xref: /qemu/hw/net/igb_core.c (revision 86d063fa)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 static ssize_t
71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
72                      bool has_vnet, bool *external_tx);
73 
74 static inline void
75 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
76 
77 static void igb_update_interrupt_state(IGBCore *core);
78 static void igb_reset(IGBCore *core, bool sw);
79 
80 static inline void
81 igb_raise_legacy_irq(IGBCore *core)
82 {
83     trace_e1000e_irq_legacy_notify(true);
84     e1000x_inc_reg_if_not_full(core->mac, IAC);
85     pci_set_irq(core->owner, 1);
86 }
87 
88 static inline void
89 igb_lower_legacy_irq(IGBCore *core)
90 {
91     trace_e1000e_irq_legacy_notify(false);
92     pci_set_irq(core->owner, 0);
93 }
94 
95 static void igb_msix_notify(IGBCore *core, unsigned int vector)
96 {
97     PCIDevice *dev = core->owner;
98     uint16_t vfn;
99 
100     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
101     if (vfn < pcie_sriov_num_vfs(core->owner)) {
102         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
103         assert(dev);
104         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
105     } else if (vector >= IGB_MSIX_VEC_NUM) {
106         qemu_log_mask(LOG_GUEST_ERROR,
107                       "igb: Tried to use vector unavailable for PF");
108         return;
109     }
110 
111     msix_notify(dev, vector);
112 }
113 
114 static inline void
115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
116 {
117     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
118                                  timer->delay_resolution_ns;
119 
120     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
121 
122     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
123 
124     timer->running = true;
125 }
126 
127 static void
128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
129 {
130     if (timer->running) {
131         igb_intrmgr_rearm_timer(timer);
132     }
133 }
134 
135 static void
136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
137 {
138     if (timer->running) {
139         timer_del(timer->timer);
140     }
141 }
142 
143 static void
144 igb_intrmgr_on_msix_throttling_timer(void *opaque)
145 {
146     IGBIntrDelayTimer *timer = opaque;
147     int idx = timer - &timer->core->eitr[0];
148 
149     timer->running = false;
150 
151     trace_e1000e_irq_msix_notify_postponed_vec(idx);
152     igb_msix_notify(timer->core, idx);
153 }
154 
155 static void
156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
157 {
158     int i;
159 
160     for (i = 0; i < IGB_INTR_NUM; i++) {
161         core->eitr[i].core = core;
162         core->eitr[i].delay_reg = EITR0 + i;
163         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
164     }
165 
166     if (!create) {
167         return;
168     }
169 
170     for (i = 0; i < IGB_INTR_NUM; i++) {
171         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
172                                            igb_intrmgr_on_msix_throttling_timer,
173                                            &core->eitr[i]);
174     }
175 }
176 
177 static void
178 igb_intrmgr_resume(IGBCore *core)
179 {
180     int i;
181 
182     for (i = 0; i < IGB_INTR_NUM; i++) {
183         igb_intmgr_timer_resume(&core->eitr[i]);
184     }
185 }
186 
187 static void
188 igb_intrmgr_pause(IGBCore *core)
189 {
190     int i;
191 
192     for (i = 0; i < IGB_INTR_NUM; i++) {
193         igb_intmgr_timer_pause(&core->eitr[i]);
194     }
195 }
196 
197 static void
198 igb_intrmgr_reset(IGBCore *core)
199 {
200     int i;
201 
202     for (i = 0; i < IGB_INTR_NUM; i++) {
203         if (core->eitr[i].running) {
204             timer_del(core->eitr[i].timer);
205             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
206         }
207     }
208 }
209 
210 static void
211 igb_intrmgr_pci_unint(IGBCore *core)
212 {
213     int i;
214 
215     for (i = 0; i < IGB_INTR_NUM; i++) {
216         timer_free(core->eitr[i].timer);
217     }
218 }
219 
220 static void
221 igb_intrmgr_pci_realize(IGBCore *core)
222 {
223     igb_intrmgr_initialize_all_timers(core, true);
224 }
225 
226 static inline bool
227 igb_rx_csum_enabled(IGBCore *core)
228 {
229     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
230 }
231 
232 static inline bool
233 igb_rx_use_legacy_descriptor(IGBCore *core)
234 {
235     /*
236      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
237      * descriptor.
238      */
239     return false;
240 }
241 
242 static inline bool
243 igb_rss_enabled(IGBCore *core)
244 {
245     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
246            !igb_rx_csum_enabled(core) &&
247            !igb_rx_use_legacy_descriptor(core);
248 }
249 
250 typedef struct E1000E_RSSInfo_st {
251     bool enabled;
252     uint32_t hash;
253     uint32_t queue;
254     uint32_t type;
255 } E1000E_RSSInfo;
256 
257 static uint32_t
258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
259 {
260     bool hasip4, hasip6;
261     EthL4HdrProto l4hdr_proto;
262 
263     assert(igb_rss_enabled(core));
264 
265     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
266 
267     if (hasip4) {
268         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
269                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
270                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
271 
272         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
273             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
274             return E1000_MRQ_RSS_TYPE_IPV4TCP;
275         }
276 
277         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
278             return E1000_MRQ_RSS_TYPE_IPV4;
279         }
280     } else if (hasip6) {
281         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
282 
283         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
284         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
285 
286         /*
287          * Following two traces must not be combined because resulting
288          * event will have 11 arguments totally and some trace backends
289          * (at least "ust") have limitation of maximum 10 arguments per
290          * event. Events with more arguments fail to compile for
291          * backends like these.
292          */
293         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
294         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
295                                 ip6info->has_ext_hdrs,
296                                 ip6info->rss_ex_dst_valid,
297                                 ip6info->rss_ex_src_valid,
298                                 core->mac[MRQC],
299                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
300                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
301                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
302 
303         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
304             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
305                               ip6info->rss_ex_src_valid))) {
306 
307             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
308                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
309                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
310             }
311 
312             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
313                 return E1000_MRQ_RSS_TYPE_IPV6EX;
314             }
315 
316         }
317 
318         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
319             return E1000_MRQ_RSS_TYPE_IPV6;
320         }
321 
322     }
323 
324     return E1000_MRQ_RSS_TYPE_NONE;
325 }
326 
327 static uint32_t
328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
329 {
330     NetRxPktRssType type;
331 
332     assert(igb_rss_enabled(core));
333 
334     switch (info->type) {
335     case E1000_MRQ_RSS_TYPE_IPV4:
336         type = NetPktRssIpV4;
337         break;
338     case E1000_MRQ_RSS_TYPE_IPV4TCP:
339         type = NetPktRssIpV4Tcp;
340         break;
341     case E1000_MRQ_RSS_TYPE_IPV6TCP:
342         type = NetPktRssIpV6TcpEx;
343         break;
344     case E1000_MRQ_RSS_TYPE_IPV6:
345         type = NetPktRssIpV6;
346         break;
347     case E1000_MRQ_RSS_TYPE_IPV6EX:
348         type = NetPktRssIpV6Ex;
349         break;
350     default:
351         assert(false);
352         return 0;
353     }
354 
355     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
356 }
357 
358 static void
359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
360                      E1000E_RSSInfo *info)
361 {
362     trace_e1000e_rx_rss_started();
363 
364     if (tx || !igb_rss_enabled(core)) {
365         info->enabled = false;
366         info->hash = 0;
367         info->queue = 0;
368         info->type = 0;
369         trace_e1000e_rx_rss_disabled();
370         return;
371     }
372 
373     info->enabled = true;
374 
375     info->type = igb_rss_get_hash_type(core, pkt);
376 
377     trace_e1000e_rx_rss_type(info->type);
378 
379     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
380         info->hash = 0;
381         info->queue = 0;
382         return;
383     }
384 
385     info->hash = igb_rss_calc_hash(core, pkt, info);
386     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
387 }
388 
389 static void
390 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx,
391     uint16_t vlan, bool insert_vlan)
392 {
393     if (core->mac[MRQC] & 1) {
394         uint16_t pool = qn % IGB_NUM_VM_POOLS;
395 
396         if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) {
397             /* always insert default VLAN */
398             insert_vlan = true;
399             vlan = core->mac[VMVIR0 + pool] & 0xffff;
400         } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) {
401             insert_vlan = false;
402         }
403     }
404 
405     if (insert_vlan && e1000x_vlan_enabled(core->mac)) {
406         net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan,
407             core->mac[VET] & 0xffff);
408     }
409 }
410 
411 static bool
412 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
413 {
414     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
415         uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
416         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16;
417         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
418             return false;
419         }
420 
421         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
422         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
423         return true;
424     }
425 
426     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) {
427         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
428             return false;
429         }
430     }
431 
432     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
433         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
434     }
435 
436     return true;
437 }
438 
439 static void igb_tx_pkt_mac_callback(void *core,
440                                     const struct iovec *iov,
441                                     int iovcnt,
442                                     const struct iovec *virt_iov,
443                                     int virt_iovcnt)
444 {
445     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
446 }
447 
448 static void igb_tx_pkt_vmdq_callback(void *opaque,
449                                      const struct iovec *iov,
450                                      int iovcnt,
451                                      const struct iovec *virt_iov,
452                                      int virt_iovcnt)
453 {
454     IGBTxPktVmdqCallbackContext *context = opaque;
455     bool external_tx;
456 
457     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
458                          &external_tx);
459 
460     if (external_tx) {
461         if (context->core->has_vnet) {
462             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
463         } else {
464             qemu_sendv_packet(context->nc, iov, iovcnt);
465         }
466     }
467 }
468 
469 /* TX Packets Switching (7.10.3.6) */
470 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
471                               NetClientState *nc)
472 {
473     IGBTxPktVmdqCallbackContext context;
474 
475     /* TX switching is only used to serve VM to VM traffic. */
476     if (!(core->mac[MRQC] & 1)) {
477         goto send_out;
478     }
479 
480     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
481     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
482         goto send_out;
483     }
484 
485     context.core = core;
486     context.nc = nc;
487 
488     return net_tx_pkt_send_custom(tx->tx_pkt, false,
489                                   igb_tx_pkt_vmdq_callback, &context);
490 
491 send_out:
492     return net_tx_pkt_send(tx->tx_pkt, nc);
493 }
494 
495 static bool
496 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
497 {
498     int target_queue = MIN(core->max_queue_num, queue_index);
499     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
500 
501     if (!igb_setup_tx_offloads(core, tx)) {
502         return false;
503     }
504 
505     net_tx_pkt_dump(tx->tx_pkt);
506 
507     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
508         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
509         return net_tx_pkt_send_custom(tx->tx_pkt, false,
510                                       igb_tx_pkt_mac_callback, core);
511     } else {
512         return igb_tx_pkt_switch(core, tx, queue);
513     }
514 }
515 
516 static void
517 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn)
518 {
519     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
520                                     PTC1023, PTC1522 };
521 
522     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
523 
524     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
525     e1000x_inc_reg_if_not_full(core->mac, TPT);
526     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
527 
528     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
529     case ETH_PKT_BCAST:
530         e1000x_inc_reg_if_not_full(core->mac, BPTC);
531         break;
532     case ETH_PKT_MCAST:
533         e1000x_inc_reg_if_not_full(core->mac, MPTC);
534         break;
535     case ETH_PKT_UCAST:
536         break;
537     default:
538         g_assert_not_reached();
539     }
540 
541     core->mac[GPTC] = core->mac[TPT];
542     core->mac[GOTCL] = core->mac[TOTL];
543     core->mac[GOTCH] = core->mac[TOTH];
544 
545     if (core->mac[MRQC] & 1) {
546         uint16_t pool = qn % IGB_NUM_VM_POOLS;
547 
548         core->mac[PVFGOTC0 + (pool * 64)] += tot_len;
549         core->mac[PVFGPTC0 + (pool * 64)]++;
550     }
551 }
552 
553 static void
554 igb_process_tx_desc(IGBCore *core,
555                     PCIDevice *dev,
556                     struct igb_tx *tx,
557                     union e1000_adv_tx_desc *tx_desc,
558                     int queue_index)
559 {
560     struct e1000_adv_tx_context_desc *tx_ctx_desc;
561     uint32_t cmd_type_len;
562     uint32_t idx;
563     uint64_t buffer_addr;
564     uint16_t length;
565 
566     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
567 
568     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
569         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
570             E1000_ADVTXD_DTYP_DATA) {
571             /* advanced transmit data descriptor */
572             if (tx->first) {
573                 tx->first_cmd_type_len = cmd_type_len;
574                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
575                 tx->first = false;
576             }
577         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
578                    E1000_ADVTXD_DTYP_CTXT) {
579             /* advanced transmit context descriptor */
580             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
581             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
582             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
583             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
584             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
585             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
586             return;
587         } else {
588             /* unknown descriptor type */
589             return;
590         }
591     } else {
592         /* legacy descriptor */
593 
594         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
595     }
596 
597     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
598     length = cmd_type_len & 0xFFFF;
599 
600     if (!tx->skip_cp) {
601         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) {
602             tx->skip_cp = true;
603         }
604     }
605 
606     if (cmd_type_len & E1000_TXD_CMD_EOP) {
607         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
608             idx = (tx->first_olinfo_status >> 4) & 1;
609             igb_tx_insert_vlan(core, queue_index, tx,
610                 tx->ctx[idx].vlan_macip_lens >> 16,
611                 !!(cmd_type_len & E1000_TXD_CMD_VLE));
612 
613             if (igb_tx_pkt_send(core, tx, queue_index)) {
614                 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index);
615             }
616         }
617 
618         tx->first = true;
619         tx->skip_cp = false;
620         net_tx_pkt_reset(tx->tx_pkt, dev);
621     }
622 }
623 
624 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
625 {
626     uint32_t n, ent = 0;
627 
628     n = igb_ivar_entry_tx(queue_idx);
629     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
630 
631     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
632 }
633 
634 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
635 {
636     uint32_t n, ent = 0;
637 
638     n = igb_ivar_entry_rx(queue_idx);
639     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
640 
641     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
642 }
643 
644 typedef struct E1000E_RingInfo_st {
645     int dbah;
646     int dbal;
647     int dlen;
648     int dh;
649     int dt;
650     int idx;
651 } E1000E_RingInfo;
652 
653 static inline bool
654 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
655 {
656     return core->mac[r->dh] == core->mac[r->dt] ||
657                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
658 }
659 
660 static inline uint64_t
661 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
662 {
663     uint64_t bah = core->mac[r->dbah];
664     uint64_t bal = core->mac[r->dbal];
665 
666     return (bah << 32) + bal;
667 }
668 
669 static inline uint64_t
670 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
671 {
672     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
673 }
674 
675 static inline void
676 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
677 {
678     core->mac[r->dh] += count;
679 
680     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
681         core->mac[r->dh] = 0;
682     }
683 }
684 
685 static inline uint32_t
686 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
687 {
688     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
689                                  core->mac[r->dh],  core->mac[r->dt]);
690 
691     if (core->mac[r->dh] <= core->mac[r->dt]) {
692         return core->mac[r->dt] - core->mac[r->dh];
693     }
694 
695     if (core->mac[r->dh] > core->mac[r->dt]) {
696         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
697                core->mac[r->dt] - core->mac[r->dh];
698     }
699 
700     g_assert_not_reached();
701     return 0;
702 }
703 
704 static inline bool
705 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
706 {
707     return core->mac[r->dlen] > 0;
708 }
709 
710 typedef struct IGB_TxRing_st {
711     const E1000E_RingInfo *i;
712     struct igb_tx *tx;
713 } IGB_TxRing;
714 
715 static inline int
716 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
717 {
718     return (reg_idx - base_reg_idx) / 16;
719 }
720 
721 static inline void
722 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
723 {
724     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
725         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
726         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
727         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
728         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
729         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
730         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
731         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
732         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
733         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
734         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
735         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
736         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
737         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
738         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
739         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
740         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
741     };
742 
743     assert(idx < ARRAY_SIZE(i));
744 
745     txr->i     = &i[idx];
746     txr->tx    = &core->tx[idx];
747 }
748 
749 typedef struct E1000E_RxRing_st {
750     const E1000E_RingInfo *i;
751 } E1000E_RxRing;
752 
753 static inline void
754 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
755 {
756     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
757         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
758         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
759         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
760         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
761         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
762         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
763         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
764         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
765         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
766         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
767         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
768         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
769         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
770         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
771         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
772         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
773     };
774 
775     assert(idx < ARRAY_SIZE(i));
776 
777     rxr->i      = &i[idx];
778 }
779 
780 static uint32_t
781 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
782                      union e1000_adv_tx_desc *tx_desc,
783                      const E1000E_RingInfo *txi)
784 {
785     PCIDevice *d;
786     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
787     uint64_t tdwba;
788 
789     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
790     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
791 
792     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
793         return 0;
794     }
795 
796     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
797     if (!d) {
798         d = core->owner;
799     }
800 
801     if (tdwba & 1) {
802         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
803         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
804     } else {
805         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
806 
807         tx_desc->wb.status = cpu_to_le32(status);
808         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
809             &tx_desc->wb, sizeof(tx_desc->wb));
810     }
811 
812     return igb_tx_wb_eic(core, txi->idx);
813 }
814 
815 static inline bool
816 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi)
817 {
818     bool vmdq = core->mac[MRQC] & 1;
819     uint16_t qn = txi->idx;
820     uint16_t pool = qn % IGB_NUM_VM_POOLS;
821 
822     return (core->mac[TCTL] & E1000_TCTL_EN) &&
823         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
824         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
825 }
826 
827 static void
828 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
829 {
830     PCIDevice *d;
831     dma_addr_t base;
832     union e1000_adv_tx_desc desc;
833     const E1000E_RingInfo *txi = txr->i;
834     uint32_t eic = 0;
835 
836     if (!igb_tx_enabled(core, txi)) {
837         trace_e1000e_tx_disabled();
838         return;
839     }
840 
841     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
842     if (!d) {
843         d = core->owner;
844     }
845 
846     net_tx_pkt_reset(txr->tx->tx_pkt, d);
847 
848     while (!igb_ring_empty(core, txi)) {
849         base = igb_ring_head_descr(core, txi);
850 
851         pci_dma_read(d, base, &desc, sizeof(desc));
852 
853         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
854                               desc.read.cmd_type_len, desc.wb.status);
855 
856         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
857         igb_ring_advance(core, txi, 1);
858         eic |= igb_txdesc_writeback(core, base, &desc, txi);
859     }
860 
861     if (eic) {
862         core->mac[EICR] |= eic;
863         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
864     }
865 }
866 
867 static uint32_t
868 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
869 {
870     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
871     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
872     if (bsizepkt) {
873         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
874     }
875 
876     return e1000x_rxbufsize(core->mac[RCTL]);
877 }
878 
879 static bool
880 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
881 {
882     uint32_t bufs = igb_ring_free_descr_num(core, r);
883     uint32_t bufsize = igb_rxbufsize(core, r);
884 
885     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
886 
887     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
888                          bufsize;
889 }
890 
891 void
892 igb_start_recv(IGBCore *core)
893 {
894     int i;
895 
896     trace_e1000e_rx_start_recv();
897 
898     for (i = 0; i <= core->max_queue_num; i++) {
899         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
900     }
901 }
902 
903 bool
904 igb_can_receive(IGBCore *core)
905 {
906     int i;
907 
908     if (!e1000x_rx_ready(core->owner, core->mac)) {
909         return false;
910     }
911 
912     for (i = 0; i < IGB_NUM_QUEUES; i++) {
913         E1000E_RxRing rxr;
914         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
915             continue;
916         }
917 
918         igb_rx_ring_init(core, &rxr, i);
919         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
920             trace_e1000e_rx_can_recv();
921             return true;
922         }
923     }
924 
925     trace_e1000e_rx_can_recv_rings_full();
926     return false;
927 }
928 
929 ssize_t
930 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
931 {
932     const struct iovec iov = {
933         .iov_base = (uint8_t *)buf,
934         .iov_len = size
935     };
936 
937     return igb_receive_iov(core, &iov, 1);
938 }
939 
940 static inline bool
941 igb_rx_l3_cso_enabled(IGBCore *core)
942 {
943     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
944 }
945 
946 static inline bool
947 igb_rx_l4_cso_enabled(IGBCore *core)
948 {
949     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
950 }
951 
952 static bool
953 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size)
954 {
955     uint16_t pool = qn % IGB_NUM_VM_POOLS;
956     bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE);
957     int max_ethernet_lpe_size =
958         core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK;
959     int max_ethernet_vlan_size = 1522;
960 
961     return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size);
962 }
963 
964 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr,
965                                    size_t size, E1000E_RSSInfo *rss_info,
966                                    bool *external_tx)
967 {
968     static const int ta_shift[] = { 4, 3, 2, 0 };
969     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
970     uint16_t queues = 0;
971     uint16_t oversized = 0;
972     uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK;
973     bool accepted = false;
974     int i;
975 
976     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
977 
978     if (external_tx) {
979         *external_tx = true;
980     }
981 
982     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
983         e1000x_vlan_rx_filter_enabled(core->mac)) {
984         uint32_t vfta =
985             ldl_le_p((uint32_t *)(core->mac + VFTA) +
986                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
987         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
988             trace_e1000e_rx_flt_vlan_mismatch(vid);
989             return queues;
990         } else {
991             trace_e1000e_rx_flt_vlan_match(vid);
992         }
993     }
994 
995     if (core->mac[MRQC] & 1) {
996         if (is_broadcast_ether_addr(ehdr->h_dest)) {
997             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
998                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
999                     queues |= BIT(i);
1000                 }
1001             }
1002         } else {
1003             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
1004                 if (!(macp[1] & E1000_RAH_AV)) {
1005                     continue;
1006                 }
1007                 ra[0] = cpu_to_le32(macp[0]);
1008                 ra[1] = cpu_to_le32(macp[1]);
1009                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1010                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1011                 }
1012             }
1013 
1014             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1015                 if (!(macp[1] & E1000_RAH_AV)) {
1016                     continue;
1017                 }
1018                 ra[0] = cpu_to_le32(macp[0]);
1019                 ra[1] = cpu_to_le32(macp[1]);
1020                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1021                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1022                 }
1023             }
1024 
1025             if (!queues) {
1026                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
1027 
1028                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1029                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1030                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1031                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1032                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1033                             queues |= BIT(i);
1034                         }
1035                     }
1036                 }
1037             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1038                 *external_tx = false;
1039             }
1040         }
1041 
1042         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1043             uint16_t mask = 0;
1044 
1045             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
1046                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1047                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1048                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1049                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1050                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1051                     }
1052                 }
1053             } else {
1054                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1055                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1056                         mask |= BIT(i);
1057                     }
1058                 }
1059             }
1060 
1061             queues &= mask;
1062         }
1063 
1064         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1065             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1066             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1067             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1068         }
1069 
1070         queues &= core->mac[VFRE];
1071         if (queues) {
1072             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1073                 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) {
1074                     oversized |= BIT(i);
1075                 }
1076             }
1077             /* 8.19.37 increment ROC if packet is oversized for all queues */
1078             if (oversized == queues) {
1079                 trace_e1000x_rx_oversized(size);
1080                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1081             }
1082             queues &= ~oversized;
1083         }
1084 
1085         if (queues) {
1086             igb_rss_parse_packet(core, core->rx_pkt,
1087                                  external_tx != NULL, rss_info);
1088             /* Sec 8.26.1: PQn = VFn + VQn*8 */
1089             if (rss_info->queue & 1) {
1090                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1091                     if ((queues & BIT(i)) &&
1092                         (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) {
1093                         queues |= BIT(i + IGB_NUM_VM_POOLS);
1094                         queues &= ~BIT(i);
1095                     }
1096                 }
1097             }
1098         }
1099     } else {
1100         switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1101         case ETH_PKT_UCAST:
1102             if (rctl & E1000_RCTL_UPE) {
1103                 accepted = true; /* promiscuous ucast */
1104             }
1105             break;
1106 
1107         case ETH_PKT_BCAST:
1108             if (rctl & E1000_RCTL_BAM) {
1109                 accepted = true; /* broadcast enabled */
1110             }
1111             break;
1112 
1113         case ETH_PKT_MCAST:
1114             if (rctl & E1000_RCTL_MPE) {
1115                 accepted = true; /* promiscuous mcast */
1116             }
1117             break;
1118 
1119         default:
1120             g_assert_not_reached();
1121         }
1122 
1123         if (!accepted) {
1124             accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest);
1125         }
1126 
1127         if (!accepted) {
1128             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1129                 if (!(macp[1] & E1000_RAH_AV)) {
1130                     continue;
1131                 }
1132                 ra[0] = cpu_to_le32(macp[0]);
1133                 ra[1] = cpu_to_le32(macp[1]);
1134                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1135                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1136                                                     MAC_ARG(ehdr->h_dest));
1137 
1138                     accepted = true;
1139                     break;
1140                 }
1141             }
1142         }
1143 
1144         if (accepted) {
1145             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1146             queues = BIT(rss_info->queue);
1147         }
1148     }
1149 
1150     return queues;
1151 }
1152 
1153 static inline void
1154 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1155                        hwaddr *buff_addr)
1156 {
1157     *buff_addr = le64_to_cpu(desc->buffer_addr);
1158 }
1159 
1160 static inline void
1161 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1162                       hwaddr *buff_addr)
1163 {
1164     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1165 }
1166 
1167 static inline void
1168 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1169                   hwaddr *buff_addr)
1170 {
1171     if (igb_rx_use_legacy_descriptor(core)) {
1172         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1173     } else {
1174         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1175     }
1176 }
1177 
1178 static void
1179 igb_verify_csum_in_sw(IGBCore *core,
1180                       struct NetRxPkt *pkt,
1181                       uint32_t *status_flags,
1182                       EthL4HdrProto l4hdr_proto)
1183 {
1184     bool csum_valid;
1185     uint32_t csum_error;
1186 
1187     if (igb_rx_l3_cso_enabled(core)) {
1188         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1189             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1190         } else {
1191             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1192             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1193         }
1194     } else {
1195         trace_e1000e_rx_metadata_l3_cso_disabled();
1196     }
1197 
1198     if (!igb_rx_l4_cso_enabled(core)) {
1199         trace_e1000e_rx_metadata_l4_cso_disabled();
1200         return;
1201     }
1202 
1203     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1204         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1205         return;
1206     }
1207 
1208     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1209     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1210 
1211     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1212         *status_flags |= E1000_RXD_STAT_UDPCS;
1213     }
1214 }
1215 
1216 static void
1217 igb_build_rx_metadata(IGBCore *core,
1218                       struct NetRxPkt *pkt,
1219                       bool is_eop,
1220                       const E1000E_RSSInfo *rss_info,
1221                       uint16_t *pkt_info, uint16_t *hdr_info,
1222                       uint32_t *rss,
1223                       uint32_t *status_flags,
1224                       uint16_t *ip_id,
1225                       uint16_t *vlan_tag)
1226 {
1227     struct virtio_net_hdr *vhdr;
1228     bool hasip4, hasip6;
1229     EthL4HdrProto l4hdr_proto;
1230     uint32_t pkt_type;
1231 
1232     *status_flags = E1000_RXD_STAT_DD;
1233 
1234     /* No additional metadata needed for non-EOP descriptors */
1235     /* TODO: EOP apply only to status so don't skip whole function. */
1236     if (!is_eop) {
1237         goto func_exit;
1238     }
1239 
1240     *status_flags |= E1000_RXD_STAT_EOP;
1241 
1242     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1243     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1244 
1245     /* VLAN state */
1246     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1247         *status_flags |= E1000_RXD_STAT_VP;
1248         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1249         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1250     }
1251 
1252     /* Packet parsing results */
1253     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1254         if (rss_info->enabled) {
1255             *rss = cpu_to_le32(rss_info->hash);
1256             trace_igb_rx_metadata_rss(*rss);
1257         }
1258     } else if (hasip4) {
1259             *status_flags |= E1000_RXD_STAT_IPIDV;
1260             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1261             trace_e1000e_rx_metadata_ip_id(*ip_id);
1262     }
1263 
1264     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1265         *status_flags |= E1000_RXD_STAT_ACK;
1266         trace_e1000e_rx_metadata_ack();
1267     }
1268 
1269     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1270         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1271         pkt_type = E1000_RXD_PKT_MAC;
1272     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1273                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1274         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1275     } else if (hasip4 || hasip6) {
1276         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1277     } else {
1278         pkt_type = E1000_RXD_PKT_MAC;
1279     }
1280 
1281     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1282 
1283     if (pkt_info) {
1284         if (rss_info->enabled) {
1285             *pkt_info = rss_info->type;
1286         }
1287 
1288         *pkt_info |= (pkt_type << 4);
1289     } else {
1290         *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1291     }
1292 
1293     if (hdr_info) {
1294         *hdr_info = 0;
1295     }
1296 
1297     /* RX CSO information */
1298     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1299         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1300         goto func_exit;
1301     }
1302 
1303     vhdr = net_rx_pkt_get_vhdr(pkt);
1304 
1305     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1306         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1307         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1308         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1309         goto func_exit;
1310     }
1311 
1312     if (igb_rx_l3_cso_enabled(core)) {
1313         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1314     } else {
1315         trace_e1000e_rx_metadata_l3_cso_disabled();
1316     }
1317 
1318     if (igb_rx_l4_cso_enabled(core)) {
1319         switch (l4hdr_proto) {
1320         case ETH_L4_HDR_PROTO_TCP:
1321             *status_flags |= E1000_RXD_STAT_TCPCS;
1322             break;
1323 
1324         case ETH_L4_HDR_PROTO_UDP:
1325             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1326             break;
1327 
1328         default:
1329             goto func_exit;
1330         }
1331     } else {
1332         trace_e1000e_rx_metadata_l4_cso_disabled();
1333     }
1334 
1335     trace_e1000e_rx_metadata_status_flags(*status_flags);
1336 
1337 func_exit:
1338     *status_flags = cpu_to_le32(*status_flags);
1339 }
1340 
1341 static inline void
1342 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1343                         struct NetRxPkt *pkt,
1344                         const E1000E_RSSInfo *rss_info,
1345                         uint16_t length)
1346 {
1347     uint32_t status_flags, rss;
1348     uint16_t ip_id;
1349 
1350     assert(!rss_info->enabled);
1351     desc->length = cpu_to_le16(length);
1352     desc->csum = 0;
1353 
1354     igb_build_rx_metadata(core, pkt, pkt != NULL,
1355                           rss_info,
1356                           NULL, NULL, &rss,
1357                           &status_flags, &ip_id,
1358                           &desc->special);
1359     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1360     desc->status = (uint8_t) le32_to_cpu(status_flags);
1361 }
1362 
1363 static inline void
1364 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1365                        struct NetRxPkt *pkt,
1366                        const E1000E_RSSInfo *rss_info,
1367                        uint16_t length)
1368 {
1369     memset(&desc->wb, 0, sizeof(desc->wb));
1370 
1371     desc->wb.upper.length = cpu_to_le16(length);
1372 
1373     igb_build_rx_metadata(core, pkt, pkt != NULL,
1374                           rss_info,
1375                           &desc->wb.lower.lo_dword.pkt_info,
1376                           &desc->wb.lower.lo_dword.hdr_info,
1377                           &desc->wb.lower.hi_dword.rss,
1378                           &desc->wb.upper.status_error,
1379                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1380                           &desc->wb.upper.vlan);
1381 }
1382 
1383 static inline void
1384 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1385 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1386 {
1387     if (igb_rx_use_legacy_descriptor(core)) {
1388         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1389     } else {
1390         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1391     }
1392 }
1393 
1394 static inline void
1395 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1396                           union e1000_rx_desc_union *desc, dma_addr_t len)
1397 {
1398     if (igb_rx_use_legacy_descriptor(core)) {
1399         struct e1000_rx_desc *d = &desc->legacy;
1400         size_t offset = offsetof(struct e1000_rx_desc, status);
1401         uint8_t status = d->status;
1402 
1403         d->status &= ~E1000_RXD_STAT_DD;
1404         pci_dma_write(dev, addr, desc, len);
1405 
1406         if (status & E1000_RXD_STAT_DD) {
1407             d->status = status;
1408             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1409         }
1410     } else {
1411         union e1000_adv_rx_desc *d = &desc->adv;
1412         size_t offset =
1413             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1414         uint32_t status = d->wb.upper.status_error;
1415 
1416         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1417         pci_dma_write(dev, addr, desc, len);
1418 
1419         if (status & E1000_RXD_STAT_DD) {
1420             d->wb.upper.status_error = status;
1421             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1422         }
1423     }
1424 }
1425 
1426 static void
1427 igb_write_to_rx_buffers(IGBCore *core,
1428                         PCIDevice *d,
1429                         hwaddr ba,
1430                         uint16_t *written,
1431                         const char *data,
1432                         dma_addr_t data_len)
1433 {
1434     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1435     pci_dma_write(d, ba + *written, data, data_len);
1436     *written += data_len;
1437 }
1438 
1439 static void
1440 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi,
1441                     size_t data_size, size_t data_fcs_size)
1442 {
1443     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1444 
1445     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1446     case ETH_PKT_BCAST:
1447         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1448         break;
1449 
1450     case ETH_PKT_MCAST:
1451         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1452         break;
1453 
1454     default:
1455         break;
1456     }
1457 
1458     if (core->mac[MRQC] & 1) {
1459         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1460 
1461         core->mac[PVFGORC0 + (pool * 64)] += data_size + 4;
1462         core->mac[PVFGPRC0 + (pool * 64)]++;
1463         if (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) {
1464             core->mac[PVFMPRC0 + (pool * 64)]++;
1465         }
1466     }
1467 }
1468 
1469 static inline bool
1470 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1471 {
1472     return igb_ring_free_descr_num(core, rxi) ==
1473            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1474 }
1475 
1476 static void
1477 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1478                           const E1000E_RxRing *rxr,
1479                           const E1000E_RSSInfo *rss_info)
1480 {
1481     PCIDevice *d;
1482     dma_addr_t base;
1483     union e1000_rx_desc_union desc;
1484     size_t desc_size;
1485     size_t desc_offset = 0;
1486     size_t iov_ofs = 0;
1487 
1488     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1489     size_t size = net_rx_pkt_get_total_len(pkt);
1490     size_t total_size = size + e1000x_fcs_len(core->mac);
1491     const E1000E_RingInfo *rxi = rxr->i;
1492     size_t bufsize = igb_rxbufsize(core, rxi);
1493 
1494     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1495     if (!d) {
1496         d = core->owner;
1497     }
1498 
1499     do {
1500         hwaddr ba;
1501         uint16_t written = 0;
1502         bool is_last = false;
1503 
1504         desc_size = total_size - desc_offset;
1505 
1506         if (desc_size > bufsize) {
1507             desc_size = bufsize;
1508         }
1509 
1510         if (igb_ring_empty(core, rxi)) {
1511             return;
1512         }
1513 
1514         base = igb_ring_head_descr(core, rxi);
1515 
1516         pci_dma_read(d, base, &desc, core->rx_desc_len);
1517 
1518         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1519 
1520         igb_read_rx_descr(core, &desc, &ba);
1521 
1522         if (ba) {
1523             if (desc_offset < size) {
1524                 static const uint32_t fcs_pad;
1525                 size_t iov_copy;
1526                 size_t copy_size = size - desc_offset;
1527                 if (copy_size > bufsize) {
1528                     copy_size = bufsize;
1529                 }
1530 
1531                 /* Copy packet payload */
1532                 while (copy_size) {
1533                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1534 
1535                     igb_write_to_rx_buffers(core, d, ba, &written,
1536                                             iov->iov_base + iov_ofs, iov_copy);
1537 
1538                     copy_size -= iov_copy;
1539                     iov_ofs += iov_copy;
1540                     if (iov_ofs == iov->iov_len) {
1541                         iov++;
1542                         iov_ofs = 0;
1543                     }
1544                 }
1545 
1546                 if (desc_offset + desc_size >= total_size) {
1547                     /* Simulate FCS checksum presence in the last descriptor */
1548                     igb_write_to_rx_buffers(core, d, ba, &written,
1549                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1550                 }
1551             }
1552         } else { /* as per intel docs; skip descriptors with null buf addr */
1553             trace_e1000e_rx_null_descriptor();
1554         }
1555         desc_offset += desc_size;
1556         if (desc_offset >= total_size) {
1557             is_last = true;
1558         }
1559 
1560         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1561                            rss_info, written);
1562         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1563 
1564         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1565 
1566     } while (desc_offset < total_size);
1567 
1568     igb_update_rx_stats(core, rxi, size, total_size);
1569 }
1570 
1571 static bool
1572 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi)
1573 {
1574     if (core->mac[MRQC] & 1) {
1575         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1576         /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */
1577         return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ?
1578                 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN :
1579                 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN;
1580     }
1581 
1582     return e1000x_vlan_enabled(core->mac);
1583 }
1584 
1585 static inline void
1586 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1587 {
1588     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1589 
1590     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1591         net_rx_pkt_fix_l4_csum(pkt);
1592     }
1593 }
1594 
1595 ssize_t
1596 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1597 {
1598     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1599 }
1600 
1601 static ssize_t
1602 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1603                      bool has_vnet, bool *external_tx)
1604 {
1605     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1606 
1607     uint16_t queues = 0;
1608     uint32_t n = 0;
1609     uint8_t min_buf[ETH_ZLEN];
1610     struct iovec min_iov;
1611     struct eth_header *ehdr;
1612     uint8_t *filter_buf;
1613     size_t size, orig_size;
1614     size_t iov_ofs = 0;
1615     E1000E_RxRing rxr;
1616     E1000E_RSSInfo rss_info;
1617     size_t total_size;
1618     int i;
1619 
1620     trace_e1000e_rx_receive_iov(iovcnt);
1621 
1622     if (external_tx) {
1623         *external_tx = true;
1624     }
1625 
1626     if (!e1000x_hw_rx_enabled(core->mac)) {
1627         return -1;
1628     }
1629 
1630     /* Pull virtio header in */
1631     if (has_vnet) {
1632         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1633         iov_ofs = sizeof(struct virtio_net_hdr);
1634     } else {
1635         net_rx_pkt_unset_vhdr(core->rx_pkt);
1636     }
1637 
1638     filter_buf = iov->iov_base + iov_ofs;
1639     orig_size = iov_size(iov, iovcnt);
1640     size = orig_size - iov_ofs;
1641 
1642     /* Pad to minimum Ethernet frame length */
1643     if (size < sizeof(min_buf)) {
1644         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1645         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1646         e1000x_inc_reg_if_not_full(core->mac, RUC);
1647         min_iov.iov_base = filter_buf = min_buf;
1648         min_iov.iov_len = size = sizeof(min_buf);
1649         iovcnt = 1;
1650         iov = &min_iov;
1651         iov_ofs = 0;
1652     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1653         /* This is very unlikely, but may happen. */
1654         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1655         filter_buf = min_buf;
1656     }
1657 
1658     /* Discard oversized packets if !LPE and !SBP. */
1659     if (e1000x_is_oversized(core->mac, size)) {
1660         return orig_size;
1661     }
1662 
1663     ehdr = PKT_GET_ETH_HDR(filter_buf);
1664     net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr));
1665     net_rx_pkt_set_protocols(core->rx_pkt, filter_buf, size);
1666 
1667     queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx);
1668     if (!queues) {
1669         trace_e1000e_rx_flt_dropped();
1670         return orig_size;
1671     }
1672 
1673     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1674         if (!(queues & BIT(i)) ||
1675             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
1676             continue;
1677         }
1678 
1679         igb_rx_ring_init(core, &rxr, i);
1680 
1681         net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1682                                    igb_rx_strip_vlan(core, rxr.i),
1683                                    core->mac[VET] & 0xffff);
1684 
1685         total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1686             e1000x_fcs_len(core->mac);
1687 
1688         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1689             n |= E1000_ICS_RXO;
1690             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1691             continue;
1692         }
1693 
1694         n |= E1000_ICR_RXDW;
1695 
1696         igb_rx_fix_l4_csum(core, core->rx_pkt);
1697         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1698 
1699         /* Check if receive descriptor minimum threshold hit */
1700         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1701             n |= E1000_ICS_RXDMT0;
1702         }
1703 
1704         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1705 
1706         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1707     }
1708 
1709     trace_e1000e_rx_interrupt_set(n);
1710     igb_set_interrupt_cause(core, n);
1711 
1712     return orig_size;
1713 }
1714 
1715 static inline bool
1716 igb_have_autoneg(IGBCore *core)
1717 {
1718     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1719 }
1720 
1721 static void igb_update_flowctl_status(IGBCore *core)
1722 {
1723     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1724         trace_e1000e_link_autoneg_flowctl(true);
1725         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1726     } else {
1727         trace_e1000e_link_autoneg_flowctl(false);
1728     }
1729 }
1730 
1731 static inline void
1732 igb_link_down(IGBCore *core)
1733 {
1734     e1000x_update_regs_on_link_down(core->mac, core->phy);
1735     igb_update_flowctl_status(core);
1736 }
1737 
1738 static inline void
1739 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1740 {
1741     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1742     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1743 
1744     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1745         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1746     }
1747 }
1748 
1749 void igb_core_set_link_status(IGBCore *core)
1750 {
1751     NetClientState *nc = qemu_get_queue(core->owner_nic);
1752     uint32_t old_status = core->mac[STATUS];
1753 
1754     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1755 
1756     if (nc->link_down) {
1757         e1000x_update_regs_on_link_down(core->mac, core->phy);
1758     } else {
1759         if (igb_have_autoneg(core) &&
1760             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1761             e1000x_restart_autoneg(core->mac, core->phy,
1762                                    core->autoneg_timer);
1763         } else {
1764             e1000x_update_regs_on_link_up(core->mac, core->phy);
1765             igb_start_recv(core);
1766         }
1767     }
1768 
1769     if (core->mac[STATUS] != old_status) {
1770         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1771     }
1772 }
1773 
1774 static void
1775 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1776 {
1777     trace_e1000e_core_ctrl_write(index, val);
1778 
1779     /* RST is self clearing */
1780     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1781     core->mac[CTRL_DUP] = core->mac[CTRL];
1782 
1783     trace_e1000e_link_set_params(
1784         !!(val & E1000_CTRL_ASDE),
1785         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1786         !!(val & E1000_CTRL_FRCSPD),
1787         !!(val & E1000_CTRL_FRCDPX),
1788         !!(val & E1000_CTRL_RFCE),
1789         !!(val & E1000_CTRL_TFCE));
1790 
1791     if (val & E1000_CTRL_RST) {
1792         trace_e1000e_core_ctrl_sw_reset();
1793         igb_reset(core, true);
1794     }
1795 
1796     if (val & E1000_CTRL_PHY_RST) {
1797         trace_e1000e_core_ctrl_phy_reset();
1798         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1799     }
1800 }
1801 
1802 static void
1803 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1804 {
1805     trace_e1000e_rx_set_rfctl(val);
1806 
1807     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1808         trace_e1000e_wrn_iscsi_filtering_not_supported();
1809     }
1810 
1811     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1812         trace_e1000e_wrn_nfsw_filtering_not_supported();
1813     }
1814 
1815     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1816         trace_e1000e_wrn_nfsr_filtering_not_supported();
1817     }
1818 
1819     core->mac[RFCTL] = val;
1820 }
1821 
1822 static void
1823 igb_calc_rxdesclen(IGBCore *core)
1824 {
1825     if (igb_rx_use_legacy_descriptor(core)) {
1826         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1827     } else {
1828         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1829     }
1830     trace_e1000e_rx_desc_len(core->rx_desc_len);
1831 }
1832 
1833 static void
1834 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1835 {
1836     core->mac[RCTL] = val;
1837     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1838 
1839     if (val & E1000_RCTL_DTYP_MASK) {
1840         qemu_log_mask(LOG_GUEST_ERROR,
1841                       "igb: RCTL.DTYP must be zero for compatibility");
1842     }
1843 
1844     if (val & E1000_RCTL_EN) {
1845         igb_calc_rxdesclen(core);
1846         igb_start_recv(core);
1847     }
1848 }
1849 
1850 static inline void
1851 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1852 {
1853     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1854     core->mac[IMS] &= ~bits;
1855 }
1856 
1857 static inline bool
1858 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1859 {
1860     if (timer->running) {
1861         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1862 
1863         return true;
1864     }
1865 
1866     if (timer->core->mac[timer->delay_reg] != 0) {
1867         igb_intrmgr_rearm_timer(timer);
1868     }
1869 
1870     return false;
1871 }
1872 
1873 static inline bool
1874 igb_eitr_should_postpone(IGBCore *core, int idx)
1875 {
1876     return igb_postpone_interrupt(&core->eitr[idx]);
1877 }
1878 
1879 static void igb_send_msix(IGBCore *core)
1880 {
1881     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1882     uint32_t effective_eiac;
1883     int vector;
1884 
1885     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1886         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1887 
1888             trace_e1000e_irq_msix_notify_vec(vector);
1889             igb_msix_notify(core, vector);
1890 
1891             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1892             effective_eiac = core->mac[EIAC] & BIT(vector);
1893             core->mac[EICR] &= ~effective_eiac;
1894         }
1895     }
1896 }
1897 
1898 static inline void
1899 igb_fix_icr_asserted(IGBCore *core)
1900 {
1901     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1902     if (core->mac[ICR]) {
1903         core->mac[ICR] |= E1000_ICR_ASSERTED;
1904     }
1905 
1906     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1907 }
1908 
1909 static void
1910 igb_update_interrupt_state(IGBCore *core)
1911 {
1912     uint32_t icr;
1913     uint32_t causes;
1914     uint32_t int_alloc;
1915 
1916     icr = core->mac[ICR] & core->mac[IMS];
1917 
1918     if (msix_enabled(core->owner)) {
1919         if (icr) {
1920             causes = 0;
1921             if (icr & E1000_ICR_DRSTA) {
1922                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1923                 if (int_alloc & E1000_IVAR_VALID) {
1924                     causes |= BIT(int_alloc & 0x1f);
1925                 }
1926             }
1927             /* Check if other bits (excluding the TCP Timer) are enabled. */
1928             if (icr & ~E1000_ICR_DRSTA) {
1929                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1930                 if (int_alloc & E1000_IVAR_VALID) {
1931                     causes |= BIT(int_alloc & 0x1f);
1932                 }
1933                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1934             }
1935             core->mac[EICR] |= causes;
1936         }
1937 
1938         if ((core->mac[EICR] & core->mac[EIMS])) {
1939             igb_send_msix(core);
1940         }
1941     } else {
1942         igb_fix_icr_asserted(core);
1943 
1944         if (icr) {
1945             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1946         } else {
1947             core->mac[EICR] &= ~E1000_EICR_OTHER;
1948         }
1949 
1950         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1951                                             core->mac[ICR], core->mac[IMS]);
1952 
1953         if (msi_enabled(core->owner)) {
1954             if (icr) {
1955                 msi_notify(core->owner, 0);
1956             }
1957         } else {
1958             if (icr) {
1959                 igb_raise_legacy_irq(core);
1960             } else {
1961                 igb_lower_legacy_irq(core);
1962             }
1963         }
1964     }
1965 }
1966 
1967 static void
1968 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1969 {
1970     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1971 
1972     core->mac[ICR] |= val;
1973 
1974     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1975 
1976     igb_update_interrupt_state(core);
1977 }
1978 
1979 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1980 {
1981     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1982 
1983     trace_igb_irq_write_eics(val, msix);
1984 
1985     core->mac[EICS] |=
1986         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1987 
1988     /*
1989      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1990      * places.
1991      */
1992     core->mac[EICR] = core->mac[EICS];
1993 
1994     igb_update_interrupt_state(core);
1995 }
1996 
1997 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1998 {
1999     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2000 
2001     trace_igb_irq_write_eims(val, msix);
2002 
2003     core->mac[EIMS] |=
2004         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
2005 
2006     igb_update_interrupt_state(core);
2007 }
2008 
2009 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
2010 {
2011     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
2012 
2013     if ((ent & E1000_IVAR_VALID)) {
2014         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
2015         igb_update_interrupt_state(core);
2016     }
2017 }
2018 
2019 static void mailbox_interrupt_to_pf(IGBCore *core)
2020 {
2021     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
2022 }
2023 
2024 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
2025 {
2026     uint16_t vfn = index - P2VMAILBOX0;
2027 
2028     trace_igb_set_pfmailbox(vfn, val);
2029 
2030     if (val & E1000_P2VMAILBOX_STS) {
2031         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
2032         mailbox_interrupt_to_vf(core, vfn);
2033     }
2034 
2035     if (val & E1000_P2VMAILBOX_ACK) {
2036         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
2037         mailbox_interrupt_to_vf(core, vfn);
2038     }
2039 
2040     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
2041     if (val & E1000_P2VMAILBOX_PFU) {
2042         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
2043             core->mac[index] |= E1000_P2VMAILBOX_PFU;
2044             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
2045         }
2046     } else {
2047         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
2048         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
2049     }
2050 
2051     if (val & E1000_P2VMAILBOX_RVFU) {
2052         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
2053         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
2054                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
2055     }
2056 }
2057 
2058 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
2059 {
2060     uint16_t vfn = index - V2PMAILBOX0;
2061 
2062     trace_igb_set_vfmailbox(vfn, val);
2063 
2064     if (val & E1000_V2PMAILBOX_REQ) {
2065         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2066         mailbox_interrupt_to_pf(core);
2067     }
2068 
2069     if (val & E1000_V2PMAILBOX_ACK) {
2070         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2071         mailbox_interrupt_to_pf(core);
2072     }
2073 
2074     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2075     if (val & E1000_V2PMAILBOX_VFU) {
2076         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2077             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2078             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2079         }
2080     } else {
2081         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2082         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2083     }
2084 }
2085 
2086 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
2087 {
2088     uint16_t qn0 = vfn;
2089     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2090 
2091     /* disable Rx and Tx for the VF*/
2092     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2093     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2094     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2095     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2096     core->mac[VFRE] &= ~BIT(vfn);
2097     core->mac[VFTE] &= ~BIT(vfn);
2098     /* indicate VF reset to PF */
2099     core->mac[VFLRE] |= BIT(vfn);
2100     /* VFLRE and mailbox use the same interrupt cause */
2101     mailbox_interrupt_to_pf(core);
2102 }
2103 
2104 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2105 {
2106     core->mac[index] &= ~val;
2107 }
2108 
2109 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2110 {
2111     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2112 
2113     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2114     core->mac[EIMS] &=
2115         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2116 
2117     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
2118     igb_update_interrupt_state(core);
2119 }
2120 
2121 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2122 {
2123     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2124 
2125     if (msix) {
2126         trace_igb_irq_write_eiac(val);
2127 
2128         /*
2129          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2130          * that are assigned to a VF are read-only.
2131          */
2132         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2133     }
2134 }
2135 
2136 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2137 {
2138     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2139 
2140     /*
2141      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2142      * are assigned to a VF are read-only.
2143      */
2144     core->mac[EIAM] |=
2145         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2146 
2147     trace_igb_irq_write_eiam(val, msix);
2148 }
2149 
2150 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2151 {
2152     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2153 
2154     /*
2155      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2156      * function.
2157      */
2158     core->mac[EICR] &=
2159         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2160 
2161     trace_igb_irq_write_eicr(val, msix);
2162     igb_update_interrupt_state(core);
2163 }
2164 
2165 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2166 {
2167     uint16_t vfn;
2168 
2169     if (val & E1000_CTRL_RST) {
2170         vfn = (index - PVTCTRL0) / 0x40;
2171         igb_vf_reset(core, vfn);
2172     }
2173 }
2174 
2175 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2176 {
2177     uint16_t vfn = (index - PVTEICS0) / 0x40;
2178 
2179     core->mac[index] = val;
2180     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2181 }
2182 
2183 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2184 {
2185     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2186 
2187     core->mac[index] = val;
2188     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2189 }
2190 
2191 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2192 {
2193     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2194 
2195     core->mac[index] = val;
2196     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2197 }
2198 
2199 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2200 {
2201     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2202 
2203     core->mac[index] = val;
2204     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2205 }
2206 
2207 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2208 {
2209     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2210 
2211     core->mac[index] = val;
2212     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2213 }
2214 
2215 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2216 {
2217     uint16_t vfn = (index - PVTEICR0) / 0x40;
2218 
2219     core->mac[index] = val;
2220     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2221 }
2222 
2223 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2224 {
2225     uint16_t vfn = (index - VTIVAR);
2226     uint16_t qn = vfn;
2227     uint8_t ent;
2228     int n;
2229 
2230     core->mac[index] = val;
2231 
2232     /* Get assigned vector associated with queue Rx#0. */
2233     if ((val & E1000_IVAR_VALID)) {
2234         n = igb_ivar_entry_rx(qn);
2235         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2236         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2237     }
2238 
2239     /* Get assigned vector associated with queue Tx#0 */
2240     ent = val >> 8;
2241     if ((ent & E1000_IVAR_VALID)) {
2242         n = igb_ivar_entry_tx(qn);
2243         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2244         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2245     }
2246 
2247     /*
2248      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2249      */
2250 }
2251 
2252 static inline void
2253 igb_autoneg_timer(void *opaque)
2254 {
2255     IGBCore *core = opaque;
2256     if (!qemu_get_queue(core->owner_nic)->link_down) {
2257         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2258         igb_start_recv(core);
2259 
2260         igb_update_flowctl_status(core);
2261         /* signal link status change to the guest */
2262         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2263     }
2264 }
2265 
2266 static inline uint16_t
2267 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2268 {
2269     uint16_t index = (addr & 0x1ffff) >> 2;
2270     return index + (mac_reg_access[index] & 0xfffe);
2271 }
2272 
2273 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2274     [MII_BMCR]                   = PHY_RW,
2275     [MII_BMSR]                   = PHY_R,
2276     [MII_PHYID1]                 = PHY_R,
2277     [MII_PHYID2]                 = PHY_R,
2278     [MII_ANAR]                   = PHY_RW,
2279     [MII_ANLPAR]                 = PHY_R,
2280     [MII_ANER]                   = PHY_R,
2281     [MII_ANNP]                   = PHY_RW,
2282     [MII_ANLPRNP]                = PHY_R,
2283     [MII_CTRL1000]               = PHY_RW,
2284     [MII_STAT1000]               = PHY_R,
2285     [MII_EXTSTAT]                = PHY_R,
2286 
2287     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2288     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2289     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2290     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2291     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2292     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2293 };
2294 
2295 static void
2296 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2297 {
2298     assert(addr <= MAX_PHY_REG_ADDRESS);
2299 
2300     if (addr == MII_BMCR) {
2301         igb_set_phy_ctrl(core, data);
2302     } else {
2303         core->phy[addr] = data;
2304     }
2305 }
2306 
2307 static void
2308 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2309 {
2310     uint32_t data = val & E1000_MDIC_DATA_MASK;
2311     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2312 
2313     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2314         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2315     } else if (val & E1000_MDIC_OP_READ) {
2316         if (!(igb_phy_regcap[addr] & PHY_R)) {
2317             trace_igb_core_mdic_read_unhandled(addr);
2318             val |= E1000_MDIC_ERROR;
2319         } else {
2320             val = (val ^ data) | core->phy[addr];
2321             trace_igb_core_mdic_read(addr, val);
2322         }
2323     } else if (val & E1000_MDIC_OP_WRITE) {
2324         if (!(igb_phy_regcap[addr] & PHY_W)) {
2325             trace_igb_core_mdic_write_unhandled(addr);
2326             val |= E1000_MDIC_ERROR;
2327         } else {
2328             trace_igb_core_mdic_write(addr, data);
2329             igb_phy_reg_write(core, addr, data);
2330         }
2331     }
2332     core->mac[MDIC] = val | E1000_MDIC_READY;
2333 
2334     if (val & E1000_MDIC_INT_EN) {
2335         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2336     }
2337 }
2338 
2339 static void
2340 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2341 {
2342     core->mac[index] = val & 0xffff;
2343     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2344     igb_start_recv(core);
2345 }
2346 
2347 static void
2348 igb_set_status(IGBCore *core, int index, uint32_t val)
2349 {
2350     if ((val & E1000_STATUS_PHYRA) == 0) {
2351         core->mac[index] &= ~E1000_STATUS_PHYRA;
2352     }
2353 }
2354 
2355 static void
2356 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2357 {
2358     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2359                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2360                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2361 
2362     /* Zero self-clearing bits */
2363     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2364     core->mac[CTRL_EXT] = val;
2365 
2366     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2367         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2368             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2369             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2370         }
2371     }
2372 }
2373 
2374 static void
2375 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2376 {
2377     int i;
2378 
2379     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2380 
2381     if (!msix_enabled(core->owner)) {
2382         return;
2383     }
2384 
2385     for (i = 0; i < IGB_INTR_NUM; i++) {
2386         if (core->mac[PBACLR] & BIT(i)) {
2387             msix_clr_pending(core->owner, i);
2388         }
2389     }
2390 }
2391 
2392 static void
2393 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2394 {
2395     core->mac[FCRTH] = val & 0xFFF8;
2396 }
2397 
2398 static void
2399 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2400 {
2401     core->mac[FCRTL] = val & 0x8000FFF8;
2402 }
2403 
2404 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2405     static void                                                \
2406     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2407     {                                                          \
2408         core->mac[index] = val & (BIT(num) - 1);               \
2409     }
2410 
2411 IGB_LOW_BITS_SET_FUNC(4)
2412 IGB_LOW_BITS_SET_FUNC(13)
2413 IGB_LOW_BITS_SET_FUNC(16)
2414 
2415 static void
2416 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2417 {
2418     core->mac[index] = val & 0xffff0;
2419 }
2420 
2421 static void
2422 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2423 {
2424     core->mac[index] = val & E1000_XDBAL_MASK;
2425 }
2426 
2427 static void
2428 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2429 {
2430     IGB_TxRing txr;
2431     int qn = igb_mq_queue_idx(TDT0, index);
2432 
2433     core->mac[index] = val & 0xffff;
2434 
2435     igb_tx_ring_init(core, &txr, qn);
2436     igb_start_xmit(core, &txr);
2437 }
2438 
2439 static void
2440 igb_set_ics(IGBCore *core, int index, uint32_t val)
2441 {
2442     trace_e1000e_irq_write_ics(val);
2443     igb_set_interrupt_cause(core, val);
2444 }
2445 
2446 static void
2447 igb_set_imc(IGBCore *core, int index, uint32_t val)
2448 {
2449     trace_e1000e_irq_ims_clear_set_imc(val);
2450     igb_clear_ims_bits(core, val);
2451     igb_update_interrupt_state(core);
2452 }
2453 
2454 static void
2455 igb_set_ims(IGBCore *core, int index, uint32_t val)
2456 {
2457     uint32_t valid_val = val & 0x77D4FBFD;
2458 
2459     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2460     core->mac[IMS] |= valid_val;
2461     igb_update_interrupt_state(core);
2462 }
2463 
2464 static void igb_commit_icr(IGBCore *core)
2465 {
2466     /*
2467      * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at
2468      * least one bit is set in the IMS and there is a true interrupt as
2469      * reflected in ICR.INTA.
2470      */
2471     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2472         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2473         igb_set_ims(core, IMS, core->mac[IAM]);
2474     } else {
2475         igb_update_interrupt_state(core);
2476     }
2477 }
2478 
2479 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2480 {
2481     uint32_t icr = core->mac[ICR] & ~val;
2482 
2483     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2484     core->mac[ICR] = icr;
2485     igb_commit_icr(core);
2486 }
2487 
2488 static uint32_t
2489 igb_mac_readreg(IGBCore *core, int index)
2490 {
2491     return core->mac[index];
2492 }
2493 
2494 static uint32_t
2495 igb_mac_ics_read(IGBCore *core, int index)
2496 {
2497     trace_e1000e_irq_read_ics(core->mac[ICS]);
2498     return core->mac[ICS];
2499 }
2500 
2501 static uint32_t
2502 igb_mac_ims_read(IGBCore *core, int index)
2503 {
2504     trace_e1000e_irq_read_ims(core->mac[IMS]);
2505     return core->mac[IMS];
2506 }
2507 
2508 static uint32_t
2509 igb_mac_swsm_read(IGBCore *core, int index)
2510 {
2511     uint32_t val = core->mac[SWSM];
2512     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2513     return val;
2514 }
2515 
2516 static uint32_t
2517 igb_mac_eitr_read(IGBCore *core, int index)
2518 {
2519     return core->eitr_guest_value[index - EITR0];
2520 }
2521 
2522 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2523 {
2524     uint32_t val = core->mac[index];
2525 
2526     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2527                           E1000_V2PMAILBOX_RSTD);
2528 
2529     return val;
2530 }
2531 
2532 static uint32_t
2533 igb_mac_icr_read(IGBCore *core, int index)
2534 {
2535     uint32_t ret = core->mac[ICR];
2536     trace_e1000e_irq_icr_read_entry(ret);
2537 
2538     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2539         trace_igb_irq_icr_clear_gpie_nsicr();
2540         core->mac[ICR] = 0;
2541     } else if (core->mac[IMS] == 0) {
2542         trace_e1000e_irq_icr_clear_zero_ims();
2543         core->mac[ICR] = 0;
2544     } else if (!msix_enabled(core->owner)) {
2545         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2546         core->mac[ICR] = 0;
2547     }
2548 
2549     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2550     igb_commit_icr(core);
2551     return ret;
2552 }
2553 
2554 static uint32_t
2555 igb_mac_read_clr4(IGBCore *core, int index)
2556 {
2557     uint32_t ret = core->mac[index];
2558 
2559     core->mac[index] = 0;
2560     return ret;
2561 }
2562 
2563 static uint32_t
2564 igb_mac_read_clr8(IGBCore *core, int index)
2565 {
2566     uint32_t ret = core->mac[index];
2567 
2568     core->mac[index] = 0;
2569     core->mac[index - 1] = 0;
2570     return ret;
2571 }
2572 
2573 static uint32_t
2574 igb_get_ctrl(IGBCore *core, int index)
2575 {
2576     uint32_t val = core->mac[CTRL];
2577 
2578     trace_e1000e_link_read_params(
2579         !!(val & E1000_CTRL_ASDE),
2580         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2581         !!(val & E1000_CTRL_FRCSPD),
2582         !!(val & E1000_CTRL_FRCDPX),
2583         !!(val & E1000_CTRL_RFCE),
2584         !!(val & E1000_CTRL_TFCE));
2585 
2586     return val;
2587 }
2588 
2589 static uint32_t igb_get_status(IGBCore *core, int index)
2590 {
2591     uint32_t res = core->mac[STATUS];
2592     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2593 
2594     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2595         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2596     } else {
2597         res |= E1000_STATUS_FD;
2598     }
2599 
2600     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2601         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2602         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2603         case E1000_CTRL_SPD_10:
2604             res |= E1000_STATUS_SPEED_10;
2605             break;
2606         case E1000_CTRL_SPD_100:
2607             res |= E1000_STATUS_SPEED_100;
2608             break;
2609         case E1000_CTRL_SPD_1000:
2610         default:
2611             res |= E1000_STATUS_SPEED_1000;
2612             break;
2613         }
2614     } else {
2615         res |= E1000_STATUS_SPEED_1000;
2616     }
2617 
2618     if (num_vfs) {
2619         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2620         res |= E1000_STATUS_IOV_MODE;
2621     }
2622 
2623     /*
2624      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2625      * left set after E1000_CTRL_LRST is set.
2626      */
2627     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2628         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2629         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2630     }
2631 
2632     return res;
2633 }
2634 
2635 static void
2636 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2637 {
2638     core->mac[index] = val;
2639 }
2640 
2641 static void
2642 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2643 {
2644     uint32_t macaddr[2];
2645 
2646     core->mac[index] = val;
2647 
2648     macaddr[0] = cpu_to_le32(core->mac[RA]);
2649     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2650     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2651         (uint8_t *) macaddr);
2652 
2653     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2654 }
2655 
2656 static void
2657 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2658 {
2659     static const uint32_t ro_bits = E1000_EECD_PRES          |
2660                                     E1000_EECD_AUTO_RD       |
2661                                     E1000_EECD_SIZE_EX_MASK;
2662 
2663     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2664 }
2665 
2666 static void
2667 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2668 {
2669     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2670     uint32_t flags = 0;
2671     uint32_t data = 0;
2672 
2673     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2674         data = core->eeprom[addr];
2675         flags = E1000_EERW_DONE;
2676     }
2677 
2678     core->mac[EERD] = flags                           |
2679                       (addr << E1000_EERW_ADDR_SHIFT) |
2680                       (data << E1000_EERW_DATA_SHIFT);
2681 }
2682 
2683 static void
2684 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2685 {
2686     uint32_t eitr_num = index - EITR0;
2687 
2688     trace_igb_irq_eitr_set(eitr_num, val);
2689 
2690     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2691     core->mac[index] = val & 0x7FFE;
2692 }
2693 
2694 static void
2695 igb_update_rx_offloads(IGBCore *core)
2696 {
2697     int cso_state = igb_rx_l4_cso_enabled(core);
2698 
2699     trace_e1000e_rx_set_cso(cso_state);
2700 
2701     if (core->has_vnet) {
2702         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2703                          cso_state, 0, 0, 0, 0);
2704     }
2705 }
2706 
2707 static void
2708 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2709 {
2710     core->mac[RXCSUM] = val;
2711     igb_update_rx_offloads(core);
2712 }
2713 
2714 static void
2715 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2716 {
2717     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2718     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2719 }
2720 
2721 static uint32_t igb_get_systiml(IGBCore *core, int index)
2722 {
2723     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2724     return core->mac[SYSTIML];
2725 }
2726 
2727 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2728 {
2729     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2730     return core->mac[RXSATRH];
2731 }
2732 
2733 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2734 {
2735     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2736     return core->mac[TXSTMPH];
2737 }
2738 
2739 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2740 {
2741     e1000x_set_timinca(core->mac, &core->timadj, val);
2742 }
2743 
2744 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2745 {
2746     core->mac[TIMADJH] = val;
2747     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2748 }
2749 
2750 #define igb_getreg(x)    [x] = igb_mac_readreg
2751 typedef uint32_t (*readops)(IGBCore *, int);
2752 static const readops igb_macreg_readops[] = {
2753     igb_getreg(WUFC),
2754     igb_getreg(MANC),
2755     igb_getreg(TOTL),
2756     igb_getreg(RDT0),
2757     igb_getreg(RDT1),
2758     igb_getreg(RDT2),
2759     igb_getreg(RDT3),
2760     igb_getreg(RDT4),
2761     igb_getreg(RDT5),
2762     igb_getreg(RDT6),
2763     igb_getreg(RDT7),
2764     igb_getreg(RDT8),
2765     igb_getreg(RDT9),
2766     igb_getreg(RDT10),
2767     igb_getreg(RDT11),
2768     igb_getreg(RDT12),
2769     igb_getreg(RDT13),
2770     igb_getreg(RDT14),
2771     igb_getreg(RDT15),
2772     igb_getreg(RDBAH0),
2773     igb_getreg(RDBAH1),
2774     igb_getreg(RDBAH2),
2775     igb_getreg(RDBAH3),
2776     igb_getreg(RDBAH4),
2777     igb_getreg(RDBAH5),
2778     igb_getreg(RDBAH6),
2779     igb_getreg(RDBAH7),
2780     igb_getreg(RDBAH8),
2781     igb_getreg(RDBAH9),
2782     igb_getreg(RDBAH10),
2783     igb_getreg(RDBAH11),
2784     igb_getreg(RDBAH12),
2785     igb_getreg(RDBAH13),
2786     igb_getreg(RDBAH14),
2787     igb_getreg(RDBAH15),
2788     igb_getreg(TDBAL0),
2789     igb_getreg(TDBAL1),
2790     igb_getreg(TDBAL2),
2791     igb_getreg(TDBAL3),
2792     igb_getreg(TDBAL4),
2793     igb_getreg(TDBAL5),
2794     igb_getreg(TDBAL6),
2795     igb_getreg(TDBAL7),
2796     igb_getreg(TDBAL8),
2797     igb_getreg(TDBAL9),
2798     igb_getreg(TDBAL10),
2799     igb_getreg(TDBAL11),
2800     igb_getreg(TDBAL12),
2801     igb_getreg(TDBAL13),
2802     igb_getreg(TDBAL14),
2803     igb_getreg(TDBAL15),
2804     igb_getreg(RDLEN0),
2805     igb_getreg(RDLEN1),
2806     igb_getreg(RDLEN2),
2807     igb_getreg(RDLEN3),
2808     igb_getreg(RDLEN4),
2809     igb_getreg(RDLEN5),
2810     igb_getreg(RDLEN6),
2811     igb_getreg(RDLEN7),
2812     igb_getreg(RDLEN8),
2813     igb_getreg(RDLEN9),
2814     igb_getreg(RDLEN10),
2815     igb_getreg(RDLEN11),
2816     igb_getreg(RDLEN12),
2817     igb_getreg(RDLEN13),
2818     igb_getreg(RDLEN14),
2819     igb_getreg(RDLEN15),
2820     igb_getreg(SRRCTL0),
2821     igb_getreg(SRRCTL1),
2822     igb_getreg(SRRCTL2),
2823     igb_getreg(SRRCTL3),
2824     igb_getreg(SRRCTL4),
2825     igb_getreg(SRRCTL5),
2826     igb_getreg(SRRCTL6),
2827     igb_getreg(SRRCTL7),
2828     igb_getreg(SRRCTL8),
2829     igb_getreg(SRRCTL9),
2830     igb_getreg(SRRCTL10),
2831     igb_getreg(SRRCTL11),
2832     igb_getreg(SRRCTL12),
2833     igb_getreg(SRRCTL13),
2834     igb_getreg(SRRCTL14),
2835     igb_getreg(SRRCTL15),
2836     igb_getreg(LATECOL),
2837     igb_getreg(XONTXC),
2838     igb_getreg(TDFH),
2839     igb_getreg(TDFT),
2840     igb_getreg(TDFHS),
2841     igb_getreg(TDFTS),
2842     igb_getreg(TDFPC),
2843     igb_getreg(WUS),
2844     igb_getreg(RDFH),
2845     igb_getreg(RDFT),
2846     igb_getreg(RDFHS),
2847     igb_getreg(RDFTS),
2848     igb_getreg(RDFPC),
2849     igb_getreg(GORCL),
2850     igb_getreg(MGTPRC),
2851     igb_getreg(EERD),
2852     igb_getreg(EIAC),
2853     igb_getreg(MANC2H),
2854     igb_getreg(RXCSUM),
2855     igb_getreg(GSCL_3),
2856     igb_getreg(GSCN_2),
2857     igb_getreg(FCAH),
2858     igb_getreg(FCRTH),
2859     igb_getreg(FLOP),
2860     igb_getreg(RXSTMPH),
2861     igb_getreg(TXSTMPL),
2862     igb_getreg(TIMADJL),
2863     igb_getreg(RDH0),
2864     igb_getreg(RDH1),
2865     igb_getreg(RDH2),
2866     igb_getreg(RDH3),
2867     igb_getreg(RDH4),
2868     igb_getreg(RDH5),
2869     igb_getreg(RDH6),
2870     igb_getreg(RDH7),
2871     igb_getreg(RDH8),
2872     igb_getreg(RDH9),
2873     igb_getreg(RDH10),
2874     igb_getreg(RDH11),
2875     igb_getreg(RDH12),
2876     igb_getreg(RDH13),
2877     igb_getreg(RDH14),
2878     igb_getreg(RDH15),
2879     igb_getreg(TDT0),
2880     igb_getreg(TDT1),
2881     igb_getreg(TDT2),
2882     igb_getreg(TDT3),
2883     igb_getreg(TDT4),
2884     igb_getreg(TDT5),
2885     igb_getreg(TDT6),
2886     igb_getreg(TDT7),
2887     igb_getreg(TDT8),
2888     igb_getreg(TDT9),
2889     igb_getreg(TDT10),
2890     igb_getreg(TDT11),
2891     igb_getreg(TDT12),
2892     igb_getreg(TDT13),
2893     igb_getreg(TDT14),
2894     igb_getreg(TDT15),
2895     igb_getreg(TNCRS),
2896     igb_getreg(RJC),
2897     igb_getreg(IAM),
2898     igb_getreg(GSCL_2),
2899     igb_getreg(TIPG),
2900     igb_getreg(FLMNGCTL),
2901     igb_getreg(FLMNGCNT),
2902     igb_getreg(TSYNCTXCTL),
2903     igb_getreg(EEMNGDATA),
2904     igb_getreg(CTRL_EXT),
2905     igb_getreg(SYSTIMH),
2906     igb_getreg(EEMNGCTL),
2907     igb_getreg(FLMNGDATA),
2908     igb_getreg(TSYNCRXCTL),
2909     igb_getreg(LEDCTL),
2910     igb_getreg(TCTL),
2911     igb_getreg(TCTL_EXT),
2912     igb_getreg(DTXCTL),
2913     igb_getreg(RXPBS),
2914     igb_getreg(TDH0),
2915     igb_getreg(TDH1),
2916     igb_getreg(TDH2),
2917     igb_getreg(TDH3),
2918     igb_getreg(TDH4),
2919     igb_getreg(TDH5),
2920     igb_getreg(TDH6),
2921     igb_getreg(TDH7),
2922     igb_getreg(TDH8),
2923     igb_getreg(TDH9),
2924     igb_getreg(TDH10),
2925     igb_getreg(TDH11),
2926     igb_getreg(TDH12),
2927     igb_getreg(TDH13),
2928     igb_getreg(TDH14),
2929     igb_getreg(TDH15),
2930     igb_getreg(ECOL),
2931     igb_getreg(DC),
2932     igb_getreg(RLEC),
2933     igb_getreg(XOFFTXC),
2934     igb_getreg(RFC),
2935     igb_getreg(RNBC),
2936     igb_getreg(MGTPTC),
2937     igb_getreg(TIMINCA),
2938     igb_getreg(FACTPS),
2939     igb_getreg(GSCL_1),
2940     igb_getreg(GSCN_0),
2941     igb_getreg(PBACLR),
2942     igb_getreg(FCTTV),
2943     igb_getreg(RXSATRL),
2944     igb_getreg(TORL),
2945     igb_getreg(TDLEN0),
2946     igb_getreg(TDLEN1),
2947     igb_getreg(TDLEN2),
2948     igb_getreg(TDLEN3),
2949     igb_getreg(TDLEN4),
2950     igb_getreg(TDLEN5),
2951     igb_getreg(TDLEN6),
2952     igb_getreg(TDLEN7),
2953     igb_getreg(TDLEN8),
2954     igb_getreg(TDLEN9),
2955     igb_getreg(TDLEN10),
2956     igb_getreg(TDLEN11),
2957     igb_getreg(TDLEN12),
2958     igb_getreg(TDLEN13),
2959     igb_getreg(TDLEN14),
2960     igb_getreg(TDLEN15),
2961     igb_getreg(MCC),
2962     igb_getreg(WUC),
2963     igb_getreg(EECD),
2964     igb_getreg(FCRTV),
2965     igb_getreg(TXDCTL0),
2966     igb_getreg(TXDCTL1),
2967     igb_getreg(TXDCTL2),
2968     igb_getreg(TXDCTL3),
2969     igb_getreg(TXDCTL4),
2970     igb_getreg(TXDCTL5),
2971     igb_getreg(TXDCTL6),
2972     igb_getreg(TXDCTL7),
2973     igb_getreg(TXDCTL8),
2974     igb_getreg(TXDCTL9),
2975     igb_getreg(TXDCTL10),
2976     igb_getreg(TXDCTL11),
2977     igb_getreg(TXDCTL12),
2978     igb_getreg(TXDCTL13),
2979     igb_getreg(TXDCTL14),
2980     igb_getreg(TXDCTL15),
2981     igb_getreg(TXCTL0),
2982     igb_getreg(TXCTL1),
2983     igb_getreg(TXCTL2),
2984     igb_getreg(TXCTL3),
2985     igb_getreg(TXCTL4),
2986     igb_getreg(TXCTL5),
2987     igb_getreg(TXCTL6),
2988     igb_getreg(TXCTL7),
2989     igb_getreg(TXCTL8),
2990     igb_getreg(TXCTL9),
2991     igb_getreg(TXCTL10),
2992     igb_getreg(TXCTL11),
2993     igb_getreg(TXCTL12),
2994     igb_getreg(TXCTL13),
2995     igb_getreg(TXCTL14),
2996     igb_getreg(TXCTL15),
2997     igb_getreg(TDWBAL0),
2998     igb_getreg(TDWBAL1),
2999     igb_getreg(TDWBAL2),
3000     igb_getreg(TDWBAL3),
3001     igb_getreg(TDWBAL4),
3002     igb_getreg(TDWBAL5),
3003     igb_getreg(TDWBAL6),
3004     igb_getreg(TDWBAL7),
3005     igb_getreg(TDWBAL8),
3006     igb_getreg(TDWBAL9),
3007     igb_getreg(TDWBAL10),
3008     igb_getreg(TDWBAL11),
3009     igb_getreg(TDWBAL12),
3010     igb_getreg(TDWBAL13),
3011     igb_getreg(TDWBAL14),
3012     igb_getreg(TDWBAL15),
3013     igb_getreg(TDWBAH0),
3014     igb_getreg(TDWBAH1),
3015     igb_getreg(TDWBAH2),
3016     igb_getreg(TDWBAH3),
3017     igb_getreg(TDWBAH4),
3018     igb_getreg(TDWBAH5),
3019     igb_getreg(TDWBAH6),
3020     igb_getreg(TDWBAH7),
3021     igb_getreg(TDWBAH8),
3022     igb_getreg(TDWBAH9),
3023     igb_getreg(TDWBAH10),
3024     igb_getreg(TDWBAH11),
3025     igb_getreg(TDWBAH12),
3026     igb_getreg(TDWBAH13),
3027     igb_getreg(TDWBAH14),
3028     igb_getreg(TDWBAH15),
3029     igb_getreg(PVTCTRL0),
3030     igb_getreg(PVTCTRL1),
3031     igb_getreg(PVTCTRL2),
3032     igb_getreg(PVTCTRL3),
3033     igb_getreg(PVTCTRL4),
3034     igb_getreg(PVTCTRL5),
3035     igb_getreg(PVTCTRL6),
3036     igb_getreg(PVTCTRL7),
3037     igb_getreg(PVTEIMS0),
3038     igb_getreg(PVTEIMS1),
3039     igb_getreg(PVTEIMS2),
3040     igb_getreg(PVTEIMS3),
3041     igb_getreg(PVTEIMS4),
3042     igb_getreg(PVTEIMS5),
3043     igb_getreg(PVTEIMS6),
3044     igb_getreg(PVTEIMS7),
3045     igb_getreg(PVTEIAC0),
3046     igb_getreg(PVTEIAC1),
3047     igb_getreg(PVTEIAC2),
3048     igb_getreg(PVTEIAC3),
3049     igb_getreg(PVTEIAC4),
3050     igb_getreg(PVTEIAC5),
3051     igb_getreg(PVTEIAC6),
3052     igb_getreg(PVTEIAC7),
3053     igb_getreg(PVTEIAM0),
3054     igb_getreg(PVTEIAM1),
3055     igb_getreg(PVTEIAM2),
3056     igb_getreg(PVTEIAM3),
3057     igb_getreg(PVTEIAM4),
3058     igb_getreg(PVTEIAM5),
3059     igb_getreg(PVTEIAM6),
3060     igb_getreg(PVTEIAM7),
3061     igb_getreg(PVFGPRC0),
3062     igb_getreg(PVFGPRC1),
3063     igb_getreg(PVFGPRC2),
3064     igb_getreg(PVFGPRC3),
3065     igb_getreg(PVFGPRC4),
3066     igb_getreg(PVFGPRC5),
3067     igb_getreg(PVFGPRC6),
3068     igb_getreg(PVFGPRC7),
3069     igb_getreg(PVFGPTC0),
3070     igb_getreg(PVFGPTC1),
3071     igb_getreg(PVFGPTC2),
3072     igb_getreg(PVFGPTC3),
3073     igb_getreg(PVFGPTC4),
3074     igb_getreg(PVFGPTC5),
3075     igb_getreg(PVFGPTC6),
3076     igb_getreg(PVFGPTC7),
3077     igb_getreg(PVFGORC0),
3078     igb_getreg(PVFGORC1),
3079     igb_getreg(PVFGORC2),
3080     igb_getreg(PVFGORC3),
3081     igb_getreg(PVFGORC4),
3082     igb_getreg(PVFGORC5),
3083     igb_getreg(PVFGORC6),
3084     igb_getreg(PVFGORC7),
3085     igb_getreg(PVFGOTC0),
3086     igb_getreg(PVFGOTC1),
3087     igb_getreg(PVFGOTC2),
3088     igb_getreg(PVFGOTC3),
3089     igb_getreg(PVFGOTC4),
3090     igb_getreg(PVFGOTC5),
3091     igb_getreg(PVFGOTC6),
3092     igb_getreg(PVFGOTC7),
3093     igb_getreg(PVFMPRC0),
3094     igb_getreg(PVFMPRC1),
3095     igb_getreg(PVFMPRC2),
3096     igb_getreg(PVFMPRC3),
3097     igb_getreg(PVFMPRC4),
3098     igb_getreg(PVFMPRC5),
3099     igb_getreg(PVFMPRC6),
3100     igb_getreg(PVFMPRC7),
3101     igb_getreg(PVFGPRLBC0),
3102     igb_getreg(PVFGPRLBC1),
3103     igb_getreg(PVFGPRLBC2),
3104     igb_getreg(PVFGPRLBC3),
3105     igb_getreg(PVFGPRLBC4),
3106     igb_getreg(PVFGPRLBC5),
3107     igb_getreg(PVFGPRLBC6),
3108     igb_getreg(PVFGPRLBC7),
3109     igb_getreg(PVFGPTLBC0),
3110     igb_getreg(PVFGPTLBC1),
3111     igb_getreg(PVFGPTLBC2),
3112     igb_getreg(PVFGPTLBC3),
3113     igb_getreg(PVFGPTLBC4),
3114     igb_getreg(PVFGPTLBC5),
3115     igb_getreg(PVFGPTLBC6),
3116     igb_getreg(PVFGPTLBC7),
3117     igb_getreg(PVFGORLBC0),
3118     igb_getreg(PVFGORLBC1),
3119     igb_getreg(PVFGORLBC2),
3120     igb_getreg(PVFGORLBC3),
3121     igb_getreg(PVFGORLBC4),
3122     igb_getreg(PVFGORLBC5),
3123     igb_getreg(PVFGORLBC6),
3124     igb_getreg(PVFGORLBC7),
3125     igb_getreg(PVFGOTLBC0),
3126     igb_getreg(PVFGOTLBC1),
3127     igb_getreg(PVFGOTLBC2),
3128     igb_getreg(PVFGOTLBC3),
3129     igb_getreg(PVFGOTLBC4),
3130     igb_getreg(PVFGOTLBC5),
3131     igb_getreg(PVFGOTLBC6),
3132     igb_getreg(PVFGOTLBC7),
3133     igb_getreg(RCTL),
3134     igb_getreg(MDIC),
3135     igb_getreg(FCRUC),
3136     igb_getreg(VET),
3137     igb_getreg(RDBAL0),
3138     igb_getreg(RDBAL1),
3139     igb_getreg(RDBAL2),
3140     igb_getreg(RDBAL3),
3141     igb_getreg(RDBAL4),
3142     igb_getreg(RDBAL5),
3143     igb_getreg(RDBAL6),
3144     igb_getreg(RDBAL7),
3145     igb_getreg(RDBAL8),
3146     igb_getreg(RDBAL9),
3147     igb_getreg(RDBAL10),
3148     igb_getreg(RDBAL11),
3149     igb_getreg(RDBAL12),
3150     igb_getreg(RDBAL13),
3151     igb_getreg(RDBAL14),
3152     igb_getreg(RDBAL15),
3153     igb_getreg(TDBAH0),
3154     igb_getreg(TDBAH1),
3155     igb_getreg(TDBAH2),
3156     igb_getreg(TDBAH3),
3157     igb_getreg(TDBAH4),
3158     igb_getreg(TDBAH5),
3159     igb_getreg(TDBAH6),
3160     igb_getreg(TDBAH7),
3161     igb_getreg(TDBAH8),
3162     igb_getreg(TDBAH9),
3163     igb_getreg(TDBAH10),
3164     igb_getreg(TDBAH11),
3165     igb_getreg(TDBAH12),
3166     igb_getreg(TDBAH13),
3167     igb_getreg(TDBAH14),
3168     igb_getreg(TDBAH15),
3169     igb_getreg(SCC),
3170     igb_getreg(COLC),
3171     igb_getreg(XOFFRXC),
3172     igb_getreg(IPAV),
3173     igb_getreg(GOTCL),
3174     igb_getreg(MGTPDC),
3175     igb_getreg(GCR),
3176     igb_getreg(MFVAL),
3177     igb_getreg(FUNCTAG),
3178     igb_getreg(GSCL_4),
3179     igb_getreg(GSCN_3),
3180     igb_getreg(MRQC),
3181     igb_getreg(FCT),
3182     igb_getreg(FLA),
3183     igb_getreg(RXDCTL0),
3184     igb_getreg(RXDCTL1),
3185     igb_getreg(RXDCTL2),
3186     igb_getreg(RXDCTL3),
3187     igb_getreg(RXDCTL4),
3188     igb_getreg(RXDCTL5),
3189     igb_getreg(RXDCTL6),
3190     igb_getreg(RXDCTL7),
3191     igb_getreg(RXDCTL8),
3192     igb_getreg(RXDCTL9),
3193     igb_getreg(RXDCTL10),
3194     igb_getreg(RXDCTL11),
3195     igb_getreg(RXDCTL12),
3196     igb_getreg(RXDCTL13),
3197     igb_getreg(RXDCTL14),
3198     igb_getreg(RXDCTL15),
3199     igb_getreg(RXSTMPL),
3200     igb_getreg(TIMADJH),
3201     igb_getreg(FCRTL),
3202     igb_getreg(XONRXC),
3203     igb_getreg(RFCTL),
3204     igb_getreg(GSCN_1),
3205     igb_getreg(FCAL),
3206     igb_getreg(GPIE),
3207     igb_getreg(TXPBS),
3208     igb_getreg(RLPML),
3209 
3210     [TOTH]    = igb_mac_read_clr8,
3211     [GOTCH]   = igb_mac_read_clr8,
3212     [PRC64]   = igb_mac_read_clr4,
3213     [PRC255]  = igb_mac_read_clr4,
3214     [PRC1023] = igb_mac_read_clr4,
3215     [PTC64]   = igb_mac_read_clr4,
3216     [PTC255]  = igb_mac_read_clr4,
3217     [PTC1023] = igb_mac_read_clr4,
3218     [GPRC]    = igb_mac_read_clr4,
3219     [TPT]     = igb_mac_read_clr4,
3220     [RUC]     = igb_mac_read_clr4,
3221     [BPRC]    = igb_mac_read_clr4,
3222     [MPTC]    = igb_mac_read_clr4,
3223     [IAC]     = igb_mac_read_clr4,
3224     [ICR]     = igb_mac_icr_read,
3225     [STATUS]  = igb_get_status,
3226     [ICS]     = igb_mac_ics_read,
3227     /*
3228      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3229      */
3230     [IMC]     = igb_mac_ims_read,
3231     [TORH]    = igb_mac_read_clr8,
3232     [GORCH]   = igb_mac_read_clr8,
3233     [PRC127]  = igb_mac_read_clr4,
3234     [PRC511]  = igb_mac_read_clr4,
3235     [PRC1522] = igb_mac_read_clr4,
3236     [PTC127]  = igb_mac_read_clr4,
3237     [PTC511]  = igb_mac_read_clr4,
3238     [PTC1522] = igb_mac_read_clr4,
3239     [GPTC]    = igb_mac_read_clr4,
3240     [TPR]     = igb_mac_read_clr4,
3241     [ROC]     = igb_mac_read_clr4,
3242     [MPRC]    = igb_mac_read_clr4,
3243     [BPTC]    = igb_mac_read_clr4,
3244     [TSCTC]   = igb_mac_read_clr4,
3245     [CTRL]    = igb_get_ctrl,
3246     [SWSM]    = igb_mac_swsm_read,
3247     [IMS]     = igb_mac_ims_read,
3248     [SYSTIML] = igb_get_systiml,
3249     [RXSATRH] = igb_get_rxsatrh,
3250     [TXSTMPH] = igb_get_txstmph,
3251 
3252     [CRCERRS ... MPC]      = igb_mac_readreg,
3253     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3254     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3255     [RA ... RA + 31]       = igb_mac_readreg,
3256     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3257     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3258     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3259     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3260     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3261     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3262     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3263     [RETA ... RETA + 31]   = igb_mac_readreg,
3264     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3265     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3266     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3267     [PVTEICR0] = igb_mac_read_clr4,
3268     [PVTEICR1] = igb_mac_read_clr4,
3269     [PVTEICR2] = igb_mac_read_clr4,
3270     [PVTEICR3] = igb_mac_read_clr4,
3271     [PVTEICR4] = igb_mac_read_clr4,
3272     [PVTEICR5] = igb_mac_read_clr4,
3273     [PVTEICR6] = igb_mac_read_clr4,
3274     [PVTEICR7] = igb_mac_read_clr4,
3275 
3276     /* IGB specific: */
3277     [FWSM]       = igb_mac_readreg,
3278     [SW_FW_SYNC] = igb_mac_readreg,
3279     [HTCBDPC]    = igb_mac_read_clr4,
3280     [EICR]       = igb_mac_read_clr4,
3281     [EIMS]       = igb_mac_readreg,
3282     [EIAM]       = igb_mac_readreg,
3283     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3284     igb_getreg(IVAR_MISC),
3285     igb_getreg(VT_CTL),
3286     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3287     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3288     igb_getreg(MBVFICR),
3289     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3290     igb_getreg(MBVFIMR),
3291     igb_getreg(VFLRE),
3292     igb_getreg(VFRE),
3293     igb_getreg(VFTE),
3294     igb_getreg(QDE),
3295     igb_getreg(DTXSWC),
3296     igb_getreg(RPLOLR),
3297     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3298     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3299     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3300     [WVBR] = igb_mac_read_clr4,
3301     [RQDPC0] = igb_mac_read_clr4,
3302     [RQDPC1] = igb_mac_read_clr4,
3303     [RQDPC2] = igb_mac_read_clr4,
3304     [RQDPC3] = igb_mac_read_clr4,
3305     [RQDPC4] = igb_mac_read_clr4,
3306     [RQDPC5] = igb_mac_read_clr4,
3307     [RQDPC6] = igb_mac_read_clr4,
3308     [RQDPC7] = igb_mac_read_clr4,
3309     [RQDPC8] = igb_mac_read_clr4,
3310     [RQDPC9] = igb_mac_read_clr4,
3311     [RQDPC10] = igb_mac_read_clr4,
3312     [RQDPC11] = igb_mac_read_clr4,
3313     [RQDPC12] = igb_mac_read_clr4,
3314     [RQDPC13] = igb_mac_read_clr4,
3315     [RQDPC14] = igb_mac_read_clr4,
3316     [RQDPC15] = igb_mac_read_clr4,
3317     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3318     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3319 };
3320 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3321 
3322 #define igb_putreg(x)    [x] = igb_mac_writereg
3323 typedef void (*writeops)(IGBCore *, int, uint32_t);
3324 static const writeops igb_macreg_writeops[] = {
3325     igb_putreg(SWSM),
3326     igb_putreg(WUFC),
3327     igb_putreg(RDBAH0),
3328     igb_putreg(RDBAH1),
3329     igb_putreg(RDBAH2),
3330     igb_putreg(RDBAH3),
3331     igb_putreg(RDBAH4),
3332     igb_putreg(RDBAH5),
3333     igb_putreg(RDBAH6),
3334     igb_putreg(RDBAH7),
3335     igb_putreg(RDBAH8),
3336     igb_putreg(RDBAH9),
3337     igb_putreg(RDBAH10),
3338     igb_putreg(RDBAH11),
3339     igb_putreg(RDBAH12),
3340     igb_putreg(RDBAH13),
3341     igb_putreg(RDBAH14),
3342     igb_putreg(RDBAH15),
3343     igb_putreg(SRRCTL0),
3344     igb_putreg(SRRCTL1),
3345     igb_putreg(SRRCTL2),
3346     igb_putreg(SRRCTL3),
3347     igb_putreg(SRRCTL4),
3348     igb_putreg(SRRCTL5),
3349     igb_putreg(SRRCTL6),
3350     igb_putreg(SRRCTL7),
3351     igb_putreg(SRRCTL8),
3352     igb_putreg(SRRCTL9),
3353     igb_putreg(SRRCTL10),
3354     igb_putreg(SRRCTL11),
3355     igb_putreg(SRRCTL12),
3356     igb_putreg(SRRCTL13),
3357     igb_putreg(SRRCTL14),
3358     igb_putreg(SRRCTL15),
3359     igb_putreg(RXDCTL0),
3360     igb_putreg(RXDCTL1),
3361     igb_putreg(RXDCTL2),
3362     igb_putreg(RXDCTL3),
3363     igb_putreg(RXDCTL4),
3364     igb_putreg(RXDCTL5),
3365     igb_putreg(RXDCTL6),
3366     igb_putreg(RXDCTL7),
3367     igb_putreg(RXDCTL8),
3368     igb_putreg(RXDCTL9),
3369     igb_putreg(RXDCTL10),
3370     igb_putreg(RXDCTL11),
3371     igb_putreg(RXDCTL12),
3372     igb_putreg(RXDCTL13),
3373     igb_putreg(RXDCTL14),
3374     igb_putreg(RXDCTL15),
3375     igb_putreg(LEDCTL),
3376     igb_putreg(TCTL),
3377     igb_putreg(TCTL_EXT),
3378     igb_putreg(DTXCTL),
3379     igb_putreg(RXPBS),
3380     igb_putreg(RQDPC0),
3381     igb_putreg(FCAL),
3382     igb_putreg(FCRUC),
3383     igb_putreg(WUC),
3384     igb_putreg(WUS),
3385     igb_putreg(IPAV),
3386     igb_putreg(TDBAH0),
3387     igb_putreg(TDBAH1),
3388     igb_putreg(TDBAH2),
3389     igb_putreg(TDBAH3),
3390     igb_putreg(TDBAH4),
3391     igb_putreg(TDBAH5),
3392     igb_putreg(TDBAH6),
3393     igb_putreg(TDBAH7),
3394     igb_putreg(TDBAH8),
3395     igb_putreg(TDBAH9),
3396     igb_putreg(TDBAH10),
3397     igb_putreg(TDBAH11),
3398     igb_putreg(TDBAH12),
3399     igb_putreg(TDBAH13),
3400     igb_putreg(TDBAH14),
3401     igb_putreg(TDBAH15),
3402     igb_putreg(IAM),
3403     igb_putreg(MANC),
3404     igb_putreg(MANC2H),
3405     igb_putreg(MFVAL),
3406     igb_putreg(FACTPS),
3407     igb_putreg(FUNCTAG),
3408     igb_putreg(GSCL_1),
3409     igb_putreg(GSCL_2),
3410     igb_putreg(GSCL_3),
3411     igb_putreg(GSCL_4),
3412     igb_putreg(GSCN_0),
3413     igb_putreg(GSCN_1),
3414     igb_putreg(GSCN_2),
3415     igb_putreg(GSCN_3),
3416     igb_putreg(MRQC),
3417     igb_putreg(FLOP),
3418     igb_putreg(FLA),
3419     igb_putreg(TXDCTL0),
3420     igb_putreg(TXDCTL1),
3421     igb_putreg(TXDCTL2),
3422     igb_putreg(TXDCTL3),
3423     igb_putreg(TXDCTL4),
3424     igb_putreg(TXDCTL5),
3425     igb_putreg(TXDCTL6),
3426     igb_putreg(TXDCTL7),
3427     igb_putreg(TXDCTL8),
3428     igb_putreg(TXDCTL9),
3429     igb_putreg(TXDCTL10),
3430     igb_putreg(TXDCTL11),
3431     igb_putreg(TXDCTL12),
3432     igb_putreg(TXDCTL13),
3433     igb_putreg(TXDCTL14),
3434     igb_putreg(TXDCTL15),
3435     igb_putreg(TXCTL0),
3436     igb_putreg(TXCTL1),
3437     igb_putreg(TXCTL2),
3438     igb_putreg(TXCTL3),
3439     igb_putreg(TXCTL4),
3440     igb_putreg(TXCTL5),
3441     igb_putreg(TXCTL6),
3442     igb_putreg(TXCTL7),
3443     igb_putreg(TXCTL8),
3444     igb_putreg(TXCTL9),
3445     igb_putreg(TXCTL10),
3446     igb_putreg(TXCTL11),
3447     igb_putreg(TXCTL12),
3448     igb_putreg(TXCTL13),
3449     igb_putreg(TXCTL14),
3450     igb_putreg(TXCTL15),
3451     igb_putreg(TDWBAL0),
3452     igb_putreg(TDWBAL1),
3453     igb_putreg(TDWBAL2),
3454     igb_putreg(TDWBAL3),
3455     igb_putreg(TDWBAL4),
3456     igb_putreg(TDWBAL5),
3457     igb_putreg(TDWBAL6),
3458     igb_putreg(TDWBAL7),
3459     igb_putreg(TDWBAL8),
3460     igb_putreg(TDWBAL9),
3461     igb_putreg(TDWBAL10),
3462     igb_putreg(TDWBAL11),
3463     igb_putreg(TDWBAL12),
3464     igb_putreg(TDWBAL13),
3465     igb_putreg(TDWBAL14),
3466     igb_putreg(TDWBAL15),
3467     igb_putreg(TDWBAH0),
3468     igb_putreg(TDWBAH1),
3469     igb_putreg(TDWBAH2),
3470     igb_putreg(TDWBAH3),
3471     igb_putreg(TDWBAH4),
3472     igb_putreg(TDWBAH5),
3473     igb_putreg(TDWBAH6),
3474     igb_putreg(TDWBAH7),
3475     igb_putreg(TDWBAH8),
3476     igb_putreg(TDWBAH9),
3477     igb_putreg(TDWBAH10),
3478     igb_putreg(TDWBAH11),
3479     igb_putreg(TDWBAH12),
3480     igb_putreg(TDWBAH13),
3481     igb_putreg(TDWBAH14),
3482     igb_putreg(TDWBAH15),
3483     igb_putreg(TIPG),
3484     igb_putreg(RXSTMPH),
3485     igb_putreg(RXSTMPL),
3486     igb_putreg(RXSATRL),
3487     igb_putreg(RXSATRH),
3488     igb_putreg(TXSTMPL),
3489     igb_putreg(TXSTMPH),
3490     igb_putreg(SYSTIML),
3491     igb_putreg(SYSTIMH),
3492     igb_putreg(TIMADJL),
3493     igb_putreg(TSYNCRXCTL),
3494     igb_putreg(TSYNCTXCTL),
3495     igb_putreg(EEMNGCTL),
3496     igb_putreg(GPIE),
3497     igb_putreg(TXPBS),
3498     igb_putreg(RLPML),
3499     igb_putreg(VET),
3500 
3501     [TDH0]     = igb_set_16bit,
3502     [TDH1]     = igb_set_16bit,
3503     [TDH2]     = igb_set_16bit,
3504     [TDH3]     = igb_set_16bit,
3505     [TDH4]     = igb_set_16bit,
3506     [TDH5]     = igb_set_16bit,
3507     [TDH6]     = igb_set_16bit,
3508     [TDH7]     = igb_set_16bit,
3509     [TDH8]     = igb_set_16bit,
3510     [TDH9]     = igb_set_16bit,
3511     [TDH10]    = igb_set_16bit,
3512     [TDH11]    = igb_set_16bit,
3513     [TDH12]    = igb_set_16bit,
3514     [TDH13]    = igb_set_16bit,
3515     [TDH14]    = igb_set_16bit,
3516     [TDH15]    = igb_set_16bit,
3517     [TDT0]     = igb_set_tdt,
3518     [TDT1]     = igb_set_tdt,
3519     [TDT2]     = igb_set_tdt,
3520     [TDT3]     = igb_set_tdt,
3521     [TDT4]     = igb_set_tdt,
3522     [TDT5]     = igb_set_tdt,
3523     [TDT6]     = igb_set_tdt,
3524     [TDT7]     = igb_set_tdt,
3525     [TDT8]     = igb_set_tdt,
3526     [TDT9]     = igb_set_tdt,
3527     [TDT10]    = igb_set_tdt,
3528     [TDT11]    = igb_set_tdt,
3529     [TDT12]    = igb_set_tdt,
3530     [TDT13]    = igb_set_tdt,
3531     [TDT14]    = igb_set_tdt,
3532     [TDT15]    = igb_set_tdt,
3533     [MDIC]     = igb_set_mdic,
3534     [ICS]      = igb_set_ics,
3535     [RDH0]     = igb_set_16bit,
3536     [RDH1]     = igb_set_16bit,
3537     [RDH2]     = igb_set_16bit,
3538     [RDH3]     = igb_set_16bit,
3539     [RDH4]     = igb_set_16bit,
3540     [RDH5]     = igb_set_16bit,
3541     [RDH6]     = igb_set_16bit,
3542     [RDH7]     = igb_set_16bit,
3543     [RDH8]     = igb_set_16bit,
3544     [RDH9]     = igb_set_16bit,
3545     [RDH10]    = igb_set_16bit,
3546     [RDH11]    = igb_set_16bit,
3547     [RDH12]    = igb_set_16bit,
3548     [RDH13]    = igb_set_16bit,
3549     [RDH14]    = igb_set_16bit,
3550     [RDH15]    = igb_set_16bit,
3551     [RDT0]     = igb_set_rdt,
3552     [RDT1]     = igb_set_rdt,
3553     [RDT2]     = igb_set_rdt,
3554     [RDT3]     = igb_set_rdt,
3555     [RDT4]     = igb_set_rdt,
3556     [RDT5]     = igb_set_rdt,
3557     [RDT6]     = igb_set_rdt,
3558     [RDT7]     = igb_set_rdt,
3559     [RDT8]     = igb_set_rdt,
3560     [RDT9]     = igb_set_rdt,
3561     [RDT10]    = igb_set_rdt,
3562     [RDT11]    = igb_set_rdt,
3563     [RDT12]    = igb_set_rdt,
3564     [RDT13]    = igb_set_rdt,
3565     [RDT14]    = igb_set_rdt,
3566     [RDT15]    = igb_set_rdt,
3567     [IMC]      = igb_set_imc,
3568     [IMS]      = igb_set_ims,
3569     [ICR]      = igb_set_icr,
3570     [EECD]     = igb_set_eecd,
3571     [RCTL]     = igb_set_rx_control,
3572     [CTRL]     = igb_set_ctrl,
3573     [EERD]     = igb_set_eerd,
3574     [TDFH]     = igb_set_13bit,
3575     [TDFT]     = igb_set_13bit,
3576     [TDFHS]    = igb_set_13bit,
3577     [TDFTS]    = igb_set_13bit,
3578     [TDFPC]    = igb_set_13bit,
3579     [RDFH]     = igb_set_13bit,
3580     [RDFT]     = igb_set_13bit,
3581     [RDFHS]    = igb_set_13bit,
3582     [RDFTS]    = igb_set_13bit,
3583     [RDFPC]    = igb_set_13bit,
3584     [GCR]      = igb_set_gcr,
3585     [RXCSUM]   = igb_set_rxcsum,
3586     [TDLEN0]   = igb_set_dlen,
3587     [TDLEN1]   = igb_set_dlen,
3588     [TDLEN2]   = igb_set_dlen,
3589     [TDLEN3]   = igb_set_dlen,
3590     [TDLEN4]   = igb_set_dlen,
3591     [TDLEN5]   = igb_set_dlen,
3592     [TDLEN6]   = igb_set_dlen,
3593     [TDLEN7]   = igb_set_dlen,
3594     [TDLEN8]   = igb_set_dlen,
3595     [TDLEN9]   = igb_set_dlen,
3596     [TDLEN10]  = igb_set_dlen,
3597     [TDLEN11]  = igb_set_dlen,
3598     [TDLEN12]  = igb_set_dlen,
3599     [TDLEN13]  = igb_set_dlen,
3600     [TDLEN14]  = igb_set_dlen,
3601     [TDLEN15]  = igb_set_dlen,
3602     [RDLEN0]   = igb_set_dlen,
3603     [RDLEN1]   = igb_set_dlen,
3604     [RDLEN2]   = igb_set_dlen,
3605     [RDLEN3]   = igb_set_dlen,
3606     [RDLEN4]   = igb_set_dlen,
3607     [RDLEN5]   = igb_set_dlen,
3608     [RDLEN6]   = igb_set_dlen,
3609     [RDLEN7]   = igb_set_dlen,
3610     [RDLEN8]   = igb_set_dlen,
3611     [RDLEN9]   = igb_set_dlen,
3612     [RDLEN10]  = igb_set_dlen,
3613     [RDLEN11]  = igb_set_dlen,
3614     [RDLEN12]  = igb_set_dlen,
3615     [RDLEN13]  = igb_set_dlen,
3616     [RDLEN14]  = igb_set_dlen,
3617     [RDLEN15]  = igb_set_dlen,
3618     [TDBAL0]   = igb_set_dbal,
3619     [TDBAL1]   = igb_set_dbal,
3620     [TDBAL2]   = igb_set_dbal,
3621     [TDBAL3]   = igb_set_dbal,
3622     [TDBAL4]   = igb_set_dbal,
3623     [TDBAL5]   = igb_set_dbal,
3624     [TDBAL6]   = igb_set_dbal,
3625     [TDBAL7]   = igb_set_dbal,
3626     [TDBAL8]   = igb_set_dbal,
3627     [TDBAL9]   = igb_set_dbal,
3628     [TDBAL10]  = igb_set_dbal,
3629     [TDBAL11]  = igb_set_dbal,
3630     [TDBAL12]  = igb_set_dbal,
3631     [TDBAL13]  = igb_set_dbal,
3632     [TDBAL14]  = igb_set_dbal,
3633     [TDBAL15]  = igb_set_dbal,
3634     [RDBAL0]   = igb_set_dbal,
3635     [RDBAL1]   = igb_set_dbal,
3636     [RDBAL2]   = igb_set_dbal,
3637     [RDBAL3]   = igb_set_dbal,
3638     [RDBAL4]   = igb_set_dbal,
3639     [RDBAL5]   = igb_set_dbal,
3640     [RDBAL6]   = igb_set_dbal,
3641     [RDBAL7]   = igb_set_dbal,
3642     [RDBAL8]   = igb_set_dbal,
3643     [RDBAL9]   = igb_set_dbal,
3644     [RDBAL10]  = igb_set_dbal,
3645     [RDBAL11]  = igb_set_dbal,
3646     [RDBAL12]  = igb_set_dbal,
3647     [RDBAL13]  = igb_set_dbal,
3648     [RDBAL14]  = igb_set_dbal,
3649     [RDBAL15]  = igb_set_dbal,
3650     [STATUS]   = igb_set_status,
3651     [PBACLR]   = igb_set_pbaclr,
3652     [CTRL_EXT] = igb_set_ctrlext,
3653     [FCAH]     = igb_set_16bit,
3654     [FCT]      = igb_set_16bit,
3655     [FCTTV]    = igb_set_16bit,
3656     [FCRTV]    = igb_set_16bit,
3657     [FCRTH]    = igb_set_fcrth,
3658     [FCRTL]    = igb_set_fcrtl,
3659     [CTRL_DUP] = igb_set_ctrl,
3660     [RFCTL]    = igb_set_rfctl,
3661     [TIMINCA]  = igb_set_timinca,
3662     [TIMADJH]  = igb_set_timadjh,
3663 
3664     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3665     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3666     [RA]                     = igb_mac_writereg,
3667     [RA + 1]                 = igb_mac_setmacaddr,
3668     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3669     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3670     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3671     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3672     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3673     [FFMT ... FFMT + 254]    = igb_set_4bit,
3674     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3675     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3676     [RETA ... RETA + 31]     = igb_mac_writereg,
3677     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3678     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3679     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3680 
3681     /* IGB specific: */
3682     [FWSM]     = igb_mac_writereg,
3683     [SW_FW_SYNC] = igb_mac_writereg,
3684     [EICR] = igb_set_eicr,
3685     [EICS] = igb_set_eics,
3686     [EIAC] = igb_set_eiac,
3687     [EIAM] = igb_set_eiam,
3688     [EIMC] = igb_set_eimc,
3689     [EIMS] = igb_set_eims,
3690     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3691     igb_putreg(IVAR_MISC),
3692     igb_putreg(VT_CTL),
3693     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3694     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3695     [MBVFICR] = igb_w1c,
3696     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3697     igb_putreg(MBVFIMR),
3698     [VFLRE] = igb_w1c,
3699     igb_putreg(VFRE),
3700     igb_putreg(VFTE),
3701     igb_putreg(QDE),
3702     igb_putreg(DTXSWC),
3703     igb_putreg(RPLOLR),
3704     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3705     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3706     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3707     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3708     [PVTCTRL0] = igb_set_vtctrl,
3709     [PVTCTRL1] = igb_set_vtctrl,
3710     [PVTCTRL2] = igb_set_vtctrl,
3711     [PVTCTRL3] = igb_set_vtctrl,
3712     [PVTCTRL4] = igb_set_vtctrl,
3713     [PVTCTRL5] = igb_set_vtctrl,
3714     [PVTCTRL6] = igb_set_vtctrl,
3715     [PVTCTRL7] = igb_set_vtctrl,
3716     [PVTEICS0] = igb_set_vteics,
3717     [PVTEICS1] = igb_set_vteics,
3718     [PVTEICS2] = igb_set_vteics,
3719     [PVTEICS3] = igb_set_vteics,
3720     [PVTEICS4] = igb_set_vteics,
3721     [PVTEICS5] = igb_set_vteics,
3722     [PVTEICS6] = igb_set_vteics,
3723     [PVTEICS7] = igb_set_vteics,
3724     [PVTEIMS0] = igb_set_vteims,
3725     [PVTEIMS1] = igb_set_vteims,
3726     [PVTEIMS2] = igb_set_vteims,
3727     [PVTEIMS3] = igb_set_vteims,
3728     [PVTEIMS4] = igb_set_vteims,
3729     [PVTEIMS5] = igb_set_vteims,
3730     [PVTEIMS6] = igb_set_vteims,
3731     [PVTEIMS7] = igb_set_vteims,
3732     [PVTEIMC0] = igb_set_vteimc,
3733     [PVTEIMC1] = igb_set_vteimc,
3734     [PVTEIMC2] = igb_set_vteimc,
3735     [PVTEIMC3] = igb_set_vteimc,
3736     [PVTEIMC4] = igb_set_vteimc,
3737     [PVTEIMC5] = igb_set_vteimc,
3738     [PVTEIMC6] = igb_set_vteimc,
3739     [PVTEIMC7] = igb_set_vteimc,
3740     [PVTEIAC0] = igb_set_vteiac,
3741     [PVTEIAC1] = igb_set_vteiac,
3742     [PVTEIAC2] = igb_set_vteiac,
3743     [PVTEIAC3] = igb_set_vteiac,
3744     [PVTEIAC4] = igb_set_vteiac,
3745     [PVTEIAC5] = igb_set_vteiac,
3746     [PVTEIAC6] = igb_set_vteiac,
3747     [PVTEIAC7] = igb_set_vteiac,
3748     [PVTEIAM0] = igb_set_vteiam,
3749     [PVTEIAM1] = igb_set_vteiam,
3750     [PVTEIAM2] = igb_set_vteiam,
3751     [PVTEIAM3] = igb_set_vteiam,
3752     [PVTEIAM4] = igb_set_vteiam,
3753     [PVTEIAM5] = igb_set_vteiam,
3754     [PVTEIAM6] = igb_set_vteiam,
3755     [PVTEIAM7] = igb_set_vteiam,
3756     [PVTEICR0] = igb_set_vteicr,
3757     [PVTEICR1] = igb_set_vteicr,
3758     [PVTEICR2] = igb_set_vteicr,
3759     [PVTEICR3] = igb_set_vteicr,
3760     [PVTEICR4] = igb_set_vteicr,
3761     [PVTEICR5] = igb_set_vteicr,
3762     [PVTEICR6] = igb_set_vteicr,
3763     [PVTEICR7] = igb_set_vteicr,
3764     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3765     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3766 };
3767 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3768 
3769 enum { MAC_ACCESS_PARTIAL = 1 };
3770 
3771 /*
3772  * The array below combines alias offsets of the index values for the
3773  * MAC registers that have aliases, with the indication of not fully
3774  * implemented registers (lowest bit). This combination is possible
3775  * because all of the offsets are even.
3776  */
3777 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3778     /* Alias index offsets */
3779     [FCRTL_A] = 0x07fe,
3780     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3781     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3782     [RA_A ... RA_A + 31]      = 0x14f0,
3783     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3784 
3785     [RDBAL0_A] = 0x2600,
3786     [RDBAH0_A] = 0x2600,
3787     [RDLEN0_A] = 0x2600,
3788     [SRRCTL0_A] = 0x2600,
3789     [RDH0_A] = 0x2600,
3790     [RDT0_A] = 0x2600,
3791     [RXDCTL0_A] = 0x2600,
3792     [RXCTL0_A] = 0x2600,
3793     [RQDPC0_A] = 0x2600,
3794     [RDBAL1_A] = 0x25D0,
3795     [RDBAL2_A] = 0x25A0,
3796     [RDBAL3_A] = 0x2570,
3797     [RDBAH1_A] = 0x25D0,
3798     [RDBAH2_A] = 0x25A0,
3799     [RDBAH3_A] = 0x2570,
3800     [RDLEN1_A] = 0x25D0,
3801     [RDLEN2_A] = 0x25A0,
3802     [RDLEN3_A] = 0x2570,
3803     [SRRCTL1_A] = 0x25D0,
3804     [SRRCTL2_A] = 0x25A0,
3805     [SRRCTL3_A] = 0x2570,
3806     [RDH1_A] = 0x25D0,
3807     [RDH2_A] = 0x25A0,
3808     [RDH3_A] = 0x2570,
3809     [RDT1_A] = 0x25D0,
3810     [RDT2_A] = 0x25A0,
3811     [RDT3_A] = 0x2570,
3812     [RXDCTL1_A] = 0x25D0,
3813     [RXDCTL2_A] = 0x25A0,
3814     [RXDCTL3_A] = 0x2570,
3815     [RXCTL1_A] = 0x25D0,
3816     [RXCTL2_A] = 0x25A0,
3817     [RXCTL3_A] = 0x2570,
3818     [RQDPC1_A] = 0x25D0,
3819     [RQDPC2_A] = 0x25A0,
3820     [RQDPC3_A] = 0x2570,
3821     [TDBAL0_A] = 0x2A00,
3822     [TDBAH0_A] = 0x2A00,
3823     [TDLEN0_A] = 0x2A00,
3824     [TDH0_A] = 0x2A00,
3825     [TDT0_A] = 0x2A00,
3826     [TXCTL0_A] = 0x2A00,
3827     [TDWBAL0_A] = 0x2A00,
3828     [TDWBAH0_A] = 0x2A00,
3829     [TDBAL1_A] = 0x29D0,
3830     [TDBAL2_A] = 0x29A0,
3831     [TDBAL3_A] = 0x2970,
3832     [TDBAH1_A] = 0x29D0,
3833     [TDBAH2_A] = 0x29A0,
3834     [TDBAH3_A] = 0x2970,
3835     [TDLEN1_A] = 0x29D0,
3836     [TDLEN2_A] = 0x29A0,
3837     [TDLEN3_A] = 0x2970,
3838     [TDH1_A] = 0x29D0,
3839     [TDH2_A] = 0x29A0,
3840     [TDH3_A] = 0x2970,
3841     [TDT1_A] = 0x29D0,
3842     [TDT2_A] = 0x29A0,
3843     [TDT3_A] = 0x2970,
3844     [TXDCTL0_A] = 0x2A00,
3845     [TXDCTL1_A] = 0x29D0,
3846     [TXDCTL2_A] = 0x29A0,
3847     [TXDCTL3_A] = 0x2970,
3848     [TXCTL1_A] = 0x29D0,
3849     [TXCTL2_A] = 0x29A0,
3850     [TXCTL3_A] = 0x29D0,
3851     [TDWBAL1_A] = 0x29D0,
3852     [TDWBAL2_A] = 0x29A0,
3853     [TDWBAL3_A] = 0x2970,
3854     [TDWBAH1_A] = 0x29D0,
3855     [TDWBAH2_A] = 0x29A0,
3856     [TDWBAH3_A] = 0x2970,
3857 
3858     /* Access options */
3859     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3860     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3861     [RDFPC] = MAC_ACCESS_PARTIAL,
3862     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3863     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3864     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3865     [FLA]   = MAC_ACCESS_PARTIAL,
3866     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3867     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3868     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3869     [FCRTH] = MAC_ACCESS_PARTIAL,
3870     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3871 };
3872 
3873 void
3874 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3875 {
3876     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3877 
3878     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3879         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3880             trace_e1000e_wrn_regs_write_trivial(index << 2);
3881         }
3882         trace_e1000e_core_write(index << 2, size, val);
3883         igb_macreg_writeops[index](core, index, val);
3884     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3885         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3886     } else {
3887         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3888     }
3889 }
3890 
3891 uint64_t
3892 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3893 {
3894     uint64_t val;
3895     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3896 
3897     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3898         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3899             trace_e1000e_wrn_regs_read_trivial(index << 2);
3900         }
3901         val = igb_macreg_readops[index](core, index);
3902         trace_e1000e_core_read(index << 2, size, val);
3903         return val;
3904     } else {
3905         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3906     }
3907     return 0;
3908 }
3909 
3910 static inline void
3911 igb_autoneg_pause(IGBCore *core)
3912 {
3913     timer_del(core->autoneg_timer);
3914 }
3915 
3916 static void
3917 igb_autoneg_resume(IGBCore *core)
3918 {
3919     if (igb_have_autoneg(core) &&
3920         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3921         qemu_get_queue(core->owner_nic)->link_down = false;
3922         timer_mod(core->autoneg_timer,
3923                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3924     }
3925 }
3926 
3927 static void
3928 igb_vm_state_change(void *opaque, bool running, RunState state)
3929 {
3930     IGBCore *core = opaque;
3931 
3932     if (running) {
3933         trace_e1000e_vm_state_running();
3934         igb_intrmgr_resume(core);
3935         igb_autoneg_resume(core);
3936     } else {
3937         trace_e1000e_vm_state_stopped();
3938         igb_autoneg_pause(core);
3939         igb_intrmgr_pause(core);
3940     }
3941 }
3942 
3943 void
3944 igb_core_pci_realize(IGBCore        *core,
3945                      const uint16_t *eeprom_templ,
3946                      uint32_t        eeprom_size,
3947                      const uint8_t  *macaddr)
3948 {
3949     int i;
3950 
3951     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3952                                        igb_autoneg_timer, core);
3953     igb_intrmgr_pci_realize(core);
3954 
3955     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3956 
3957     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3958         net_tx_pkt_init(&core->tx[i].tx_pkt, NULL, E1000E_MAX_TX_FRAGS);
3959     }
3960 
3961     net_rx_pkt_init(&core->rx_pkt);
3962 
3963     e1000x_core_prepare_eeprom(core->eeprom,
3964                                eeprom_templ,
3965                                eeprom_size,
3966                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3967                                macaddr);
3968     igb_update_rx_offloads(core);
3969 }
3970 
3971 void
3972 igb_core_pci_uninit(IGBCore *core)
3973 {
3974     int i;
3975 
3976     timer_free(core->autoneg_timer);
3977 
3978     igb_intrmgr_pci_unint(core);
3979 
3980     qemu_del_vm_change_state_handler(core->vmstate);
3981 
3982     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3983         net_tx_pkt_reset(core->tx[i].tx_pkt, NULL);
3984         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3985     }
3986 
3987     net_rx_pkt_uninit(core->rx_pkt);
3988 }
3989 
3990 static const uint16_t
3991 igb_phy_reg_init[] = {
3992     [MII_BMCR] = MII_BMCR_SPEED1000 |
3993                  MII_BMCR_FD        |
3994                  MII_BMCR_AUTOEN,
3995 
3996     [MII_BMSR] = MII_BMSR_EXTCAP    |
3997                  MII_BMSR_LINK_ST   |
3998                  MII_BMSR_AUTONEG   |
3999                  MII_BMSR_MFPS      |
4000                  MII_BMSR_EXTSTAT   |
4001                  MII_BMSR_10T_HD    |
4002                  MII_BMSR_10T_FD    |
4003                  MII_BMSR_100TX_HD  |
4004                  MII_BMSR_100TX_FD,
4005 
4006     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
4007     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
4008     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
4009                               MII_ANAR_10FD | MII_ANAR_TX |
4010                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
4011                               MII_ANAR_PAUSE_ASYM,
4012     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
4013                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
4014                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
4015     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
4016     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
4017     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
4018                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
4019     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
4020                               MII_STAT1000_ROK | MII_STAT1000_LOK,
4021     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
4022 
4023     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
4024     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
4025     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
4026                                    IGP01E1000_PSCFR_SMART_SPEED
4027 };
4028 
4029 static const uint32_t igb_mac_reg_init[] = {
4030     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
4031     [EEMNGCTL]      = BIT(31),
4032     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
4033     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
4034     [RXDCTL1]       = 1 << 16,
4035     [RXDCTL2]       = 1 << 16,
4036     [RXDCTL3]       = 1 << 16,
4037     [RXDCTL4]       = 1 << 16,
4038     [RXDCTL5]       = 1 << 16,
4039     [RXDCTL6]       = 1 << 16,
4040     [RXDCTL7]       = 1 << 16,
4041     [RXDCTL8]       = 1 << 16,
4042     [RXDCTL9]       = 1 << 16,
4043     [RXDCTL10]      = 1 << 16,
4044     [RXDCTL11]      = 1 << 16,
4045     [RXDCTL12]      = 1 << 16,
4046     [RXDCTL13]      = 1 << 16,
4047     [RXDCTL14]      = 1 << 16,
4048     [RXDCTL15]      = 1 << 16,
4049     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
4050     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
4051                       E1000_CTRL_ADVD3WUC,
4052     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
4053     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
4054                       (2 << E1000_EECD_SIZE_EX_SHIFT),
4055     [GCR]           = E1000_L0S_ADJUST |
4056                       E1000_GCR_CMPL_TMOUT_RESEND |
4057                       E1000_GCR_CAP_VER2 |
4058                       E1000_L1_ENTRY_LATENCY_MSB |
4059                       E1000_L1_ENTRY_LATENCY_LSB,
4060     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4061     [TXPBS]         = 0x28,
4062     [RXPBS]         = 0x40,
4063     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4064                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4065     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4066     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4067     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4068 
4069     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4070     [MBVFIMR]       = 0xFF,
4071     [VFRE]          = 0xFF,
4072     [VFTE]          = 0xFF,
4073     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4074     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4075     [RLPML]         = 0x2600,
4076     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4077                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4078                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4079     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4080                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4081                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4082     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4083                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4084                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4085     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4086                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4087                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4088     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4089                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4090                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4091     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4092                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4093                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4094     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4095                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4096                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4097     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4098                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4099                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4100     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4101                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4102                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4103     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4104                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4105                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4106     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4107                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4108                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4109     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4110                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4111                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4112     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4113                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4114                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4115     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4116                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4117                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4118     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4119                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4120                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4121     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4122                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4123                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4124 };
4125 
4126 static void igb_reset(IGBCore *core, bool sw)
4127 {
4128     struct igb_tx *tx;
4129     int i;
4130 
4131     timer_del(core->autoneg_timer);
4132 
4133     igb_intrmgr_reset(core);
4134 
4135     memset(core->phy, 0, sizeof core->phy);
4136     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4137 
4138     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4139         if (sw &&
4140             (i == RXPBS || i == TXPBS ||
4141              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4142             continue;
4143         }
4144 
4145         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4146                        igb_mac_reg_init[i] : 0;
4147     }
4148 
4149     if (qemu_get_queue(core->owner_nic)->link_down) {
4150         igb_link_down(core);
4151     }
4152 
4153     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4154 
4155     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4156         /* Set RSTI, so VF can identify a PF reset is in progress */
4157         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4158     }
4159 
4160     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4161         tx = &core->tx[i];
4162         net_tx_pkt_reset(tx->tx_pkt, NULL);
4163         memset(tx->ctx, 0, sizeof(tx->ctx));
4164         tx->first = true;
4165         tx->skip_cp = false;
4166     }
4167 }
4168 
4169 void
4170 igb_core_reset(IGBCore *core)
4171 {
4172     igb_reset(core, false);
4173 }
4174 
4175 void igb_core_pre_save(IGBCore *core)
4176 {
4177     int i;
4178     NetClientState *nc = qemu_get_queue(core->owner_nic);
4179 
4180     /*
4181      * If link is down and auto-negotiation is supported and ongoing,
4182      * complete auto-negotiation immediately. This allows us to look
4183      * at MII_BMSR_AN_COMP to infer link status on load.
4184      */
4185     if (nc->link_down && igb_have_autoneg(core)) {
4186         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4187         igb_update_flowctl_status(core);
4188     }
4189 
4190     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4191         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4192             core->tx[i].skip_cp = true;
4193         }
4194     }
4195 }
4196 
4197 int
4198 igb_core_post_load(IGBCore *core)
4199 {
4200     NetClientState *nc = qemu_get_queue(core->owner_nic);
4201 
4202     /*
4203      * nc.link_down can't be migrated, so infer link_down according
4204      * to link status bit in core.mac[STATUS].
4205      */
4206     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4207 
4208     return 0;
4209 }
4210