timer(void *opaque)
145 {
146     IGBIntrDelayTimer *timer = opaque;
147     int idx = timer - &timer->core->eitr[0];
148 
149     timer->running = false;
150 
151     trace_e1000e_irq_msix_notify_postponed_vec(idx);
152     igb_msix_notify(timer->core, idx);
153 }
154 
155 static void
156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
157 {
158     int i;
159 
160     for (i = 0; i < IGB_INTR_NUM; i++) {
161         core->eitr[i].core = core;
162         core->eitr[i].delay_reg = EITR0 + i;
163         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
164     }
165 
166     if (!create) {
167         return;
168     }
169 
170     for (i = 0; i < IGB_INTR_NUM; i++) {
171         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
172                                            igb_intrmgr_on_msix_throttling_timer,
173                                            &core->eitr[i]);
174     }
175 }
176 
177 static void
178 igb_intrmgr_resume(IGBCore *core)
179 {
180     int i;
181 
182     for (i = 0; i < IGB_INTR_NUM; i++) {
183         igb_intmgr_timer_resume(&core->eitr[i]);
184     }
185 }
186 
187 static void
188 igb_intrmgr_pause(IGBCore *core)
189 {
190     int i;
191 
192     for (i = 0; i < IGB_INTR_NUM; i++) {
193         igb_intmgr_timer_pause(&core->eitr[i]);
194     }
195 }
196 
197 static void
198 igb_intrmgr_reset(IGBCore *core)
199 {
200     int i;
201 
202     for (i = 0; i < IGB_INTR_NUM; i++) {
203         if (core->eitr[i].running) {
204             timer_del(core->eitr[i].timer);
205             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
206         }
207     }
208 }
209 
210 static void
211 igb_intrmgr_pci_unint(IGBCore *core)
212 {
213     int i;
214 
215     for (i = 0; i < IGB_INTR_NUM; i++) {
216         timer_free(core->eitr[i].timer);
217     }
218 }
219 
220 static void
221 igb_intrmgr_pci_realize(IGBCore *core)
222 {
223     igb_intrmgr_initialize_all_timers(core, true);
224 }
225 
226 static inline bool
227 igb_rx_csum_enabled(IGBCore *core)
228 {
229     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
230 }
231 
232 static inline bool
233 igb_rx_use_legacy_descriptor(IGBCore *core)
234 {
235     /*
236      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
237      * descriptor.
238      */
239     return false;
240 }
241 
242 static inline bool
243 igb_rss_enabled(IGBCore *core)
244 {
245     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
246            !igb_rx_csum_enabled(core) &&
247            !igb_rx_use_legacy_descriptor(core);
248 }
249 
250 typedef struct E1000E_RSSInfo_st {
251     bool enabled;
252     uint32_t hash;
253     uint32_t queue;
254     uint32_t type;
255 } E1000E_RSSInfo;
256 
257 static uint32_t
258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
259 {
260     bool hasip4, hasip6;
261     EthL4HdrProto l4hdr_proto;
262 
263     assert(igb_rss_enabled(core));
264 
265     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
266 
267     if (hasip4) {
268         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
269                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
270                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
271 
272         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
273             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
274             return E1000_MRQ_RSS_TYPE_IPV4TCP;
275         }
276 
277         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
278             return E1000_MRQ_RSS_TYPE_IPV4;
279         }
280     } else if (hasip6) {
281         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
282 
283         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
284         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
285 
286         /*
287          * Following two traces must not be combined because resulting
288          * event will have 11 arguments totally and some trace backends
289          * (at least "ust") have limitation of maximum 10 arguments per
290          * event. Events with more arguments fail to compile for
291          * backends like these.
292          */
293         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
294         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
295                                 ip6info->has_ext_hdrs,
296                                 ip6info->rss_ex_dst_valid,
297                                 ip6info->rss_ex_src_valid,
298                                 core->mac[MRQC],
299                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
300                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
301                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
302 
303         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
304             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
305                               ip6info->rss_ex_src_valid))) {
306 
307             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
308                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
309                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
310             }
311 
312             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
313                 return E1000_MRQ_RSS_TYPE_IPV6EX;
314             }
315 
316         }
317 
318         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
319             return E1000_MRQ_RSS_TYPE_IPV6;
320         }
321 
322     }
323 
324     return E1000_MRQ_RSS_TYPE_NONE;
325 }
326 
327 static uint32_t
328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
329 {
330     NetRxPktRssType type;
331 
332     assert(igb_rss_enabled(core));
333 
334     switch (info->type) {
335     case E1000_MRQ_RSS_TYPE_IPV4:
336         type = NetPktRssIpV4;
337         break;
338     case E1000_MRQ_RSS_TYPE_IPV4TCP:
339         type = NetPktRssIpV4Tcp;
340         break;
341     case E1000_MRQ_RSS_TYPE_IPV6TCP:
342         type = NetPktRssIpV6TcpEx;
343         break;
344     case E1000_MRQ_RSS_TYPE_IPV6:
345         type = NetPktRssIpV6;
346         break;
347     case E1000_MRQ_RSS_TYPE_IPV6EX:
348         type = NetPktRssIpV6Ex;
349         break;
350     default:
351         assert(false);
352         return 0;
353     }
354 
355     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
356 }
357 
358 static void
359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
360                      E1000E_RSSInfo *info)
361 {
362     trace_e1000e_rx_rss_started();
363 
364     if (tx || !igb_rss_enabled(core)) {
365         info->enabled = false;
366         info->hash = 0;
367         info->queue = 0;
368         info->type = 0;
369         trace_e1000e_rx_rss_disabled();
370         return;
371     }
372 
373     info->enabled = true;
374 
375     info->type = igb_rss_get_hash_type(core, pkt);
376 
377     trace_e1000e_rx_rss_type(info->type);
378 
379     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
380         info->hash = 0;
381         info->queue = 0;
382         return;
383     }
384 
385     info->hash = igb_rss_calc_hash(core, pkt, info);
386     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
387 }
388 
389 static bool
390 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
391 {
392     if (tx->tse) {
393         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->mss)) {
394             return false;
395         }
396 
397         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
398         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
399         return true;
400     }
401 
402     if (tx->txsm) {
403         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
404             return false;
405         }
406     }
407 
408     if (tx->ixsm) {
409         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
410     }
411 
412     return true;
413 }
414 
415 static void igb_tx_pkt_mac_callback(void *core,
416                                     const struct iovec *iov,
417                                     int iovcnt,
418                                     const struct iovec *virt_iov,
419                                     int virt_iovcnt)
420 {
421     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
422 }
423 
424 static void igb_tx_pkt_vmdq_callback(void *opaque,
425                                      const struct iovec *iov,
426                                      int iovcnt,
427                                      const struct iovec *virt_iov,
428                                      int virt_iovcnt)
429 {
430     IGBTxPktVmdqCallbackContext *context = opaque;
431     bool external_tx;
432 
433     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
434                          &external_tx);
435 
436     if (external_tx) {
437         if (context->core->has_vnet) {
438             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
439         } else {
440             qemu_sendv_packet(context->nc, iov, iovcnt);
441         }
442     }
443 }
444 
445 /* TX Packets Switching (7.10.3.6) */
446 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
447                               NetClientState *nc)
448 {
449     IGBTxPktVmdqCallbackContext context;
450 
451     /* TX switching is only used to serve VM to VM traffic. */
452     if (!(core->mac[MRQC] & 1)) {
453         goto send_out;
454     }
455 
456     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
457     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
458         goto send_out;
459     }
460 
461     context.core = core;
462     context.nc = nc;
463 
464     return net_tx_pkt_send_custom(tx->tx_pkt, false,
465                                   igb_tx_pkt_vmdq_callback, &context);
466 
467 send_out:
468     return net_tx_pkt_send(tx->tx_pkt, nc);
469 }
470 
471 static bool
472 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
473 {
474     int target_queue = MIN(core->max_queue_num, queue_index);
475     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
476 
477     if (!igb_setup_tx_offloads(core, tx)) {
478         return false;
479     }
480 
481     net_tx_pkt_dump(tx->tx_pkt);
482 
483     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
484         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
485         return net_tx_pkt_send_custom(tx->tx_pkt, false,
486                                       igb_tx_pkt_mac_callback, core);
487     } else {
488         return igb_tx_pkt_switch(core, tx, queue);
489     }
490 }
491 
492 static void
493 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt)
494 {
495     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
496                                     PTC1023, PTC1522 };
497 
498     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
499 
500     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
501     e1000x_inc_reg_if_not_full(core->mac, TPT);
502     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
503 
504     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
505     case ETH_PKT_BCAST:
506         e1000x_inc_reg_if_not_full(core->mac, BPTC);
507         break;
508     case ETH_PKT_MCAST:
509         e1000x_inc_reg_if_not_full(core->mac, MPTC);
510         break;
511     case ETH_PKT_UCAST:
512         break;
513     default:
514         g_assert_not_reached();
515     }
516 
517     core->mac[GPTC] = core->mac[TPT];
518     core->mac[GOTCL] = core->mac[TOTL];
519     core->mac[GOTCH] = core->mac[TOTH];
520 }
521 
522 static void
523 igb_process_tx_desc(IGBCore *core,
524                     struct igb_tx *tx,
525                     union e1000_adv_tx_desc *tx_desc,
526                     int queue_index)
527 {
528     struct e1000_adv_tx_context_desc *tx_ctx_desc;
529     uint32_t cmd_type_len;
530     uint32_t olinfo_status;
531     uint64_t buffer_addr;
532     uint16_t length;
533 
534     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
535 
536     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
537         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
538             E1000_ADVTXD_DTYP_DATA) {
539             /* advanced transmit data descriptor */
540             if (tx->first) {
541                 olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
542 
543                 tx->tse = !!(cmd_type_len & E1000_ADVTXD_DCMD_TSE);
544                 tx->ixsm = !!(olinfo_status & E1000_ADVTXD_POTS_IXSM);
545                 tx->txsm = !!(olinfo_status & E1000_ADVTXD_POTS_TXSM);
546 
547                 tx->first = false;
548             }
549         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
550                    E1000_ADVTXD_DTYP_CTXT) {
551             /* advanced transmit context descriptor */
552             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
553             tx->vlan = le32_to_cpu(tx_ctx_desc->vlan_macip_lens) >> 16;
554             tx->mss = le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 16;
555             return;
556         } else {
557             /* unknown descriptor type */
558             return;
559         }
560     } else {
561         /* legacy descriptor */
562 
563         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
564     }
565 
566     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
567     length = cmd_type_len & 0xFFFF;
568 
569     if (!tx->skip_cp) {
570         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) {
571             tx->skip_cp = true;
572         }
573     }
574 
575     if (cmd_type_len & E1000_TXD_CMD_EOP) {
576         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
577             if (cmd_type_len & E1000_TXD_CMD_VLE) {
578                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, tx->vlan,
579                     core->mac[VET] & 0xffff);
580             }
581             if (igb_tx_pkt_send(core, tx, queue_index)) {
582                 igb_on_tx_done_update_stats(core, tx->tx_pkt);
583             }
584         }
585 
586         tx->first = true;
587         tx->skip_cp = false;
588         net_tx_pkt_reset(tx->tx_pkt);
589     }
590 }
591 
592 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
593 {
594     uint32_t n, ent = 0;
595 
596     n = igb_ivar_entry_tx(queue_idx);
597     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
598 
599     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
600 }
601 
602 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
603 {
604     uint32_t n, ent = 0;
605 
606     n = igb_ivar_entry_rx(queue_idx);
607     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
608 
609     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
610 }
611 
612 typedef struct E1000E_RingInfo_st {
613     int dbah;
614     int dbal;
615     int dlen;
616     int dh;
617     int dt;
618     int idx;
619 } E1000E_RingInfo;
620 
621 static inline bool
622 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
623 {
624     return core->mac[r->dh] == core->mac[r->dt] ||
625                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
626 }
627 
628 static inline uint64_t
629 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
630 {
631     uint64_t bah = core->mac[r->dbah];
632     uint64_t bal = core->mac[r->dbal];
633 
634     return (bah << 32) + bal;
635 }
636 
637 static inline uint64_t
638 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
639 {
640     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
641 }
642 
643 static inline void
644 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
645 {
646     core->mac[r->dh] += count;
647 
648     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
649         core->mac[r->dh] = 0;
650     }
651 }
652 
653 static inline uint32_t
654 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
655 {
656     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
657                                  core->mac[r->dh],  core->mac[r->dt]);
658 
659     if (core->mac[r->dh] <= core->mac[r->dt]) {
660         return core->mac[r->dt] - core->mac[r->dh];
661     }
662 
663     if (core->mac[r->dh] > core->mac[r->dt]) {
664         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
665                core->mac[r->dt] - core->mac[r->dh];
666     }
667 
668     g_assert_not_reached();
669     return 0;
670 }
671 
672 static inline bool
673 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
674 {
675     return core->mac[r->dlen] > 0;
676 }
677 
678 typedef struct IGB_TxRing_st {
679     const E1000E_RingInfo *i;
680     struct igb_tx *tx;
681 } IGB_TxRing;
682 
683 static inline int
684 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
685 {
686     return (reg_idx - base_reg_idx) / 16;
687 }
688 
689 static inline void
690 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
691 {
692     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
693         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
694         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
695         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
696         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
697         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
698         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
699         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
700         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
701         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
702         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
703         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
704         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
705         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
706         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
707         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
708         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
709     };
710 
711     assert(idx < ARRAY_SIZE(i));
712 
713     txr->i     = &i[idx];
714     txr->tx    = &core->tx[idx];
715 }
716 
717 typedef struct E1000E_RxRing_st {
718     const E1000E_RingInfo *i;
719 } E1000E_RxRing;
720 
721 static inline void
722 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
723 {
724     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
725         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
726         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
727         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
728         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
729         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
730         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
731         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
732         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
733         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
734         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
735         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
736         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
737         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
738         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
739         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
740         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
741     };
742 
743     assert(idx < ARRAY_SIZE(i));
744 
745     rxr->i      = &i[idx];
746 }
747 
748 static uint32_t
749 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
750                      union e1000_adv_tx_desc *tx_desc,
751                      const E1000E_RingInfo *txi)
752 {
753     PCIDevice *d;
754     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
755     uint64_t tdwba;
756 
757     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
758     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
759 
760     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
761         return 0;
762     }
763 
764     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
765     if (!d) {
766         d = core->owner;
767     }
768 
769     if (tdwba & 1) {
770         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
771         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
772     } else {
773         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
774 
775         tx_desc->wb.status = cpu_to_le32(status);
776         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
777             &tx_desc->wb, sizeof(tx_desc->wb));
778     }
779 
780     return igb_tx_wb_eic(core, txi->idx);
781 }
782 
783 static void
784 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
785 {
786     PCIDevice *d;
787     dma_addr_t base;
788     union e1000_adv_tx_desc desc;
789     const E1000E_RingInfo *txi = txr->i;
790     uint32_t eic = 0;
791 
792     /* TODO: check if the queue itself is enabled too. */
793     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
794         trace_e1000e_tx_disabled();
795         return;
796     }
797 
798     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
799     if (!d) {
800         d = core->owner;
801     }
802 
803     while (!igb_ring_empty(core, txi)) {
804         base = igb_ring_head_descr(core, txi);
805 
806         pci_dma_read(d, base, &desc, sizeof(desc));
807 
808         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
809                               desc.read.cmd_type_len, desc.wb.status);
810 
811         igb_process_tx_desc(core, txr->tx, &desc, txi->idx);
812         igb_ring_advance(core, txi, 1);
813         eic |= igb_txdesc_writeback(core, base, &desc, txi);
814     }
815 
816     if (eic) {
817         core->mac[EICR] |= eic;
818         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
819     }
820 }
821 
822 static uint32_t
823 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
824 {
825     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
826     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
827     if (bsizepkt) {
828         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
829     }
830 
831     return e1000x_rxbufsize(core->mac[RCTL]);
832 }
833 
834 static bool
835 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
836 {
837     uint32_t bufs = igb_ring_free_descr_num(core, r);
838     uint32_t bufsize = igb_rxbufsize(core, r);
839 
840     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
841 
842     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
843                          bufsize;
844 }
845 
846 void
847 igb_start_recv(IGBCore *core)
848 {
849     int i;
850 
851     trace_e1000e_rx_start_recv();
852 
853     for (i = 0; i <= core->max_queue_num; i++) {
854         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
855     }
856 }
857 
858 bool
859 igb_can_receive(IGBCore *core)
860 {
861     int i;
862 
863     if (!e1000x_rx_ready(core->owner, core->mac)) {
864         return false;
865     }
866 
867     for (i = 0; i < IGB_NUM_QUEUES; i++) {
868         E1000E_RxRing rxr;
869 
870         igb_rx_ring_init(core, &rxr, i);
871         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
872             trace_e1000e_rx_can_recv();
873             return true;
874         }
875     }
876 
877     trace_e1000e_rx_can_recv_rings_full();
878     return false;
879 }
880 
881 ssize_t
882 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
883 {
884     const struct iovec iov = {
885         .iov_base = (uint8_t *)buf,
886         .iov_len = size
887     };
888 
889     return igb_receive_iov(core, &iov, 1);
890 }
891 
892 static inline bool
893 igb_rx_l3_cso_enabled(IGBCore *core)
894 {
895     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
896 }
897 
898 static inline bool
899 igb_rx_l4_cso_enabled(IGBCore *core)
900 {
901     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
902 }
903 
904 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr,
905                                    E1000E_RSSInfo *rss_info, bool *external_tx)
906 {
907     static const int ta_shift[] = { 4, 3, 2, 0 };
908     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
909     uint16_t queues = 0;
910     uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK;
911     bool accepted = false;
912     int i;
913 
914     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
915 
916     if (external_tx) {
917         *external_tx = true;
918     }
919 
920     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
921         e1000x_vlan_rx_filter_enabled(core->mac)) {
922         uint32_t vfta =
923             ldl_le_p((uint32_t *)(core->mac + VFTA) +
924                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
925         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
926             trace_e1000e_rx_flt_vlan_mismatch(vid);
927             return queues;
928         } else {
929             trace_e1000e_rx_flt_vlan_match(vid);
930         }
931     }
932 
933     if (core->mac[MRQC] & 1) {
934         if (is_broadcast_ether_addr(ehdr->h_dest)) {
935             for (i = 0; i < 8; i++) {
936                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
937                     queues |= BIT(i);
938                 }
939             }
940         } else {
941             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
942                 if (!(macp[1] & E1000_RAH_AV)) {
943                     continue;
944                 }
945                 ra[0] = cpu_to_le32(macp[0]);
946                 ra[1] = cpu_to_le32(macp[1]);
947                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
948                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
949                 }
950             }
951 
952             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
953                 if (!(macp[1] & E1000_RAH_AV)) {
954                     continue;
955                 }
956                 ra[0] = cpu_to_le32(macp[0]);
957                 ra[1] = cpu_to_le32(macp[1]);
958                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
959                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
960                 }
961             }
962 
963             if (!queues) {
964                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
965 
966                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
967                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
968                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
969                     for (i = 0; i < 8; i++) {
970                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
971                             queues |= BIT(i);
972                         }
973                     }
974                 }
975             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
976                 *external_tx = false;
977             }
978         }
979 
980         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
981             uint16_t mask = 0;
982 
983             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
984                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
985                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
986                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
987                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
988                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
989                     }
990                 }
991             } else {
992                 for (i = 0; i < 8; i++) {
993                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
994                         mask |= BIT(i);
995                     }
996                 }
997             }
998 
999             queues &= mask;
1000         }
1001 
1002         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1003             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1004             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1005             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1006         }
1007 
1008         igb_rss_parse_packet(core, core->rx_pkt, external_tx != NULL, rss_info);
1009         if (rss_info->queue & 1) {
1010             queues <<= 8;
1011         }
1012     } else {
1013         switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1014         case ETH_PKT_UCAST:
1015             if (rctl & E1000_RCTL_UPE) {
1016                 accepted = true; /* promiscuous ucast */
1017             }
1018             break;
1019 
1020         case ETH_PKT_BCAST:
1021             if (rctl & E1000_RCTL_BAM) {
1022                 accepted = true; /* broadcast enabled */
1023             }
1024             break;
1025 
1026         case ETH_PKT_MCAST:
1027             if (rctl & E1000_RCTL_MPE) {
1028                 accepted = true; /* promiscuous mcast */
1029             }
1030             break;
1031 
1032         default:
1033             g_assert_not_reached();
1034         }
1035 
1036         if (!accepted) {
1037             accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest);
1038         }
1039 
1040         if (!accepted) {
1041             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1042                 if (!(macp[1] & E1000_RAH_AV)) {
1043                     continue;
1044                 }
1045                 ra[0] = cpu_to_le32(macp[0]);
1046                 ra[1] = cpu_to_le32(macp[1]);
1047                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1048                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1049                                                     MAC_ARG(ehdr->h_dest));
1050 
1051                     accepted = true;
1052                     break;
1053                 }
1054             }
1055         }
1056 
1057         if (accepted) {
1058             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1059             queues = BIT(rss_info->queue);
1060         }
1061     }
1062 
1063     return queues;
1064 }
1065 
1066 static inline void
1067 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1068                        hwaddr *buff_addr)
1069 {
1070     *buff_addr = le64_to_cpu(desc->buffer_addr);
1071 }
1072 
1073 static inline void
1074 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1075                       hwaddr *buff_addr)
1076 {
1077     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1078 }
1079 
1080 static inline void
1081 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1082                   hwaddr *buff_addr)
1083 {
1084     if (igb_rx_use_legacy_descriptor(core)) {
1085         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1086     } else {
1087         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1088     }
1089 }
1090 
1091 static void
1092 igb_verify_csum_in_sw(IGBCore *core,
1093                       struct NetRxPkt *pkt,
1094                       uint32_t *status_flags,
1095                       EthL4HdrProto l4hdr_proto)
1096 {
1097     bool csum_valid;
1098     uint32_t csum_error;
1099 
1100     if (igb_rx_l3_cso_enabled(core)) {
1101         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1102             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1103         } else {
1104             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1105             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1106         }
1107     } else {
1108         trace_e1000e_rx_metadata_l3_cso_disabled();
1109     }
1110 
1111     if (!igb_rx_l4_cso_enabled(core)) {
1112         trace_e1000e_rx_metadata_l4_cso_disabled();
1113         return;
1114     }
1115 
1116     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1117         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1118         return;
1119     }
1120 
1121     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1122     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1123 
1124     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1125         *status_flags |= E1000_RXD_STAT_UDPCS;
1126     }
1127 }
1128 
1129 static void
1130 igb_build_rx_metadata(IGBCore *core,
1131                       struct NetRxPkt *pkt,
1132                       bool is_eop,
1133                       const E1000E_RSSInfo *rss_info,
1134                       uint16_t *pkt_info, uint16_t *hdr_info,
1135                       uint32_t *rss,
1136                       uint32_t *status_flags,
1137                       uint16_t *ip_id,
1138                       uint16_t *vlan_tag)
1139 {
1140     struct virtio_net_hdr *vhdr;
1141     bool hasip4, hasip6;
1142     EthL4HdrProto l4hdr_proto;
1143     uint32_t pkt_type;
1144 
1145     *status_flags = E1000_RXD_STAT_DD;
1146 
1147     /* No additional metadata needed for non-EOP descriptors */
1148     /* TODO: EOP apply only to status so don't skip whole function. */
1149     if (!is_eop) {
1150         goto func_exit;
1151     }
1152 
1153     *status_flags |= E1000_RXD_STAT_EOP;
1154 
1155     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1156     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1157 
1158     /* VLAN state */
1159     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1160         *status_flags |= E1000_RXD_STAT_VP;
1161         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1162         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1163     }
1164 
1165     /* Packet parsing results */
1166     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1167         if (rss_info->enabled) {
1168             *rss = cpu_to_le32(rss_info->hash);
1169             trace_igb_rx_metadata_rss(*rss);
1170         }
1171     } else if (hasip4) {
1172             *status_flags |= E1000_RXD_STAT_IPIDV;
1173             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1174             trace_e1000e_rx_metadata_ip_id(*ip_id);
1175     }
1176 
1177     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1178         *status_flags |= E1000_RXD_STAT_ACK;
1179         trace_e1000e_rx_metadata_ack();
1180     }
1181 
1182     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1183         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1184         pkt_type = E1000_RXD_PKT_MAC;
1185     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1186                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1187         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1188     } else if (hasip4 || hasip6) {
1189         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1190     } else {
1191         pkt_type = E1000_RXD_PKT_MAC;
1192     }
1193 
1194     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1195 
1196     if (pkt_info) {
1197         if (rss_info->enabled) {
1198             *pkt_info = rss_info->type;
1199         }
1200 
1201         *pkt_info |= (pkt_type << 4);
1202     } else {
1203         *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1204     }
1205 
1206     if (hdr_info) {
1207         *hdr_info = 0;
1208     }
1209 
1210     /* RX CSO information */
1211     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1212         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1213         goto func_exit;
1214     }
1215 
1216     vhdr = net_rx_pkt_get_vhdr(pkt);
1217 
1218     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1219         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1220         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1221         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1222         goto func_exit;
1223     }
1224 
1225     if (igb_rx_l3_cso_enabled(core)) {
1226         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1227     } else {
1228         trace_e1000e_rx_metadata_l3_cso_disabled();
1229     }
1230 
1231     if (igb_rx_l4_cso_enabled(core)) {
1232         switch (l4hdr_proto) {
1233         case ETH_L4_HDR_PROTO_TCP:
1234             *status_flags |= E1000_RXD_STAT_TCPCS;
1235             break;
1236 
1237         case ETH_L4_HDR_PROTO_UDP:
1238             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1239             break;
1240 
1241         default:
1242             goto func_exit;
1243         }
1244     } else {
1245         trace_e1000e_rx_metadata_l4_cso_disabled();
1246     }
1247 
1248     trace_e1000e_rx_metadata_status_flags(*status_flags);
1249 
1250 func_exit:
1251     *status_flags = cpu_to_le32(*status_flags);
1252 }
1253 
1254 static inline void
1255 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1256                         struct NetRxPkt *pkt,
1257                         const E1000E_RSSInfo *rss_info,
1258                         uint16_t length)
1259 {
1260     uint32_t status_flags, rss;
1261     uint16_t ip_id;
1262 
1263     assert(!rss_info->enabled);
1264     desc->length = cpu_to_le16(length);
1265     desc->csum = 0;
1266 
1267     igb_build_rx_metadata(core, pkt, pkt != NULL,
1268                           rss_info,
1269                           NULL, NULL, &rss,
1270                           &status_flags, &ip_id,
1271                           &desc->special);
1272     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1273     desc->status = (uint8_t) le32_to_cpu(status_flags);
1274 }
1275 
1276 static inline void
1277 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1278                        struct NetRxPkt *pkt,
1279                        const E1000E_RSSInfo *rss_info,
1280                        uint16_t length)
1281 {
1282     memset(&desc->wb, 0, sizeof(desc->wb));
1283 
1284     desc->wb.upper.length = cpu_to_le16(length);
1285 
1286     igb_build_rx_metadata(core, pkt, pkt != NULL,
1287                           rss_info,
1288                           &desc->wb.lower.lo_dword.pkt_info,
1289                           &desc->wb.lower.lo_dword.hdr_info,
1290                           &desc->wb.lower.hi_dword.rss,
1291                           &desc->wb.upper.status_error,
1292                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1293                           &desc->wb.upper.vlan);
1294 }
1295 
1296 static inline void
1297 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1298 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1299 {
1300     if (igb_rx_use_legacy_descriptor(core)) {
1301         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1302     } else {
1303         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1304     }
1305 }
1306 
1307 static inline void
1308 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1309                           union e1000_rx_desc_union *desc, dma_addr_t len)
1310 {
1311     if (igb_rx_use_legacy_descriptor(core)) {
1312         struct e1000_rx_desc *d = &desc->legacy;
1313         size_t offset = offsetof(struct e1000_rx_desc, status);
1314         uint8_t status = d->status;
1315 
1316         d->status &= ~E1000_RXD_STAT_DD;
1317         pci_dma_write(dev, addr, desc, len);
1318 
1319         if (status & E1000_RXD_STAT_DD) {
1320             d->status = status;
1321             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1322         }
1323     } else {
1324         union e1000_adv_rx_desc *d = &desc->adv;
1325         size_t offset =
1326             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1327         uint32_t status = d->wb.upper.status_error;
1328 
1329         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1330         pci_dma_write(dev, addr, desc, len);
1331 
1332         if (status & E1000_RXD_STAT_DD) {
1333             d->wb.upper.status_error = status;
1334             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1335         }
1336     }
1337 }
1338 
1339 static void
1340 igb_write_to_rx_buffers(IGBCore *core,
1341                         PCIDevice *d,
1342                         hwaddr ba,
1343                         uint16_t *written,
1344                         const char *data,
1345                         dma_addr_t data_len)
1346 {
1347     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1348     pci_dma_write(d, ba + *written, data, data_len);
1349     *written += data_len;
1350 }
1351 
1352 static void
1353 igb_update_rx_stats(IGBCore *core, size_t data_size, size_t data_fcs_size)
1354 {
1355     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1356 
1357     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1358     case ETH_PKT_BCAST:
1359         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1360         break;
1361 
1362     case ETH_PKT_MCAST:
1363         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1364         break;
1365 
1366     default:
1367         break;
1368     }
1369 }
1370 
1371 static inline bool
1372 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1373 {
1374     return igb_ring_free_descr_num(core, rxi) ==
1375            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1376 }
1377 
1378 static void
1379 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1380                           const E1000E_RxRing *rxr,
1381                           const E1000E_RSSInfo *rss_info)
1382 {
1383     PCIDevice *d;
1384     dma_addr_t base;
1385     union e1000_rx_desc_union desc;
1386     size_t desc_size;
1387     size_t desc_offset = 0;
1388     size_t iov_ofs = 0;
1389 
1390     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1391     size_t size = net_rx_pkt_get_total_len(pkt);
1392     size_t total_size = size + e1000x_fcs_len(core->mac);
1393     const E1000E_RingInfo *rxi = rxr->i;
1394     size_t bufsize = igb_rxbufsize(core, rxi);
1395 
1396     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1397     if (!d) {
1398         d = core->owner;
1399     }
1400 
1401     do {
1402         hwaddr ba;
1403         uint16_t written = 0;
1404         bool is_last = false;
1405 
1406         desc_size = total_size - desc_offset;
1407 
1408         if (desc_size > bufsize) {
1409             desc_size = bufsize;
1410         }
1411 
1412         if (igb_ring_empty(core, rxi)) {
1413             return;
1414         }
1415 
1416         base = igb_ring_head_descr(core, rxi);
1417 
1418         pci_dma_read(d, base, &desc, core->rx_desc_len);
1419 
1420         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1421 
1422         igb_read_rx_descr(core, &desc, &ba);
1423 
1424         if (ba) {
1425             if (desc_offset < size) {
1426                 static const uint32_t fcs_pad;
1427                 size_t iov_copy;
1428                 size_t copy_size = size - desc_offset;
1429                 if (copy_size > bufsize) {
1430                     copy_size = bufsize;
1431                 }
1432 
1433                 /* Copy packet payload */
1434                 while (copy_size) {
1435                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1436 
1437                     igb_write_to_rx_buffers(core, d, ba, &written,
1438                                             iov->iov_base + iov_ofs, iov_copy);
1439 
1440                     copy_size -= iov_copy;
1441                     iov_ofs += iov_copy;
1442                     if (iov_ofs == iov->iov_len) {
1443                         iov++;
1444                         iov_ofs = 0;
1445                     }
1446                 }
1447 
1448                 if (desc_offset + desc_size >= total_size) {
1449                     /* Simulate FCS checksum presence in the last descriptor */
1450                     igb_write_to_rx_buffers(core, d, ba, &written,
1451                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1452                 }
1453             }
1454         } else { /* as per intel docs; skip descriptors with null buf addr */
1455             trace_e1000e_rx_null_descriptor();
1456         }
1457         desc_offset += desc_size;
1458         if (desc_offset >= total_size) {
1459             is_last = true;
1460         }
1461 
1462         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1463                            rss_info, written);
1464         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1465 
1466         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1467 
1468     } while (desc_offset < total_size);
1469 
1470     igb_update_rx_stats(core, size, total_size);
1471 }
1472 
1473 static inline void
1474 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1475 {
1476     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1477 
1478     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1479         net_rx_pkt_fix_l4_csum(pkt);
1480     }
1481 }
1482 
1483 ssize_t
1484 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1485 {
1486     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1487 }
1488 
1489 static ssize_t
1490 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1491                      bool has_vnet, bool *external_tx)
1492 {
1493     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1494 
1495     uint16_t queues = 0;
1496     uint32_t n = 0;
1497     uint8_t min_buf[ETH_ZLEN];
1498     struct iovec min_iov;
1499     struct eth_header *ehdr;
1500     uint8_t *filter_buf;
1501     size_t size, orig_size;
1502     size_t iov_ofs = 0;
1503     E1000E_RxRing rxr;
1504     E1000E_RSSInfo rss_info;
1505     size_t total_size;
1506     int i;
1507 
1508     trace_e1000e_rx_receive_iov(iovcnt);
1509 
1510     if (external_tx) {
1511         *external_tx = true;
1512     }
1513 
1514     if (!e1000x_hw_rx_enabled(core->mac)) {
1515         return -1;
1516     }
1517 
1518     /* Pull virtio header in */
1519     if (has_vnet) {
1520         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1521         iov_ofs = sizeof(struct virtio_net_hdr);
1522     } else {
1523         net_rx_pkt_unset_vhdr(core->rx_pkt);
1524     }
1525 
1526     filter_buf = iov->iov_base + iov_ofs;
1527     orig_size = iov_size(iov, iovcnt);
1528     size = orig_size - iov_ofs;
1529 
1530     /* Pad to minimum Ethernet frame length */
1531     if (size < sizeof(min_buf)) {
1532         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1533         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1534         e1000x_inc_reg_if_not_full(core->mac, RUC);
1535         min_iov.iov_base = filter_buf = min_buf;
1536         min_iov.iov_len = size = sizeof(min_buf);
1537         iovcnt = 1;
1538         iov = &min_iov;
1539         iov_ofs = 0;
1540     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1541         /* This is very unlikely, but may happen. */
1542         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1543         filter_buf = min_buf;
1544     }
1545 
1546     /* Discard oversized packets if !LPE and !SBP. */
1547     if (e1000x_is_oversized(core->mac, size)) {
1548         return orig_size;
1549     }
1550 
1551     ehdr = PKT_GET_ETH_HDR(filter_buf);
1552     net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr));
1553 
1554     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1555                                e1000x_vlan_enabled(core->mac),
1556                                core->mac[VET] & 0xffff);
1557 
1558     queues = igb_receive_assign(core, ehdr, &rss_info, external_tx);
1559     if (!queues) {
1560         trace_e1000e_rx_flt_dropped();
1561         return orig_size;
1562     }
1563 
1564     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1565         e1000x_fcs_len(core->mac);
1566 
1567     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1568         if (!(queues & BIT(i))) {
1569             continue;
1570         }
1571 
1572         igb_rx_ring_init(core, &rxr, i);
1573 
1574         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1575             n |= E1000_ICS_RXO;
1576             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1577             continue;
1578         }
1579 
1580         n |= E1000_ICR_RXT0;
1581 
1582         igb_rx_fix_l4_csum(core, core->rx_pkt);
1583         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1584 
1585         /* Check if receive descriptor minimum threshold hit */
1586         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1587             n |= E1000_ICS_RXDMT0;
1588         }
1589 
1590         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1591 
1592         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1593     }
1594 
1595     trace_e1000e_rx_interrupt_set(n);
1596     igb_set_interrupt_cause(core, n);
1597 
1598     return orig_size;
1599 }
1600 
1601 static inline bool
1602 igb_have_autoneg(IGBCore *core)
1603 {
1604     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1605 }
1606 
1607 static void igb_update_flowctl_status(IGBCore *core)
1608 {
1609     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1610         trace_e1000e_link_autoneg_flowctl(true);
1611         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1612     } else {
1613         trace_e1000e_link_autoneg_flowctl(false);
1614     }
1615 }
1616 
1617 static inline void
1618 igb_link_down(IGBCore *core)
1619 {
1620     e1000x_update_regs_on_link_down(core->mac, core->phy);
1621     igb_update_flowctl_status(core);
1622 }
1623 
1624 static inline void
1625 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1626 {
1627     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1628     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1629 
1630     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1631         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1632     }
1633 }
1634 
1635 void igb_core_set_link_status(IGBCore *core)
1636 {
1637     NetClientState *nc = qemu_get_queue(core->owner_nic);
1638     uint32_t old_status = core->mac[STATUS];
1639 
1640     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1641 
1642     if (nc->link_down) {
1643         e1000x_update_regs_on_link_down(core->mac, core->phy);
1644     } else {
1645         if (igb_have_autoneg(core) &&
1646             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1647             e1000x_restart_autoneg(core->mac, core->phy,
1648                                    core->autoneg_timer);
1649         } else {
1650             e1000x_update_regs_on_link_up(core->mac, core->phy);
1651             igb_start_recv(core);
1652         }
1653     }
1654 
1655     if (core->mac[STATUS] != old_status) {
1656         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1657     }
1658 }
1659 
1660 static void
1661 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1662 {
1663     trace_e1000e_core_ctrl_write(index, val);
1664 
1665     /* RST is self clearing */
1666     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1667     core->mac[CTRL_DUP] = core->mac[CTRL];
1668 
1669     trace_e1000e_link_set_params(
1670         !!(val & E1000_CTRL_ASDE),
1671         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1672         !!(val & E1000_CTRL_FRCSPD),
1673         !!(val & E1000_CTRL_FRCDPX),
1674         !!(val & E1000_CTRL_RFCE),
1675         !!(val & E1000_CTRL_TFCE));
1676 
1677     if (val & E1000_CTRL_RST) {
1678         trace_e1000e_core_ctrl_sw_reset();
1679         igb_reset(core, true);
1680     }
1681 
1682     if (val & E1000_CTRL_PHY_RST) {
1683         trace_e1000e_core_ctrl_phy_reset();
1684         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1685     }
1686 }
1687 
1688 static void
1689 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1690 {
1691     trace_e1000e_rx_set_rfctl(val);
1692 
1693     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1694         trace_e1000e_wrn_iscsi_filtering_not_supported();
1695     }
1696 
1697     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1698         trace_e1000e_wrn_nfsw_filtering_not_supported();
1699     }
1700 
1701     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1702         trace_e1000e_wrn_nfsr_filtering_not_supported();
1703     }
1704 
1705     core->mac[RFCTL] = val;
1706 }
1707 
1708 static void
1709 igb_calc_rxdesclen(IGBCore *core)
1710 {
1711     if (igb_rx_use_legacy_descriptor(core)) {
1712         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1713     } else {
1714         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1715     }
1716     trace_e1000e_rx_desc_len(core->rx_desc_len);
1717 }
1718 
1719 static void
1720 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1721 {
1722     core->mac[RCTL] = val;
1723     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1724 
1725     if (val & E1000_RCTL_DTYP_MASK) {
1726         qemu_log_mask(LOG_GUEST_ERROR,
1727                       "igb: RCTL.DTYP must be zero for compatibility");
1728     }
1729 
1730     if (val & E1000_RCTL_EN) {
1731         igb_calc_rxdesclen(core);
1732         igb_start_recv(core);
1733     }
1734 }
1735 
1736 static inline void
1737 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1738 {
1739     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1740     core->mac[IMS] &= ~bits;
1741 }
1742 
1743 static inline bool
1744 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1745 {
1746     if (timer->running) {
1747         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1748 
1749         return true;
1750     }
1751 
1752     if (timer->core->mac[timer->delay_reg] != 0) {
1753         igb_intrmgr_rearm_timer(timer);
1754     }
1755 
1756     return false;
1757 }
1758 
1759 static inline bool
1760 igb_eitr_should_postpone(IGBCore *core, int idx)
1761 {
1762     return igb_postpone_interrupt(&core->eitr[idx]);
1763 }
1764 
1765 static void igb_send_msix(IGBCore *core)
1766 {
1767     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1768     uint32_t effective_eiac;
1769     int vector;
1770 
1771     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1772         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1773 
1774             trace_e1000e_irq_msix_notify_vec(vector);
1775             igb_msix_notify(core, vector);
1776 
1777             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1778             effective_eiac = core->mac[EIAC] & BIT(vector);
1779             core->mac[EICR] &= ~effective_eiac;
1780         }
1781     }
1782 }
1783 
1784 static inline void
1785 igb_fix_icr_asserted(IGBCore *core)
1786 {
1787     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1788     if (core->mac[ICR]) {
1789         core->mac[ICR] |= E1000_ICR_ASSERTED;
1790     }
1791 
1792     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1793 }
1794 
1795 static void
1796 igb_update_interrupt_state(IGBCore *core)
1797 {
1798     uint32_t icr;
1799     uint32_t causes;
1800     uint32_t int_alloc;
1801 
1802     icr = core->mac[ICR] & core->mac[IMS];
1803 
1804     if (msix_enabled(core->owner)) {
1805         if (icr) {
1806             causes = 0;
1807             if (icr & E1000_ICR_DRSTA) {
1808                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1809                 if (int_alloc & E1000_IVAR_VALID) {
1810                     causes |= BIT(int_alloc & 0x1f);
1811                 }
1812             }
1813             /* Check if other bits (excluding the TCP Timer) are enabled. */
1814             if (icr & ~E1000_ICR_DRSTA) {
1815                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1816                 if (int_alloc & E1000_IVAR_VALID) {
1817                     causes |= BIT(int_alloc & 0x1f);
1818                 }
1819                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1820             }
1821             core->mac[EICR] |= causes;
1822         }
1823 
1824         if ((core->mac[EICR] & core->mac[EIMS])) {
1825             igb_send_msix(core);
1826         }
1827     } else {
1828         igb_fix_icr_asserted(core);
1829 
1830         if (icr) {
1831             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1832         } else {
1833             core->mac[EICR] &= ~E1000_EICR_OTHER;
1834         }
1835 
1836         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1837                                             core->mac[ICR], core->mac[IMS]);
1838 
1839         if (msi_enabled(core->owner)) {
1840             if (icr) {
1841                 msi_notify(core->owner, 0);
1842             }
1843         } else {
1844             if (icr) {
1845                 igb_raise_legacy_irq(core);
1846             } else {
1847                 igb_lower_legacy_irq(core);
1848             }
1849         }
1850     }
1851 }
1852 
1853 static void
1854 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1855 {
1856     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1857 
1858     core->mac[ICR] |= val;
1859 
1860     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1861 
1862     igb_update_interrupt_state(core);
1863 }
1864 
1865 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1866 {
1867     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1868 
1869     trace_igb_irq_write_eics(val, msix);
1870 
1871     core->mac[EICS] |=
1872         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1873 
1874     /*
1875      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1876      * places.
1877      */
1878     core->mac[EICR] = core->mac[EICS];
1879 
1880     igb_update_interrupt_state(core);
1881 }
1882 
1883 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1884 {
1885     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1886 
1887     trace_igb_irq_write_eims(val, msix);
1888 
1889     core->mac[EIMS] |=
1890         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1891 
1892     igb_update_interrupt_state(core);
1893 }
1894 
1895 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
1896 {
1897     /* TODO: Reset of the queue enable and the interrupt registers of the VF. */
1898 
1899     core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
1900     core->mac[V2PMAILBOX0 + vfn] = E1000_V2PMAILBOX_RSTD;
1901 }
1902 
1903 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
1904 {
1905     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
1906 
1907     if ((ent & E1000_IVAR_VALID)) {
1908         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
1909         igb_update_interrupt_state(core);
1910     }
1911 }
1912 
1913 static void mailbox_interrupt_to_pf(IGBCore *core)
1914 {
1915     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
1916 }
1917 
1918 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
1919 {
1920     uint16_t vfn = index - P2VMAILBOX0;
1921 
1922     trace_igb_set_pfmailbox(vfn, val);
1923 
1924     if (val & E1000_P2VMAILBOX_STS) {
1925         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
1926         mailbox_interrupt_to_vf(core, vfn);
1927     }
1928 
1929     if (val & E1000_P2VMAILBOX_ACK) {
1930         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
1931         mailbox_interrupt_to_vf(core, vfn);
1932     }
1933 
1934     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
1935     if (val & E1000_P2VMAILBOX_PFU) {
1936         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
1937             core->mac[index] |= E1000_P2VMAILBOX_PFU;
1938             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
1939         }
1940     } else {
1941         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
1942         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
1943     }
1944 
1945     if (val & E1000_P2VMAILBOX_RVFU) {
1946         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
1947         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
1948                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
1949     }
1950 }
1951 
1952 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
1953 {
1954     uint16_t vfn = index - V2PMAILBOX0;
1955 
1956     trace_igb_set_vfmailbox(vfn, val);
1957 
1958     if (val & E1000_V2PMAILBOX_REQ) {
1959         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
1960         mailbox_interrupt_to_pf(core);
1961     }
1962 
1963     if (val & E1000_V2PMAILBOX_ACK) {
1964         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
1965         mailbox_interrupt_to_pf(core);
1966     }
1967 
1968     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
1969     if (val & E1000_V2PMAILBOX_VFU) {
1970         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
1971             core->mac[index] |= E1000_V2PMAILBOX_VFU;
1972             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
1973         }
1974     } else {
1975         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
1976         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
1977     }
1978 }
1979 
1980 static void igb_w1c(IGBCore *core, int index, uint32_t val)
1981 {
1982     core->mac[index] &= ~val;
1983 }
1984 
1985 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
1986 {
1987     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1988 
1989     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
1990     core->mac[EIMS] &=
1991         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
1992 
1993     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
1994     igb_update_interrupt_state(core);
1995 }
1996 
1997 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
1998 {
1999     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2000 
2001     if (msix) {
2002         trace_igb_irq_write_eiac(val);
2003 
2004         /*
2005          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2006          * that are assigned to a VF are read-only.
2007          */
2008         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2009     }
2010 }
2011 
2012 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2013 {
2014     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2015 
2016     /*
2017      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2018      * are assigned to a VF are read-only.
2019      */
2020     core->mac[EIAM] |=
2021         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2022 
2023     trace_igb_irq_write_eiam(val, msix);
2024 }
2025 
2026 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2027 {
2028     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2029 
2030     /*
2031      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2032      * function.
2033      */
2034     core->mac[EICR] &=
2035         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2036 
2037     trace_igb_irq_write_eicr(val, msix);
2038     igb_update_interrupt_state(core);
2039 }
2040 
2041 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2042 {
2043     uint16_t vfn;
2044 
2045     if (val & E1000_CTRL_RST) {
2046         vfn = (index - PVTCTRL0) / 0x40;
2047         igb_vf_reset(core, vfn);
2048     }
2049 }
2050 
2051 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2052 {
2053     uint16_t vfn = (index - PVTEICS0) / 0x40;
2054 
2055     core->mac[index] = val;
2056     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2057 }
2058 
2059 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2060 {
2061     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2062 
2063     core->mac[index] = val;
2064     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2065 }
2066 
2067 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2068 {
2069     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2070 
2071     core->mac[index] = val;
2072     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2073 }
2074 
2075 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2076 {
2077     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2078 
2079     core->mac[index] = val;
2080     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2081 }
2082 
2083 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2084 {
2085     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2086 
2087     core->mac[index] = val;
2088     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2089 }
2090 
2091 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2092 {
2093     uint16_t vfn = (index - PVTEICR0) / 0x40;
2094 
2095     core->mac[index] = val;
2096     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2097 }
2098 
2099 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2100 {
2101     uint16_t vfn = (index - VTIVAR);
2102     uint16_t qn = vfn;
2103     uint8_t ent;
2104     int n;
2105 
2106     core->mac[index] = val;
2107 
2108     /* Get assigned vector associated with queue Rx#0. */
2109     if ((val & E1000_IVAR_VALID)) {
2110         n = igb_ivar_entry_rx(qn);
2111         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2112         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2113     }
2114 
2115     /* Get assigned vector associated with queue Tx#0 */
2116     ent = val >> 8;
2117     if ((ent & E1000_IVAR_VALID)) {
2118         n = igb_ivar_entry_tx(qn);
2119         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2120         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2121     }
2122 
2123     /*
2124      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2125      */
2126 }
2127 
2128 static inline void
2129 igb_autoneg_timer(void *opaque)
2130 {
2131     IGBCore *core = opaque;
2132     if (!qemu_get_queue(core->owner_nic)->link_down) {
2133         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2134         igb_start_recv(core);
2135 
2136         igb_update_flowctl_status(core);
2137         /* signal link status change to the guest */
2138         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2139     }
2140 }
2141 
2142 static inline uint16_t
2143 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2144 {
2145     uint16_t index = (addr & 0x1ffff) >> 2;
2146     return index + (mac_reg_access[index] & 0xfffe);
2147 }
2148 
2149 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2150     [MII_BMCR]                   = PHY_RW,
2151     [MII_BMSR]                   = PHY_R,
2152     [MII_PHYID1]                 = PHY_R,
2153     [MII_PHYID2]                 = PHY_R,
2154     [MII_ANAR]                   = PHY_RW,
2155     [MII_ANLPAR]                 = PHY_R,
2156     [MII_ANER]                   = PHY_R,
2157     [MII_ANNP]                   = PHY_RW,
2158     [MII_ANLPRNP]                = PHY_R,
2159     [MII_CTRL1000]               = PHY_RW,
2160     [MII_STAT1000]               = PHY_R,
2161     [MII_EXTSTAT]                = PHY_R,
2162 
2163     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2164     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2165     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2166     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2167     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2168     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2169 };
2170 
2171 static void
2172 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2173 {
2174     assert(addr <= MAX_PHY_REG_ADDRESS);
2175 
2176     if (addr == MII_BMCR) {
2177         igb_set_phy_ctrl(core, data);
2178     } else {
2179         core->phy[addr] = data;
2180     }
2181 }
2182 
2183 static void
2184 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2185 {
2186     uint32_t data = val & E1000_MDIC_DATA_MASK;
2187     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2188 
2189     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2190         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2191     } else if (val & E1000_MDIC_OP_READ) {
2192         if (!(igb_phy_regcap[addr] & PHY_R)) {
2193             trace_igb_core_mdic_read_unhandled(addr);
2194             val |= E1000_MDIC_ERROR;
2195         } else {
2196             val = (val ^ data) | core->phy[addr];
2197             trace_igb_core_mdic_read(addr, val);
2198         }
2199     } else if (val & E1000_MDIC_OP_WRITE) {
2200         if (!(igb_phy_regcap[addr] & PHY_W)) {
2201             trace_igb_core_mdic_write_unhandled(addr);
2202             val |= E1000_MDIC_ERROR;
2203         } else {
2204             trace_igb_core_mdic_write(addr, data);
2205             igb_phy_reg_write(core, addr, data);
2206         }
2207     }
2208     core->mac[MDIC] = val | E1000_MDIC_READY;
2209 
2210     if (val & E1000_MDIC_INT_EN) {
2211         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2212     }
2213 }
2214 
2215 static void
2216 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2217 {
2218     core->mac[index] = val & 0xffff;
2219     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2220     igb_start_recv(core);
2221 }
2222 
2223 static void
2224 igb_set_status(IGBCore *core, int index, uint32_t val)
2225 {
2226     if ((val & E1000_STATUS_PHYRA) == 0) {
2227         core->mac[index] &= ~E1000_STATUS_PHYRA;
2228     }
2229 }
2230 
2231 static void
2232 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2233 {
2234     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2235                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2236 
2237     /* TODO: PFRSTD */
2238 
2239     /* Zero self-clearing bits */
2240     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2241     core->mac[CTRL_EXT] = val;
2242 }
2243 
2244 static void
2245 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2246 {
2247     int i;
2248 
2249     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2250 
2251     if (!msix_enabled(core->owner)) {
2252         return;
2253     }
2254 
2255     for (i = 0; i < IGB_INTR_NUM; i++) {
2256         if (core->mac[PBACLR] & BIT(i)) {
2257             msix_clr_pending(core->owner, i);
2258         }
2259     }
2260 }
2261 
2262 static void
2263 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2264 {
2265     core->mac[FCRTH] = val & 0xFFF8;
2266 }
2267 
2268 static void
2269 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2270 {
2271     core->mac[FCRTL] = val & 0x8000FFF8;
2272 }
2273 
2274 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2275     static void                                                \
2276     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2277     {                                                          \
2278         core->mac[index] = val & (BIT(num) - 1);               \
2279     }
2280 
2281 IGB_LOW_BITS_SET_FUNC(4)
2282 IGB_LOW_BITS_SET_FUNC(13)
2283 IGB_LOW_BITS_SET_FUNC(16)
2284 
2285 static void
2286 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2287 {
2288     core->mac[index] = val & 0xffff0;
2289 }
2290 
2291 static void
2292 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2293 {
2294     core->mac[index] = val & E1000_XDBAL_MASK;
2295 }
2296 
2297 static void
2298 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2299 {
2300     IGB_TxRing txr;
2301     int qn = igb_mq_queue_idx(TDT0, index);
2302 
2303     core->mac[index] = val & 0xffff;
2304 
2305     igb_tx_ring_init(core, &txr, qn);
2306     igb_start_xmit(core, &txr);
2307 }
2308 
2309 static void
2310 igb_set_ics(IGBCore *core, int index, uint32_t val)
2311 {
2312     trace_e1000e_irq_write_ics(val);
2313     igb_set_interrupt_cause(core, val);
2314 }
2315 
2316 static void
2317 igb_set_imc(IGBCore *core, int index, uint32_t val)
2318 {
2319     trace_e1000e_irq_ims_clear_set_imc(val);
2320     igb_clear_ims_bits(core, val);
2321     igb_update_interrupt_state(core);
2322 }
2323 
2324 static void
2325 igb_set_ims(IGBCore *core, int index, uint32_t val)
2326 {
2327     uint32_t valid_val = val & 0x77D4FBFD;
2328 
2329     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2330     core->mac[IMS] |= valid_val;
2331     igb_update_interrupt_state(core);
2332 }
2333 
2334 static void igb_commit_icr(IGBCore *core)
2335 {
2336     /*
2337      * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at
2338      * least one bit is set in the IMS and there is a true interrupt as
2339      * reflected in ICR.INTA.
2340      */
2341     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2342         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2343         igb_set_ims(core, IMS, core->mac[IAM]);
2344     } else {
2345         igb_update_interrupt_state(core);
2346     }
2347 }
2348 
2349 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2350 {
2351     uint32_t icr = core->mac[ICR] & ~val;
2352 
2353     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2354     core->mac[ICR] = icr;
2355     igb_commit_icr(core);
2356 }
2357 
2358 static uint32_t
2359 igb_mac_readreg(IGBCore *core, int index)
2360 {
2361     return core->mac[index];
2362 }
2363 
2364 static uint32_t
2365 igb_mac_ics_read(IGBCore *core, int index)
2366 {
2367     trace_e1000e_irq_read_ics(core->mac[ICS]);
2368     return core->mac[ICS];
2369 }
2370 
2371 static uint32_t
2372 igb_mac_ims_read(IGBCore *core, int index)
2373 {
2374     trace_e1000e_irq_read_ims(core->mac[IMS]);
2375     return core->mac[IMS];
2376 }
2377 
2378 static uint32_t
2379 igb_mac_swsm_read(IGBCore *core, int index)
2380 {
2381     uint32_t val = core->mac[SWSM];
2382     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2383     return val;
2384 }
2385 
2386 static uint32_t
2387 igb_mac_eitr_read(IGBCore *core, int index)
2388 {
2389     return core->eitr_guest_value[index - EITR0];
2390 }
2391 
2392 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2393 {
2394     uint32_t val = core->mac[index];
2395 
2396     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2397                           E1000_V2PMAILBOX_RSTD);
2398 
2399     return val;
2400 }
2401 
2402 static uint32_t
2403 igb_mac_icr_read(IGBCore *core, int index)
2404 {
2405     uint32_t ret = core->mac[ICR];
2406     trace_e1000e_irq_icr_read_entry(ret);
2407 
2408     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2409         trace_igb_irq_icr_clear_gpie_nsicr();
2410         core->mac[ICR] = 0;
2411     } else if (core->mac[IMS] == 0) {
2412         trace_e1000e_irq_icr_clear_zero_ims();
2413         core->mac[ICR] = 0;
2414     } else if (!msix_enabled(core->owner)) {
2415         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2416         core->mac[ICR] = 0;
2417     }
2418 
2419     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2420     igb_commit_icr(core);
2421     return ret;
2422 }
2423 
2424 static uint32_t
2425 igb_mac_read_clr4(IGBCore *core, int index)
2426 {
2427     uint32_t ret = core->mac[index];
2428 
2429     core->mac[index] = 0;
2430     return ret;
2431 }
2432 
2433 static uint32_t
2434 igb_mac_read_clr8(IGBCore *core, int index)
2435 {
2436     uint32_t ret = core->mac[index];
2437 
2438     core->mac[index] = 0;
2439     core->mac[index - 1] = 0;
2440     return ret;
2441 }
2442 
2443 static uint32_t
2444 igb_get_ctrl(IGBCore *core, int index)
2445 {
2446     uint32_t val = core->mac[CTRL];
2447 
2448     trace_e1000e_link_read_params(
2449         !!(val & E1000_CTRL_ASDE),
2450         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2451         !!(val & E1000_CTRL_FRCSPD),
2452         !!(val & E1000_CTRL_FRCDPX),
2453         !!(val & E1000_CTRL_RFCE),
2454         !!(val & E1000_CTRL_TFCE));
2455 
2456     return val;
2457 }
2458 
2459 static uint32_t igb_get_status(IGBCore *core, int index)
2460 {
2461     uint32_t res = core->mac[STATUS];
2462     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2463 
2464     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2465         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2466     } else {
2467         res |= E1000_STATUS_FD;
2468     }
2469 
2470     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2471         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2472         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2473         case E1000_CTRL_SPD_10:
2474             res |= E1000_STATUS_SPEED_10;
2475             break;
2476         case E1000_CTRL_SPD_100:
2477             res |= E1000_STATUS_SPEED_100;
2478             break;
2479         case E1000_CTRL_SPD_1000:
2480         default:
2481             res |= E1000_STATUS_SPEED_1000;
2482             break;
2483         }
2484     } else {
2485         res |= E1000_STATUS_SPEED_1000;
2486     }
2487 
2488     if (num_vfs) {
2489         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2490         res |= E1000_STATUS_IOV_MODE;
2491     }
2492 
2493     /*
2494      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2495      * left set after E1000_CTRL_LRST is set.
2496      */
2497     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2498         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2499         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2500     }
2501 
2502     return res;
2503 }
2504 
2505 static void
2506 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2507 {
2508     core->mac[index] = val;
2509 }
2510 
2511 static void
2512 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2513 {
2514     uint32_t macaddr[2];
2515 
2516     core->mac[index] = val;
2517 
2518     macaddr[0] = cpu_to_le32(core->mac[RA]);
2519     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2520     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2521         (uint8_t *) macaddr);
2522 
2523     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2524 }
2525 
2526 static void
2527 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2528 {
2529     static const uint32_t ro_bits = E1000_EECD_PRES          |
2530                                     E1000_EECD_AUTO_RD       |
2531                                     E1000_EECD_SIZE_EX_MASK;
2532 
2533     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2534 }
2535 
2536 static void
2537 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2538 {
2539     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2540     uint32_t flags = 0;
2541     uint32_t data = 0;
2542 
2543     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2544         data = core->eeprom[addr];
2545         flags = E1000_EERW_DONE;
2546     }
2547 
2548     core->mac[EERD] = flags                           |
2549                       (addr << E1000_EERW_ADDR_SHIFT) |
2550                       (data << E1000_EERW_DATA_SHIFT);
2551 }
2552 
2553 static void
2554 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2555 {
2556     uint32_t eitr_num = index - EITR0;
2557 
2558     trace_igb_irq_eitr_set(eitr_num, val);
2559 
2560     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2561     core->mac[index] = val & 0x7FFE;
2562 }
2563 
2564 static void
2565 igb_update_rx_offloads(IGBCore *core)
2566 {
2567     int cso_state = igb_rx_l4_cso_enabled(core);
2568 
2569     trace_e1000e_rx_set_cso(cso_state);
2570 
2571     if (core->has_vnet) {
2572         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2573                          cso_state, 0, 0, 0, 0);
2574     }
2575 }
2576 
2577 static void
2578 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2579 {
2580     core->mac[RXCSUM] = val;
2581     igb_update_rx_offloads(core);
2582 }
2583 
2584 static void
2585 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2586 {
2587     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2588     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2589 }
2590 
2591 static uint32_t igb_get_systiml(IGBCore *core, int index)
2592 {
2593     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2594     return core->mac[SYSTIML];
2595 }
2596 
2597 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2598 {
2599     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2600     return core->mac[RXSATRH];
2601 }
2602 
2603 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2604 {
2605     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2606     return core->mac[TXSTMPH];
2607 }
2608 
2609 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2610 {
2611     e1000x_set_timinca(core->mac, &core->timadj, val);
2612 }
2613 
2614 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2615 {
2616     core->mac[TIMADJH] = val;
2617     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2618 }
2619 
2620 #define igb_getreg(x)    [x] = igb_mac_readreg
2621 typedef uint32_t (*readops)(IGBCore *, int);
2622 static const readops igb_macreg_readops[] = {
2623     igb_getreg(WUFC),
2624     igb_getreg(MANC),
2625     igb_getreg(TOTL),
2626     igb_getreg(RDT0),
2627     igb_getreg(RDT1),
2628     igb_getreg(RDT2),
2629     igb_getreg(RDT3),
2630     igb_getreg(RDT4),
2631     igb_getreg(RDT5),
2632     igb_getreg(RDT6),
2633     igb_getreg(RDT7),
2634     igb_getreg(RDT8),
2635     igb_getreg(RDT9),
2636     igb_getreg(RDT10),
2637     igb_getreg(RDT11),
2638     igb_getreg(RDT12),
2639     igb_getreg(RDT13),
2640     igb_getreg(RDT14),
2641     igb_getreg(RDT15),
2642     igb_getreg(RDBAH0),
2643     igb_getreg(RDBAH1),
2644     igb_getreg(RDBAH2),
2645     igb_getreg(RDBAH3),
2646     igb_getreg(RDBAH4),
2647     igb_getreg(RDBAH5),
2648     igb_getreg(RDBAH6),
2649     igb_getreg(RDBAH7),
2650     igb_getreg(RDBAH8),
2651     igb_getreg(RDBAH9),
2652     igb_getreg(RDBAH10),
2653     igb_getreg(RDBAH11),
2654     igb_getreg(RDBAH12),
2655     igb_getreg(RDBAH13),
2656     igb_getreg(RDBAH14),
2657     igb_getreg(RDBAH15),
2658     igb_getreg(TDBAL0),
2659     igb_getreg(TDBAL1),
2660     igb_getreg(TDBAL2),
2661     igb_getreg(TDBAL3),
2662     igb_getreg(TDBAL4),
2663     igb_getreg(TDBAL5),
2664     igb_getreg(TDBAL6),
2665     igb_getreg(TDBAL7),
2666     igb_getreg(TDBAL8),
2667     igb_getreg(TDBAL9),
2668     igb_getreg(TDBAL10),
2669     igb_getreg(TDBAL11),
2670     igb_getreg(TDBAL12),
2671     igb_getreg(TDBAL13),
2672     igb_getreg(TDBAL14),
2673     igb_getreg(TDBAL15),
2674     igb_getreg(RDLEN0),
2675     igb_getreg(RDLEN1),
2676     igb_getreg(RDLEN2),
2677     igb_getreg(RDLEN3),
2678     igb_getreg(RDLEN4),
2679     igb_getreg(RDLEN5),
2680     igb_getreg(RDLEN6),
2681     igb_getreg(RDLEN7),
2682     igb_getreg(RDLEN8),
2683     igb_getreg(RDLEN9),
2684     igb_getreg(RDLEN10),
2685     igb_getreg(RDLEN11),
2686     igb_getreg(RDLEN12),
2687     igb_getreg(RDLEN13),
2688     igb_getreg(RDLEN14),
2689     igb_getreg(RDLEN15),
2690     igb_getreg(SRRCTL0),
2691     igb_getreg(SRRCTL1),
2692     igb_getreg(SRRCTL2),
2693     igb_getreg(SRRCTL3),
2694     igb_getreg(SRRCTL4),
2695     igb_getreg(SRRCTL5),
2696     igb_getreg(SRRCTL6),
2697     igb_getreg(SRRCTL7),
2698     igb_getreg(SRRCTL8),
2699     igb_getreg(SRRCTL9),
2700     igb_getreg(SRRCTL10),
2701     igb_getreg(SRRCTL11),
2702     igb_getreg(SRRCTL12),
2703     igb_getreg(SRRCTL13),
2704     igb_getreg(SRRCTL14),
2705     igb_getreg(SRRCTL15),
2706     igb_getreg(LATECOL),
2707     igb_getreg(XONTXC),
2708     igb_getreg(TDFH),
2709     igb_getreg(TDFT),
2710     igb_getreg(TDFHS),
2711     igb_getreg(TDFTS),
2712     igb_getreg(TDFPC),
2713     igb_getreg(WUS),
2714     igb_getreg(RDFH),
2715     igb_getreg(RDFT),
2716     igb_getreg(RDFHS),
2717     igb_getreg(RDFTS),
2718     igb_getreg(RDFPC),
2719     igb_getreg(GORCL),
2720     igb_getreg(MGTPRC),
2721     igb_getreg(EERD),
2722     igb_getreg(EIAC),
2723     igb_getreg(MANC2H),
2724     igb_getreg(RXCSUM),
2725     igb_getreg(GSCL_3),
2726     igb_getreg(GSCN_2),
2727     igb_getreg(FCAH),
2728     igb_getreg(FCRTH),
2729     igb_getreg(FLOP),
2730     igb_getreg(RXSTMPH),
2731     igb_getreg(TXSTMPL),
2732     igb_getreg(TIMADJL),
2733     igb_getreg(RDH0),
2734     igb_getreg(RDH1),
2735     igb_getreg(RDH2),
2736     igb_getreg(RDH3),
2737     igb_getreg(RDH4),
2738     igb_getreg(RDH5),
2739     igb_getreg(RDH6),
2740     igb_getreg(RDH7),
2741     igb_getreg(RDH8),
2742     igb_getreg(RDH9),
2743     igb_getreg(RDH10),
2744     igb_getreg(RDH11),
2745     igb_getreg(RDH12),
2746     igb_getreg(RDH13),
2747     igb_getreg(RDH14),
2748     igb_getreg(RDH15),
2749     igb_getreg(TDT0),
2750     igb_getreg(TDT1),
2751     igb_getreg(TDT2),
2752     igb_getreg(TDT3),
2753     igb_getreg(TDT4),
2754     igb_getreg(TDT5),
2755     igb_getreg(TDT6),
2756     igb_getreg(TDT7),
2757     igb_getreg(TDT8),
2758     igb_getreg(TDT9),
2759     igb_getreg(TDT10),
2760     igb_getreg(TDT11),
2761     igb_getreg(TDT12),
2762     igb_getreg(TDT13),
2763     igb_getreg(TDT14),
2764     igb_getreg(TDT15),
2765     igb_getreg(TNCRS),
2766     igb_getreg(RJC),
2767     igb_getreg(IAM),
2768     igb_getreg(GSCL_2),
2769     igb_getreg(TIPG),
2770     igb_getreg(FLMNGCTL),
2771     igb_getreg(FLMNGCNT),
2772     igb_getreg(TSYNCTXCTL),
2773     igb_getreg(EEMNGDATA),
2774     igb_getreg(CTRL_EXT),
2775     igb_getreg(SYSTIMH),
2776     igb_getreg(EEMNGCTL),
2777     igb_getreg(FLMNGDATA),
2778     igb_getreg(TSYNCRXCTL),
2779     igb_getreg(LEDCTL),
2780     igb_getreg(TCTL),
2781     igb_getreg(TCTL_EXT),
2782     igb_getreg(DTXCTL),
2783     igb_getreg(RXPBS),
2784     igb_getreg(TDH0),
2785     igb_getreg(TDH1),
2786     igb_getreg(TDH2),
2787     igb_getreg(TDH3),
2788     igb_getreg(TDH4),
2789     igb_getreg(TDH5),
2790     igb_getreg(TDH6),
2791     igb_getreg(TDH7),
2792     igb_getreg(TDH8),
2793     igb_getreg(TDH9),
2794     igb_getreg(TDH10),
2795     igb_getreg(TDH11),
2796     igb_getreg(TDH12),
2797     igb_getreg(TDH13),
2798     igb_getreg(TDH14),
2799     igb_getreg(TDH15),
2800     igb_getreg(ECOL),
2801     igb_getreg(DC),
2802     igb_getreg(RLEC),
2803     igb_getreg(XOFFTXC),
2804     igb_getreg(RFC),
2805     igb_getreg(RNBC),
2806     igb_getreg(MGTPTC),
2807     igb_getreg(TIMINCA),
2808     igb_getreg(FACTPS),
2809     igb_getreg(GSCL_1),
2810     igb_getreg(GSCN_0),
2811     igb_getreg(PBACLR),
2812     igb_getreg(FCTTV),
2813     igb_getreg(RXSATRL),
2814     igb_getreg(TORL),
2815     igb_getreg(TDLEN0),
2816     igb_getreg(TDLEN1),
2817     igb_getreg(TDLEN2),
2818     igb_getreg(TDLEN3),
2819     igb_getreg(TDLEN4),
2820     igb_getreg(TDLEN5),
2821     igb_getreg(TDLEN6),
2822     igb_getreg(TDLEN7),
2823     igb_getreg(TDLEN8),
2824     igb_getreg(TDLEN9),
2825     igb_getreg(TDLEN10),
2826     igb_getreg(TDLEN11),
2827     igb_getreg(TDLEN12),
2828     igb_getreg(TDLEN13),
2829     igb_getreg(TDLEN14),
2830     igb_getreg(TDLEN15),
2831     igb_getreg(MCC),
2832     igb_getreg(WUC),
2833     igb_getreg(EECD),
2834     igb_getreg(FCRTV),
2835     igb_getreg(TXDCTL0),
2836     igb_getreg(TXDCTL1),
2837     igb_getreg(TXDCTL2),
2838     igb_getreg(TXDCTL3),
2839     igb_getreg(TXDCTL4),
2840     igb_getreg(TXDCTL5),
2841     igb_getreg(TXDCTL6),
2842     igb_getreg(TXDCTL7),
2843     igb_getreg(TXDCTL8),
2844     igb_getreg(TXDCTL9),
2845     igb_getreg(TXDCTL10),
2846     igb_getreg(TXDCTL11),
2847     igb_getreg(TXDCTL12),
2848     igb_getreg(TXDCTL13),
2849     igb_getreg(TXDCTL14),
2850     igb_getreg(TXDCTL15),
2851     igb_getreg(TXCTL0),
2852     igb_getreg(TXCTL1),
2853     igb_getreg(TXCTL2),
2854     igb_getreg(TXCTL3),
2855     igb_getreg(TXCTL4),
2856     igb_getreg(TXCTL5),
2857     igb_getreg(TXCTL6),
2858     igb_getreg(TXCTL7),
2859     igb_getreg(TXCTL8),
2860     igb_getreg(TXCTL9),
2861     igb_getreg(TXCTL10),
2862     igb_getreg(TXCTL11),
2863     igb_getreg(TXCTL12),
2864     igb_getreg(TXCTL13),
2865     igb_getreg(TXCTL14),
2866     igb_getreg(TXCTL15),
2867     igb_getreg(TDWBAL0),
2868     igb_getreg(TDWBAL1),
2869     igb_getreg(TDWBAL2),
2870     igb_getreg(TDWBAL3),
2871     igb_getreg(TDWBAL4),
2872     igb_getreg(TDWBAL5),
2873     igb_getreg(TDWBAL6),
2874     igb_getreg(TDWBAL7),
2875     igb_getreg(TDWBAL8),
2876     igb_getreg(TDWBAL9),
2877     igb_getreg(TDWBAL10),
2878     igb_getreg(TDWBAL11),
2879     igb_getreg(TDWBAL12),
2880     igb_getreg(TDWBAL13),
2881     igb_getreg(TDWBAL14),
2882     igb_getreg(TDWBAL15),
2883     igb_getreg(TDWBAH0),
2884     igb_getreg(TDWBAH1),
2885     igb_getreg(TDWBAH2),
2886     igb_getreg(TDWBAH3),
2887     igb_getreg(TDWBAH4),
2888     igb_getreg(TDWBAH5),
2889     igb_getreg(TDWBAH6),
2890     igb_getreg(TDWBAH7),
2891     igb_getreg(TDWBAH8),
2892     igb_getreg(TDWBAH9),
2893     igb_getreg(TDWBAH10),
2894     igb_getreg(TDWBAH11),
2895     igb_getreg(TDWBAH12),
2896     igb_getreg(TDWBAH13),
2897     igb_getreg(TDWBAH14),
2898     igb_getreg(TDWBAH15),
2899     igb_getreg(PVTCTRL0),
2900     igb_getreg(PVTCTRL1),
2901     igb_getreg(PVTCTRL2),
2902     igb_getreg(PVTCTRL3),
2903     igb_getreg(PVTCTRL4),
2904     igb_getreg(PVTCTRL5),
2905     igb_getreg(PVTCTRL6),
2906     igb_getreg(PVTCTRL7),
2907     igb_getreg(PVTEIMS0),
2908     igb_getreg(PVTEIMS1),
2909     igb_getreg(PVTEIMS2),
2910     igb_getreg(PVTEIMS3),
2911     igb_getreg(PVTEIMS4),
2912     igb_getreg(PVTEIMS5),
2913     igb_getreg(PVTEIMS6),
2914     igb_getreg(PVTEIMS7),
2915     igb_getreg(PVTEIAC0),
2916     igb_getreg(PVTEIAC1),
2917     igb_getreg(PVTEIAC2),
2918     igb_getreg(PVTEIAC3),
2919     igb_getreg(PVTEIAC4),
2920     igb_getreg(PVTEIAC5),
2921     igb_getreg(PVTEIAC6),
2922     igb_getreg(PVTEIAC7),
2923     igb_getreg(PVTEIAM0),
2924     igb_getreg(PVTEIAM1),
2925     igb_getreg(PVTEIAM2),
2926     igb_getreg(PVTEIAM3),
2927     igb_getreg(PVTEIAM4),
2928     igb_getreg(PVTEIAM5),
2929     igb_getreg(PVTEIAM6),
2930     igb_getreg(PVTEIAM7),
2931     igb_getreg(PVFGPRC0),
2932     igb_getreg(PVFGPRC1),
2933     igb_getreg(PVFGPRC2),
2934     igb_getreg(PVFGPRC3),
2935     igb_getreg(PVFGPRC4),
2936     igb_getreg(PVFGPRC5),
2937     igb_getreg(PVFGPRC6),
2938     igb_getreg(PVFGPRC7),
2939     igb_getreg(PVFGPTC0),
2940     igb_getreg(PVFGPTC1),
2941     igb_getreg(PVFGPTC2),
2942     igb_getreg(PVFGPTC3),
2943     igb_getreg(PVFGPTC4),
2944     igb_getreg(PVFGPTC5),
2945     igb_getreg(PVFGPTC6),
2946     igb_getreg(PVFGPTC7),
2947     igb_getreg(PVFGORC0),
2948     igb_getreg(PVFGORC1),
2949     igb_getreg(PVFGORC2),
2950     igb_getreg(PVFGORC3),
2951     igb_getreg(PVFGORC4),
2952     igb_getreg(PVFGORC5),
2953     igb_getreg(PVFGORC6),
2954     igb_getreg(PVFGORC7),
2955     igb_getreg(PVFGOTC0),
2956     igb_getreg(PVFGOTC1),
2957     igb_getreg(PVFGOTC2),
2958     igb_getreg(PVFGOTC3),
2959     igb_getreg(PVFGOTC4),
2960     igb_getreg(PVFGOTC5),
2961     igb_getreg(PVFGOTC6),
2962     igb_getreg(PVFGOTC7),
2963     igb_getreg(PVFMPRC0),
2964     igb_getreg(PVFMPRC1),
2965     igb_getreg(PVFMPRC2),
2966     igb_getreg(PVFMPRC3),
2967     igb_getreg(PVFMPRC4),
2968     igb_getreg(PVFMPRC5),
2969     igb_getreg(PVFMPRC6),
2970     igb_getreg(PVFMPRC7),
2971     igb_getreg(PVFGPRLBC0),
2972     igb_getreg(PVFGPRLBC1),
2973     igb_getreg(PVFGPRLBC2),
2974     igb_getreg(PVFGPRLBC3),
2975     igb_getreg(PVFGPRLBC4),
2976     igb_getreg(PVFGPRLBC5),
2977     igb_getreg(PVFGPRLBC6),
2978     igb_getreg(PVFGPRLBC7),
2979     igb_getreg(PVFGPTLBC0),
2980     igb_getreg(PVFGPTLBC1),
2981     igb_getreg(PVFGPTLBC2),
2982     igb_getreg(PVFGPTLBC3),
2983     igb_getreg(PVFGPTLBC4),
2984     igb_getreg(PVFGPTLBC5),
2985     igb_getreg(PVFGPTLBC6),
2986     igb_getreg(PVFGPTLBC7),
2987     igb_getreg(PVFGORLBC0),
2988     igb_getreg(PVFGORLBC1),
2989     igb_getreg(PVFGORLBC2),
2990     igb_getreg(PVFGORLBC3),
2991     igb_getreg(PVFGORLBC4),
2992     igb_getreg(PVFGORLBC5),
2993     igb_getreg(PVFGORLBC6),
2994     igb_getreg(PVFGORLBC7),
2995     igb_getreg(PVFGOTLBC0),
2996     igb_getreg(PVFGOTLBC1),
2997     igb_getreg(PVFGOTLBC2),
2998     igb_getreg(PVFGOTLBC3),
2999     igb_getreg(PVFGOTLBC4),
3000     igb_getreg(PVFGOTLBC5),
3001     igb_getreg(PVFGOTLBC6),
3002     igb_getreg(PVFGOTLBC7),
3003     igb_getreg(RCTL),
3004     igb_getreg(MDIC),
3005     igb_getreg(FCRUC),
3006     igb_getreg(VET),
3007     igb_getreg(RDBAL0),
3008     igb_getreg(RDBAL1),
3009     igb_getreg(RDBAL2),
3010     igb_getreg(RDBAL3),
3011     igb_getreg(RDBAL4),
3012     igb_getreg(RDBAL5),
3013     igb_getreg(RDBAL6),
3014     igb_getreg(RDBAL7),
3015     igb_getreg(RDBAL8),
3016     igb_getreg(RDBAL9),
3017     igb_getreg(RDBAL10),
3018     igb_getreg(RDBAL11),
3019     igb_getreg(RDBAL12),
3020     igb_getreg(RDBAL13),
3021     igb_getreg(RDBAL14),
3022     igb_getreg(RDBAL15),
3023     igb_getreg(TDBAH0),
3024     igb_getreg(TDBAH1),
3025     igb_getreg(TDBAH2),
3026     igb_getreg(TDBAH3),
3027     igb_getreg(TDBAH4),
3028     igb_getreg(TDBAH5),
3029     igb_getreg(TDBAH6),
3030     igb_getreg(TDBAH7),
3031     igb_getreg(TDBAH8),
3032     igb_getreg(TDBAH9),
3033     igb_getreg(TDBAH10),
3034     igb_getreg(TDBAH11),
3035     igb_getreg(TDBAH12),
3036     igb_getreg(TDBAH13),
3037     igb_getreg(TDBAH14),
3038     igb_getreg(TDBAH15),
3039     igb_getreg(SCC),
3040     igb_getreg(COLC),
3041     igb_getreg(XOFFRXC),
3042     igb_getreg(IPAV),
3043     igb_getreg(GOTCL),
3044     igb_getreg(MGTPDC),
3045     igb_getreg(GCR),
3046     igb_getreg(MFVAL),
3047     igb_getreg(FUNCTAG),
3048     igb_getreg(GSCL_4),
3049     igb_getreg(GSCN_3),
3050     igb_getreg(MRQC),
3051     igb_getreg(FCT),
3052     igb_getreg(FLA),
3053     igb_getreg(RXDCTL0),
3054     igb_getreg(RXDCTL1),
3055     igb_getreg(RXDCTL2),
3056     igb_getreg(RXDCTL3),
3057     igb_getreg(RXDCTL4),
3058     igb_getreg(RXDCTL5),
3059     igb_getreg(RXDCTL6),
3060     igb_getreg(RXDCTL7),
3061     igb_getreg(RXDCTL8),
3062     igb_getreg(RXDCTL9),
3063     igb_getreg(RXDCTL10),
3064     igb_getreg(RXDCTL11),
3065     igb_getreg(RXDCTL12),
3066     igb_getreg(RXDCTL13),
3067     igb_getreg(RXDCTL14),
3068     igb_getreg(RXDCTL15),
3069     igb_getreg(RXSTMPL),
3070     igb_getreg(TIMADJH),
3071     igb_getreg(FCRTL),
3072     igb_getreg(XONRXC),
3073     igb_getreg(RFCTL),
3074     igb_getreg(GSCN_1),
3075     igb_getreg(FCAL),
3076     igb_getreg(GPIE),
3077     igb_getreg(TXPBS),
3078     igb_getreg(RLPML),
3079 
3080     [TOTH]    = igb_mac_read_clr8,
3081     [GOTCH]   = igb_mac_read_clr8,
3082     [PRC64]   = igb_mac_read_clr4,
3083     [PRC255]  = igb_mac_read_clr4,
3084     [PRC1023] = igb_mac_read_clr4,
3085     [PTC64]   = igb_mac_read_clr4,
3086     [PTC255]  = igb_mac_read_clr4,
3087     [PTC1023] = igb_mac_read_clr4,
3088     [GPRC]    = igb_mac_read_clr4,
3089     [TPT]     = igb_mac_read_clr4,
3090     [RUC]     = igb_mac_read_clr4,
3091     [BPRC]    = igb_mac_read_clr4,
3092     [MPTC]    = igb_mac_read_clr4,
3093     [IAC]     = igb_mac_read_clr4,
3094     [ICR]     = igb_mac_icr_read,
3095     [STATUS]  = igb_get_status,
3096     [ICS]     = igb_mac_ics_read,
3097     /*
3098      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3099      */
3100     [IMC]     = igb_mac_ims_read,
3101     [TORH]    = igb_mac_read_clr8,
3102     [GORCH]   = igb_mac_read_clr8,
3103     [PRC127]  = igb_mac_read_clr4,
3104     [PRC511]  = igb_mac_read_clr4,
3105     [PRC1522] = igb_mac_read_clr4,
3106     [PTC127]  = igb_mac_read_clr4,
3107     [PTC511]  = igb_mac_read_clr4,
3108     [PTC1522] = igb_mac_read_clr4,
3109     [GPTC]    = igb_mac_read_clr4,
3110     [TPR]     = igb_mac_read_clr4,
3111     [ROC]     = igb_mac_read_clr4,
3112     [MPRC]    = igb_mac_read_clr4,
3113     [BPTC]    = igb_mac_read_clr4,
3114     [TSCTC]   = igb_mac_read_clr4,
3115     [CTRL]    = igb_get_ctrl,
3116     [SWSM]    = igb_mac_swsm_read,
3117     [IMS]     = igb_mac_ims_read,
3118     [SYSTIML] = igb_get_systiml,
3119     [RXSATRH] = igb_get_rxsatrh,
3120     [TXSTMPH] = igb_get_txstmph,
3121 
3122     [CRCERRS ... MPC]      = igb_mac_readreg,
3123     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3124     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3125     [RA ... RA + 31]       = igb_mac_readreg,
3126     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3127     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3128     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3129     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3130     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3131     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3132     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3133     [RETA ... RETA + 31]   = igb_mac_readreg,
3134     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3135     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3136     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3137     [PVTEICR0] = igb_mac_read_clr4,
3138     [PVTEICR1] = igb_mac_read_clr4,
3139     [PVTEICR2] = igb_mac_read_clr4,
3140     [PVTEICR3] = igb_mac_read_clr4,
3141     [PVTEICR4] = igb_mac_read_clr4,
3142     [PVTEICR5] = igb_mac_read_clr4,
3143     [PVTEICR6] = igb_mac_read_clr4,
3144     [PVTEICR7] = igb_mac_read_clr4,
3145 
3146     /* IGB specific: */
3147     [FWSM]       = igb_mac_readreg,
3148     [SW_FW_SYNC] = igb_mac_readreg,
3149     [HTCBDPC]    = igb_mac_read_clr4,
3150     [EICR]       = igb_mac_read_clr4,
3151     [EIMS]       = igb_mac_readreg,
3152     [EIAM]       = igb_mac_readreg,
3153     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3154     igb_getreg(IVAR_MISC),
3155     igb_getreg(VT_CTL),
3156     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3157     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3158     igb_getreg(MBVFICR),
3159     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3160     igb_getreg(MBVFIMR),
3161     igb_getreg(VFLRE),
3162     igb_getreg(VFRE),
3163     igb_getreg(VFTE),
3164     igb_getreg(QDE),
3165     igb_getreg(DTXSWC),
3166     igb_getreg(RPLOLR),
3167     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3168     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3169     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3170     [WVBR] = igb_mac_read_clr4,
3171     [RQDPC0] = igb_mac_read_clr4,
3172     [RQDPC1] = igb_mac_read_clr4,
3173     [RQDPC2] = igb_mac_read_clr4,
3174     [RQDPC3] = igb_mac_read_clr4,
3175     [RQDPC4] = igb_mac_read_clr4,
3176     [RQDPC5] = igb_mac_read_clr4,
3177     [RQDPC6] = igb_mac_read_clr4,
3178     [RQDPC7] = igb_mac_read_clr4,
3179     [RQDPC8] = igb_mac_read_clr4,
3180     [RQDPC9] = igb_mac_read_clr4,
3181     [RQDPC10] = igb_mac_read_clr4,
3182     [RQDPC11] = igb_mac_read_clr4,
3183     [RQDPC12] = igb_mac_read_clr4,
3184     [RQDPC13] = igb_mac_read_clr4,
3185     [RQDPC14] = igb_mac_read_clr4,
3186     [RQDPC15] = igb_mac_read_clr4,
3187     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3188     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3189 };
3190 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3191 
3192 #define igb_putreg(x)    [x] = igb_mac_writereg
3193 typedef void (*writeops)(IGBCore *, int, uint32_t);
3194 static const writeops igb_macreg_writeops[] = {
3195     igb_putreg(SWSM),
3196     igb_putreg(WUFC),
3197     igb_putreg(RDBAH0),
3198     igb_putreg(RDBAH1),
3199     igb_putreg(RDBAH2),
3200     igb_putreg(RDBAH3),
3201     igb_putreg(RDBAH4),
3202     igb_putreg(RDBAH5),
3203     igb_putreg(RDBAH6),
3204     igb_putreg(RDBAH7),
3205     igb_putreg(RDBAH8),
3206     igb_putreg(RDBAH9),
3207     igb_putreg(RDBAH10),
3208     igb_putreg(RDBAH11),
3209     igb_putreg(RDBAH12),
3210     igb_putreg(RDBAH13),
3211     igb_putreg(RDBAH14),
3212     igb_putreg(RDBAH15),
3213     igb_putreg(SRRCTL0),
3214     igb_putreg(SRRCTL1),
3215     igb_putreg(SRRCTL2),
3216     igb_putreg(SRRCTL3),
3217     igb_putreg(SRRCTL4),
3218     igb_putreg(SRRCTL5),
3219     igb_putreg(SRRCTL6),
3220     igb_putreg(SRRCTL7),
3221     igb_putreg(SRRCTL8),
3222     igb_putreg(SRRCTL9),
3223     igb_putreg(SRRCTL10),
3224     igb_putreg(SRRCTL11),
3225     igb_putreg(SRRCTL12),
3226     igb_putreg(SRRCTL13),
3227     igb_putreg(SRRCTL14),
3228     igb_putreg(SRRCTL15),
3229     igb_putreg(RXDCTL0),
3230     igb_putreg(RXDCTL1),
3231     igb_putreg(RXDCTL2),
3232     igb_putreg(RXDCTL3),
3233     igb_putreg(RXDCTL4),
3234     igb_putreg(RXDCTL5),
3235     igb_putreg(RXDCTL6),
3236     igb_putreg(RXDCTL7),
3237     igb_putreg(RXDCTL8),
3238     igb_putreg(RXDCTL9),
3239     igb_putreg(RXDCTL10),
3240     igb_putreg(RXDCTL11),
3241     igb_putreg(RXDCTL12),
3242     igb_putreg(RXDCTL13),
3243     igb_putreg(RXDCTL14),
3244     igb_putreg(RXDCTL15),
3245     igb_putreg(LEDCTL),
3246     igb_putreg(TCTL),
3247     igb_putreg(TCTL_EXT),
3248     igb_putreg(DTXCTL),
3249     igb_putreg(RXPBS),
3250     igb_putreg(RQDPC0),
3251     igb_putreg(FCAL),
3252     igb_putreg(FCRUC),
3253     igb_putreg(WUC),
3254     igb_putreg(WUS),
3255     igb_putreg(IPAV),
3256     igb_putreg(TDBAH0),
3257     igb_putreg(TDBAH1),
3258     igb_putreg(TDBAH2),
3259     igb_putreg(TDBAH3),
3260     igb_putreg(TDBAH4),
3261     igb_putreg(TDBAH5),
3262     igb_putreg(TDBAH6),
3263     igb_putreg(TDBAH7),
3264     igb_putreg(TDBAH8),
3265     igb_putreg(TDBAH9),
3266     igb_putreg(TDBAH10),
3267     igb_putreg(TDBAH11),
3268     igb_putreg(TDBAH12),
3269     igb_putreg(TDBAH13),
3270     igb_putreg(TDBAH14),
3271     igb_putreg(TDBAH15),
3272     igb_putreg(IAM),
3273     igb_putreg(MANC),
3274     igb_putreg(MANC2H),
3275     igb_putreg(MFVAL),
3276     igb_putreg(FACTPS),
3277     igb_putreg(FUNCTAG),
3278     igb_putreg(GSCL_1),
3279     igb_putreg(GSCL_2),
3280     igb_putreg(GSCL_3),
3281     igb_putreg(GSCL_4),
3282     igb_putreg(GSCN_0),
3283     igb_putreg(GSCN_1),
3284     igb_putreg(GSCN_2),
3285     igb_putreg(GSCN_3),
3286     igb_putreg(MRQC),
3287     igb_putreg(FLOP),
3288     igb_putreg(FLA),
3289     igb_putreg(TXDCTL0),
3290     igb_putreg(TXDCTL1),
3291     igb_putreg(TXDCTL2),
3292     igb_putreg(TXDCTL3),
3293     igb_putreg(TXDCTL4),
3294     igb_putreg(TXDCTL5),
3295     igb_putreg(TXDCTL6),
3296     igb_putreg(TXDCTL7),
3297     igb_putreg(TXDCTL8),
3298     igb_putreg(TXDCTL9),
3299     igb_putreg(TXDCTL10),
3300     igb_putreg(TXDCTL11),
3301     igb_putreg(TXDCTL12),
3302     igb_putreg(TXDCTL13),
3303     igb_putreg(TXDCTL14),
3304     igb_putreg(TXDCTL15),
3305     igb_putreg(TXCTL0),
3306     igb_putreg(TXCTL1),
3307     igb_putreg(TXCTL2),
3308     igb_putreg(TXCTL3),
3309     igb_putreg(TXCTL4),
3310     igb_putreg(TXCTL5),
3311     igb_putreg(TXCTL6),
3312     igb_putreg(TXCTL7),
3313     igb_putreg(TXCTL8),
3314     igb_putreg(TXCTL9),
3315     igb_putreg(TXCTL10),
3316     igb_putreg(TXCTL11),
3317     igb_putreg(TXCTL12),
3318     igb_putreg(TXCTL13),
3319     igb_putreg(TXCTL14),
3320     igb_putreg(TXCTL15),
3321     igb_putreg(TDWBAL0),
3322     igb_putreg(TDWBAL1),
3323     igb_putreg(TDWBAL2),
3324     igb_putreg(TDWBAL3),
3325     igb_putreg(TDWBAL4),
3326     igb_putreg(TDWBAL5),
3327     igb_putreg(TDWBAL6),
3328     igb_putreg(TDWBAL7),
3329     igb_putreg(TDWBAL8),
3330     igb_putreg(TDWBAL9),
3331     igb_putreg(TDWBAL10),
3332     igb_putreg(TDWBAL11),
3333     igb_putreg(TDWBAL12),
3334     igb_putreg(TDWBAL13),
3335     igb_putreg(TDWBAL14),
3336     igb_putreg(TDWBAL15),
3337     igb_putreg(TDWBAH0),
3338     igb_putreg(TDWBAH1),
3339     igb_putreg(TDWBAH2),
3340     igb_putreg(TDWBAH3),
3341     igb_putreg(TDWBAH4),
3342     igb_putreg(TDWBAH5),
3343     igb_putreg(TDWBAH6),
3344     igb_putreg(TDWBAH7),
3345     igb_putreg(TDWBAH8),
3346     igb_putreg(TDWBAH9),
3347     igb_putreg(TDWBAH10),
3348     igb_putreg(TDWBAH11),
3349     igb_putreg(TDWBAH12),
3350     igb_putreg(TDWBAH13),
3351     igb_putreg(TDWBAH14),
3352     igb_putreg(TDWBAH15),
3353     igb_putreg(TIPG),
3354     igb_putreg(RXSTMPH),
3355     igb_putreg(RXSTMPL),
3356     igb_putreg(RXSATRL),
3357     igb_putreg(RXSATRH),
3358     igb_putreg(TXSTMPL),
3359     igb_putreg(TXSTMPH),
3360     igb_putreg(SYSTIML),
3361     igb_putreg(SYSTIMH),
3362     igb_putreg(TIMADJL),
3363     igb_putreg(TSYNCRXCTL),
3364     igb_putreg(TSYNCTXCTL),
3365     igb_putreg(EEMNGCTL),
3366     igb_putreg(GPIE),
3367     igb_putreg(TXPBS),
3368     igb_putreg(RLPML),
3369     igb_putreg(VET),
3370 
3371     [TDH0]     = igb_set_16bit,
3372     [TDH1]     = igb_set_16bit,
3373     [TDH2]     = igb_set_16bit,
3374     [TDH3]     = igb_set_16bit,
3375     [TDH4]     = igb_set_16bit,
3376     [TDH5]     = igb_set_16bit,
3377     [TDH6]     = igb_set_16bit,
3378     [TDH7]     = igb_set_16bit,
3379     [TDH8]     = igb_set_16bit,
3380     [TDH9]     = igb_set_16bit,
3381     [TDH10]    = igb_set_16bit,
3382     [TDH11]    = igb_set_16bit,
3383     [TDH12]    = igb_set_16bit,
3384     [TDH13]    = igb_set_16bit,
3385     [TDH14]    = igb_set_16bit,
3386     [TDH15]    = igb_set_16bit,
3387     [TDT0]     = igb_set_tdt,
3388     [TDT1]     = igb_set_tdt,
3389     [TDT2]     = igb_set_tdt,
3390     [TDT3]     = igb_set_tdt,
3391     [TDT4]     = igb_set_tdt,
3392     [TDT5]     = igb_set_tdt,
3393     [TDT6]     = igb_set_tdt,
3394     [TDT7]     = igb_set_tdt,
3395     [TDT8]     = igb_set_tdt,
3396     [TDT9]     = igb_set_tdt,
3397     [TDT10]    = igb_set_tdt,
3398     [TDT11]    = igb_set_tdt,
3399     [TDT12]    = igb_set_tdt,
3400     [TDT13]    = igb_set_tdt,
3401     [TDT14]    = igb_set_tdt,
3402     [TDT15]    = igb_set_tdt,
3403     [MDIC]     = igb_set_mdic,
3404     [ICS]      = igb_set_ics,
3405     [RDH0]     = igb_set_16bit,
3406     [RDH1]     = igb_set_16bit,
3407     [RDH2]     = igb_set_16bit,
3408     [RDH3]     = igb_set_16bit,
3409     [RDH4]     = igb_set_16bit,
3410     [RDH5]     = igb_set_16bit,
3411     [RDH6]     = igb_set_16bit,
3412     [RDH7]     = igb_set_16bit,
3413     [RDH8]     = igb_set_16bit,
3414     [RDH9]     = igb_set_16bit,
3415     [RDH10]    = igb_set_16bit,
3416     [RDH11]    = igb_set_16bit,
3417     [RDH12]    = igb_set_16bit,
3418     [RDH13]    = igb_set_16bit,
3419     [RDH14]    = igb_set_16bit,
3420     [RDH15]    = igb_set_16bit,
3421     [RDT0]     = igb_set_rdt,
3422     [RDT1]     = igb_set_rdt,
3423     [RDT2]     = igb_set_rdt,
3424     [RDT3]     = igb_set_rdt,
3425     [RDT4]     = igb_set_rdt,
3426     [RDT5]     = igb_set_rdt,
3427     [RDT6]     = igb_set_rdt,
3428     [RDT7]     = igb_set_rdt,
3429     [RDT8]     = igb_set_rdt,
3430     [RDT9]     = igb_set_rdt,
3431     [RDT10]    = igb_set_rdt,
3432     [RDT11]    = igb_set_rdt,
3433     [RDT12]    = igb_set_rdt,
3434     [RDT13]    = igb_set_rdt,
3435     [RDT14]    = igb_set_rdt,
3436     [RDT15]    = igb_set_rdt,
3437     [IMC]      = igb_set_imc,
3438     [IMS]      = igb_set_ims,
3439     [ICR]      = igb_set_icr,
3440     [EECD]     = igb_set_eecd,
3441     [RCTL]     = igb_set_rx_control,
3442     [CTRL]     = igb_set_ctrl,
3443     [EERD]     = igb_set_eerd,
3444     [TDFH]     = igb_set_13bit,
3445     [TDFT]     = igb_set_13bit,
3446     [TDFHS]    = igb_set_13bit,
3447     [TDFTS]    = igb_set_13bit,
3448     [TDFPC]    = igb_set_13bit,
3449     [RDFH]     = igb_set_13bit,
3450     [RDFT]     = igb_set_13bit,
3451     [RDFHS]    = igb_set_13bit,
3452     [RDFTS]    = igb_set_13bit,
3453     [RDFPC]    = igb_set_13bit,
3454     [GCR]      = igb_set_gcr,
3455     [RXCSUM]   = igb_set_rxcsum,
3456     [TDLEN0]   = igb_set_dlen,
3457     [TDLEN1]   = igb_set_dlen,
3458     [TDLEN2]   = igb_set_dlen,
3459     [TDLEN3]   = igb_set_dlen,
3460     [TDLEN4]   = igb_set_dlen,
3461     [TDLEN5]   = igb_set_dlen,
3462     [TDLEN6]   = igb_set_dlen,
3463     [TDLEN7]   = igb_set_dlen,
3464     [TDLEN8]   = igb_set_dlen,
3465     [TDLEN9]   = igb_set_dlen,
3466     [TDLEN10]  = igb_set_dlen,
3467     [TDLEN11]  = igb_set_dlen,
3468     [TDLEN12]  = igb_set_dlen,
3469     [TDLEN13]  = igb_set_dlen,
3470     [TDLEN14]  = igb_set_dlen,
3471     [TDLEN15]  = igb_set_dlen,
3472     [RDLEN0]   = igb_set_dlen,
3473     [RDLEN1]   = igb_set_dlen,
3474     [RDLEN2]   = igb_set_dlen,
3475     [RDLEN3]   = igb_set_dlen,
3476     [RDLEN4]   = igb_set_dlen,
3477     [RDLEN5]   = igb_set_dlen,
3478     [RDLEN6]   = igb_set_dlen,
3479     [RDLEN7]   = igb_set_dlen,
3480     [RDLEN8]   = igb_set_dlen,
3481     [RDLEN9]   = igb_set_dlen,
3482     [RDLEN10]  = igb_set_dlen,
3483     [RDLEN11]  = igb_set_dlen,
3484     [RDLEN12]  = igb_set_dlen,
3485     [RDLEN13]  = igb_set_dlen,
3486     [RDLEN14]  = igb_set_dlen,
3487     [RDLEN15]  = igb_set_dlen,
3488     [TDBAL0]   = igb_set_dbal,
3489     [TDBAL1]   = igb_set_dbal,
3490     [TDBAL2]   = igb_set_dbal,
3491     [TDBAL3]   = igb_set_dbal,
3492     [TDBAL4]   = igb_set_dbal,
3493     [TDBAL5]   = igb_set_dbal,
3494     [TDBAL6]   = igb_set_dbal,
3495     [TDBAL7]   = igb_set_dbal,
3496     [TDBAL8]   = igb_set_dbal,
3497     [TDBAL9]   = igb_set_dbal,
3498     [TDBAL10]  = igb_set_dbal,
3499     [TDBAL11]  = igb_set_dbal,
3500     [TDBAL12]  = igb_set_dbal,
3501     [TDBAL13]  = igb_set_dbal,
3502     [TDBAL14]  = igb_set_dbal,
3503     [TDBAL15]  = igb_set_dbal,
3504     [RDBAL0]   = igb_set_dbal,
3505     [RDBAL1]   = igb_set_dbal,
3506     [RDBAL2]   = igb_set_dbal,
3507     [RDBAL3]   = igb_set_dbal,
3508     [RDBAL4]   = igb_set_dbal,
3509     [RDBAL5]   = igb_set_dbal,
3510     [RDBAL6]   = igb_set_dbal,
3511     [RDBAL7]   = igb_set_dbal,
3512     [RDBAL8]   = igb_set_dbal,
3513     [RDBAL9]   = igb_set_dbal,
3514     [RDBAL10]  = igb_set_dbal,
3515     [RDBAL11]  = igb_set_dbal,
3516     [RDBAL12]  = igb_set_dbal,
3517     [RDBAL13]  = igb_set_dbal,
3518     [RDBAL14]  = igb_set_dbal,
3519     [RDBAL15]  = igb_set_dbal,
3520     [STATUS]   = igb_set_status,
3521     [PBACLR]   = igb_set_pbaclr,
3522     [CTRL_EXT] = igb_set_ctrlext,
3523     [FCAH]     = igb_set_16bit,
3524     [FCT]      = igb_set_16bit,
3525     [FCTTV]    = igb_set_16bit,
3526     [FCRTV]    = igb_set_16bit,
3527     [FCRTH]    = igb_set_fcrth,
3528     [FCRTL]    = igb_set_fcrtl,
3529     [CTRL_DUP] = igb_set_ctrl,
3530     [RFCTL]    = igb_set_rfctl,
3531     [TIMINCA]  = igb_set_timinca,
3532     [TIMADJH]  = igb_set_timadjh,
3533 
3534     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3535     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3536     [RA]                     = igb_mac_writereg,
3537     [RA + 1]                 = igb_mac_setmacaddr,
3538     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3539     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3540     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3541     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3542     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3543     [FFMT ... FFMT + 254]    = igb_set_4bit,
3544     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3545     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3546     [RETA ... RETA + 31]     = igb_mac_writereg,
3547     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3548     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3549     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3550 
3551     /* IGB specific: */
3552     [FWSM]     = igb_mac_writereg,
3553     [SW_FW_SYNC] = igb_mac_writereg,
3554     [EICR] = igb_set_eicr,
3555     [EICS] = igb_set_eics,
3556     [EIAC] = igb_set_eiac,
3557     [EIAM] = igb_set_eiam,
3558     [EIMC] = igb_set_eimc,
3559     [EIMS] = igb_set_eims,
3560     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3561     igb_putreg(IVAR_MISC),
3562     igb_putreg(VT_CTL),
3563     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3564     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3565     [MBVFICR] = igb_w1c,
3566     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3567     igb_putreg(MBVFIMR),
3568     [VFLRE] = igb_w1c,
3569     igb_putreg(VFRE),
3570     igb_putreg(VFTE),
3571     igb_putreg(QDE),
3572     igb_putreg(DTXSWC),
3573     igb_putreg(RPLOLR),
3574     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3575     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3576     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3577     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3578     [PVTCTRL0] = igb_set_vtctrl,
3579     [PVTCTRL1] = igb_set_vtctrl,
3580     [PVTCTRL2] = igb_set_vtctrl,
3581     [PVTCTRL3] = igb_set_vtctrl,
3582     [PVTCTRL4] = igb_set_vtctrl,
3583     [PVTCTRL5] = igb_set_vtctrl,
3584     [PVTCTRL6] = igb_set_vtctrl,
3585     [PVTCTRL7] = igb_set_vtctrl,
3586     [PVTEICS0] = igb_set_vteics,
3587     [PVTEICS1] = igb_set_vteics,
3588     [PVTEICS2] = igb_set_vteics,
3589     [PVTEICS3] = igb_set_vteics,
3590     [PVTEICS4] = igb_set_vteics,
3591     [PVTEICS5] = igb_set_vteics,
3592     [PVTEICS6] = igb_set_vteics,
3593     [PVTEICS7] = igb_set_vteics,
3594     [PVTEIMS0] = igb_set_vteims,
3595     [PVTEIMS1] = igb_set_vteims,
3596     [PVTEIMS2] = igb_set_vteims,
3597     [PVTEIMS3] = igb_set_vteims,
3598     [PVTEIMS4] = igb_set_vteims,
3599     [PVTEIMS5] = igb_set_vteims,
3600     [PVTEIMS6] = igb_set_vteims,
3601     [PVTEIMS7] = igb_set_vteims,
3602     [PVTEIMC0] = igb_set_vteimc,
3603     [PVTEIMC1] = igb_set_vteimc,
3604     [PVTEIMC2] = igb_set_vteimc,
3605     [PVTEIMC3] = igb_set_vteimc,
3606     [PVTEIMC4] = igb_set_vteimc,
3607     [PVTEIMC5] = igb_set_vteimc,
3608     [PVTEIMC6] = igb_set_vteimc,
3609     [PVTEIMC7] = igb_set_vteimc,
3610     [PVTEIAC0] = igb_set_vteiac,
3611     [PVTEIAC1] = igb_set_vteiac,
3612     [PVTEIAC2] = igb_set_vteiac,
3613     [PVTEIAC3] = igb_set_vteiac,
3614     [PVTEIAC4] = igb_set_vteiac,
3615     [PVTEIAC5] = igb_set_vteiac,
3616     [PVTEIAC6] = igb_set_vteiac,
3617     [PVTEIAC7] = igb_set_vteiac,
3618     [PVTEIAM0] = igb_set_vteiam,
3619     [PVTEIAM1] = igb_set_vteiam,
3620     [PVTEIAM2] = igb_set_vteiam,
3621     [PVTEIAM3] = igb_set_vteiam,
3622     [PVTEIAM4] = igb_set_vteiam,
3623     [PVTEIAM5] = igb_set_vteiam,
3624     [PVTEIAM6] = igb_set_vteiam,
3625     [PVTEIAM7] = igb_set_vteiam,
3626     [PVTEICR0] = igb_set_vteicr,
3627     [PVTEICR1] = igb_set_vteicr,
3628     [PVTEICR2] = igb_set_vteicr,
3629     [PVTEICR3] = igb_set_vteicr,
3630     [PVTEICR4] = igb_set_vteicr,
3631     [PVTEICR5] = igb_set_vteicr,
3632     [PVTEICR6] = igb_set_vteicr,
3633     [PVTEICR7] = igb_set_vteicr,
3634     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3635     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3636 };
3637 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3638 
3639 enum { MAC_ACCESS_PARTIAL = 1 };
3640 
3641 /*
3642  * The array below combines alias offsets of the index values for the
3643  * MAC registers that have aliases, with the indication of not fully
3644  * implemented registers (lowest bit). This combination is possible
3645  * because all of the offsets are even.
3646  */
3647 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3648     /* Alias index offsets */
3649     [FCRTL_A] = 0x07fe,
3650     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3651     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3652     [RA_A ... RA_A + 31]      = 0x14f0,
3653     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3654 
3655     [RDBAL0_A] = 0x2600,
3656     [RDBAH0_A] = 0x2600,
3657     [RDLEN0_A] = 0x2600,
3658     [SRRCTL0_A] = 0x2600,
3659     [RDH0_A] = 0x2600,
3660     [RDT0_A] = 0x2600,
3661     [RXDCTL0_A] = 0x2600,
3662     [RXCTL0_A] = 0x2600,
3663     [RQDPC0_A] = 0x2600,
3664     [RDBAL1_A] = 0x25D0,
3665     [RDBAL2_A] = 0x25A0,
3666     [RDBAL3_A] = 0x2570,
3667     [RDBAH1_A] = 0x25D0,
3668     [RDBAH2_A] = 0x25A0,
3669     [RDBAH3_A] = 0x2570,
3670     [RDLEN1_A] = 0x25D0,
3671     [RDLEN2_A] = 0x25A0,
3672     [RDLEN3_A] = 0x2570,
3673     [SRRCTL1_A] = 0x25D0,
3674     [SRRCTL2_A] = 0x25A0,
3675     [SRRCTL3_A] = 0x2570,
3676     [RDH1_A] = 0x25D0,
3677     [RDH2_A] = 0x25A0,
3678     [RDH3_A] = 0x2570,
3679     [RDT1_A] = 0x25D0,
3680     [RDT2_A] = 0x25A0,
3681     [RDT3_A] = 0x2570,
3682     [RXDCTL1_A] = 0x25D0,
3683     [RXDCTL2_A] = 0x25A0,
3684     [RXDCTL3_A] = 0x2570,
3685     [RXCTL1_A] = 0x25D0,
3686     [RXCTL2_A] = 0x25A0,
3687     [RXCTL3_A] = 0x2570,
3688     [RQDPC1_A] = 0x25D0,
3689     [RQDPC2_A] = 0x25A0,
3690     [RQDPC3_A] = 0x2570,
3691     [TDBAL0_A] = 0x2A00,
3692     [TDBAH0_A] = 0x2A00,
3693     [TDLEN0_A] = 0x2A00,
3694     [TDH0_A] = 0x2A00,
3695     [TDT0_A] = 0x2A00,
3696     [TXCTL0_A] = 0x2A00,
3697     [TDWBAL0_A] = 0x2A00,
3698     [TDWBAH0_A] = 0x2A00,
3699     [TDBAL1_A] = 0x29D0,
3700     [TDBAL2_A] = 0x29A0,
3701     [TDBAL3_A] = 0x2970,
3702     [TDBAH1_A] = 0x29D0,
3703     [TDBAH2_A] = 0x29A0,
3704     [TDBAH3_A] = 0x2970,
3705     [TDLEN1_A] = 0x29D0,
3706     [TDLEN2_A] = 0x29A0,
3707     [TDLEN3_A] = 0x2970,
3708     [TDH1_A] = 0x29D0,
3709     [TDH2_A] = 0x29A0,
3710     [TDH3_A] = 0x2970,
3711     [TDT1_A] = 0x29D0,
3712     [TDT2_A] = 0x29A0,
3713     [TDT3_A] = 0x2970,
3714     [TXDCTL0_A] = 0x2A00,
3715     [TXDCTL1_A] = 0x29D0,
3716     [TXDCTL2_A] = 0x29A0,
3717     [TXDCTL3_A] = 0x2970,
3718     [TXCTL1_A] = 0x29D0,
3719     [TXCTL2_A] = 0x29A0,
3720     [TXCTL3_A] = 0x29D0,
3721     [TDWBAL1_A] = 0x29D0,
3722     [TDWBAL2_A] = 0x29A0,
3723     [TDWBAL3_A] = 0x2970,
3724     [TDWBAH1_A] = 0x29D0,
3725     [TDWBAH2_A] = 0x29A0,
3726     [TDWBAH3_A] = 0x2970,
3727 
3728     /* Access options */
3729     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3730     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3731     [RDFPC] = MAC_ACCESS_PARTIAL,
3732     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3733     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3734     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3735     [FLA]   = MAC_ACCESS_PARTIAL,
3736     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3737     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3738     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3739     [FCRTH] = MAC_ACCESS_PARTIAL,
3740     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3741 };
3742 
3743 void
3744 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3745 {
3746     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3747 
3748     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3749         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3750             trace_e1000e_wrn_regs_write_trivial(index << 2);
3751         }
3752         trace_e1000e_core_write(index << 2, size, val);
3753         igb_macreg_writeops[index](core, index, val);
3754     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3755         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3756     } else {
3757         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3758     }
3759 }
3760 
3761 uint64_t
3762 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3763 {
3764     uint64_t val;
3765     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3766 
3767     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3768         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3769             trace_e1000e_wrn_regs_read_trivial(index << 2);
3770         }
3771         val = igb_macreg_readops[index](core, index);
3772         trace_e1000e_core_read(index << 2, size, val);
3773         return val;
3774     } else {
3775         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3776     }
3777     return 0;
3778 }
3779 
3780 static inline void
3781 igb_autoneg_pause(IGBCore *core)
3782 {
3783     timer_del(core->autoneg_timer);
3784 }
3785 
3786 static void
3787 igb_autoneg_resume(IGBCore *core)
3788 {
3789     if (igb_have_autoneg(core) &&
3790         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3791         qemu_get_queue(core->owner_nic)->link_down = false;
3792         timer_mod(core->autoneg_timer,
3793                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3794     }
3795 }
3796 
3797 static void
3798 igb_vm_state_change(void *opaque, bool running, RunState state)
3799 {
3800     IGBCore *core = opaque;
3801 
3802     if (running) {
3803         trace_e1000e_vm_state_running();
3804         igb_intrmgr_resume(core);
3805         igb_autoneg_resume(core);
3806     } else {
3807         trace_e1000e_vm_state_stopped();
3808         igb_autoneg_pause(core);
3809         igb_intrmgr_pause(core);
3810     }
3811 }
3812 
3813 void
3814 igb_core_pci_realize(IGBCore        *core,
3815                      const uint16_t *eeprom_templ,
3816                      uint32_t        eeprom_size,
3817                      const uint8_t  *macaddr)
3818 {
3819     int i;
3820 
3821     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3822                                        igb_autoneg_timer, core);
3823     igb_intrmgr_pci_realize(core);
3824 
3825     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3826 
3827     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3828         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, E1000E_MAX_TX_FRAGS);
3829     }
3830 
3831     net_rx_pkt_init(&core->rx_pkt);
3832 
3833     e1000x_core_prepare_eeprom(core->eeprom,
3834                                eeprom_templ,
3835                                eeprom_size,
3836                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3837                                macaddr);
3838     igb_update_rx_offloads(core);
3839 }
3840 
3841 void
3842 igb_core_pci_uninit(IGBCore *core)
3843 {
3844     int i;
3845 
3846     timer_free(core->autoneg_timer);
3847 
3848     igb_intrmgr_pci_unint(core);
3849 
3850     qemu_del_vm_change_state_handler(core->vmstate);
3851 
3852     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3853         net_tx_pkt_reset(core->tx[i].tx_pkt);
3854         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3855     }
3856 
3857     net_rx_pkt_uninit(core->rx_pkt);
3858 }
3859 
3860 static const uint16_t
3861 igb_phy_reg_init[] = {
3862     [MII_BMCR] = MII_BMCR_SPEED1000 |
3863                  MII_BMCR_FD        |
3864                  MII_BMCR_AUTOEN,
3865 
3866     [MII_BMSR] = MII_BMSR_EXTCAP    |
3867                  MII_BMSR_LINK_ST   |
3868                  MII_BMSR_AUTONEG   |
3869                  MII_BMSR_MFPS      |
3870                  MII_BMSR_EXTSTAT   |
3871                  MII_BMSR_10T_HD    |
3872                  MII_BMSR_10T_FD    |
3873                  MII_BMSR_100TX_HD  |
3874                  MII_BMSR_100TX_FD,
3875 
3876     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
3877     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
3878     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3879                               MII_ANAR_10FD | MII_ANAR_TX |
3880                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
3881                               MII_ANAR_PAUSE_ASYM,
3882     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3883                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3884                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3885     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3886     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
3887     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3888                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3889     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3890                               MII_STAT1000_ROK | MII_STAT1000_LOK,
3891     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3892 
3893     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
3894     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
3895     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
3896                                    IGP01E1000_PSCFR_SMART_SPEED
3897 };
3898 
3899 static const uint32_t igb_mac_reg_init[] = {
3900     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
3901     [EEMNGCTL]      = BIT(31),
3902     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
3903     [RXDCTL1]       = 1 << 16,
3904     [RXDCTL2]       = 1 << 16,
3905     [RXDCTL3]       = 1 << 16,
3906     [RXDCTL4]       = 1 << 16,
3907     [RXDCTL5]       = 1 << 16,
3908     [RXDCTL6]       = 1 << 16,
3909     [RXDCTL7]       = 1 << 16,
3910     [RXDCTL8]       = 1 << 16,
3911     [RXDCTL9]       = 1 << 16,
3912     [RXDCTL10]      = 1 << 16,
3913     [RXDCTL11]      = 1 << 16,
3914     [RXDCTL12]      = 1 << 16,
3915     [RXDCTL13]      = 1 << 16,
3916     [RXDCTL14]      = 1 << 16,
3917     [RXDCTL15]      = 1 << 16,
3918     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
3919     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
3920                       E1000_CTRL_ADVD3WUC,
3921     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
3922     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
3923                       (2 << E1000_EECD_SIZE_EX_SHIFT),
3924     [GCR]           = E1000_L0S_ADJUST |
3925                       E1000_GCR_CMPL_TMOUT_RESEND |
3926                       E1000_GCR_CAP_VER2 |
3927                       E1000_L1_ENTRY_LATENCY_MSB |
3928                       E1000_L1_ENTRY_LATENCY_LSB,
3929     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3930     [TXPBS]         = 0x28,
3931     [RXPBS]         = 0x40,
3932     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
3933                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
3934     [TCTL_EXT]      = 0x40 | (0x42 << 10),
3935     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
3936     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
3937 
3938     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
3939     [MBVFIMR]       = 0xFF,
3940     [VFRE]          = 0xFF,
3941     [VFTE]          = 0xFF,
3942     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
3943     [RPLOLR]        = E1000_RPLOLR_STRCRC,
3944     [RLPML]         = 0x2600,
3945     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3946                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3947                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3948     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3949                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3950                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3951     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3952                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3953                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3954     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3955                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3956                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3957     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3958                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3959                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3960     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3961                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3962                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3963     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3964                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3965                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3966     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3967                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3968                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3969     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3970                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3971                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3972     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
3973                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3974                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3975     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3976                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3977                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3978     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3979                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3980                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3981     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3982                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3983                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3984     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3985                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3986                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3987     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3988                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3989                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3990     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
3991                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
3992                      E1000_DCA_TXCTRL_DESC_RRO_EN,
3993 };
3994 
3995 static void igb_reset(IGBCore *core, bool sw)
3996 {
3997     struct igb_tx *tx;
3998     int i;
3999 
4000     timer_del(core->autoneg_timer);
4001 
4002     igb_intrmgr_reset(core);
4003 
4004     memset(core->phy, 0, sizeof core->phy);
4005     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4006 
4007     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4008         if (sw &&
4009             (i == RXPBS || i == TXPBS ||
4010              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4011             continue;
4012         }
4013 
4014         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4015                        igb_mac_reg_init[i] : 0;
4016     }
4017 
4018     if (qemu_get_queue(core->owner_nic)->link_down) {
4019         igb_link_down(core);
4020     }
4021 
4022     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4023 
4024     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4025         tx = &core->tx[i];
4026         net_tx_pkt_reset(tx->tx_pkt);
4027         tx->vlan = 0;
4028         tx->mss = 0;
4029         tx->tse = false;
4030         tx->ixsm = false;
4031         tx->txsm = false;
4032         tx->first = true;
4033         tx->skip_cp = false;
4034     }
4035 }
4036 
4037 void
4038 igb_core_reset(IGBCore *core)
4039 {
4040     igb_reset(core, false);
4041 }
4042 
4043 void igb_core_pre_save(IGBCore *core)
4044 {
4045     int i;
4046     NetClientState *nc = qemu_get_queue(core->owner_nic);
4047 
4048     /*
4049      * If link is down and auto-negotiation is supported and ongoing,
4050      * complete auto-negotiation immediately. This allows us to look
4051      * at MII_BMSR_AN_COMP to infer link status on load.
4052      */
4053     if (nc->link_down && igb_have_autoneg(core)) {
4054         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4055         igb_update_flowctl_status(core);
4056     }
4057 
4058     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4059         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4060             core->tx[i].skip_cp = true;
4061         }
4062     }
4063 }
4064 
4065 int
4066 igb_core_post_load(IGBCore *core)
4067 {
4068     NetClientState *nc = qemu_get_queue(core->owner_nic);
4069 
4070     /*
4071      * nc.link_down can't be migrated, so infer link_down according
4072      * to link status bit in core.mac[STATUS].
4073      */
4074     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4075 
4076     return 0;
4077 }
4078