xref: /qemu/hw/net/imx_fec.c (revision ab9056ff)
1 /*
2  * i.MX Fast Ethernet Controller emulation.
3  *
4  * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/irq.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
33 #include "net/eth.h"
34 
35 /* For crc32 */
36 #include <zlib.h>
37 
38 #ifndef DEBUG_IMX_FEC
39 #define DEBUG_IMX_FEC 0
40 #endif
41 
42 #define FEC_PRINTF(fmt, args...) \
43     do { \
44         if (DEBUG_IMX_FEC) { \
45             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
46                                              __func__, ##args); \
47         } \
48     } while (0)
49 
50 #ifndef DEBUG_IMX_PHY
51 #define DEBUG_IMX_PHY 0
52 #endif
53 
54 #define PHY_PRINTF(fmt, args...) \
55     do { \
56         if (DEBUG_IMX_PHY) { \
57             fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
58                                                  __func__, ##args); \
59         } \
60     } while (0)
61 
62 #define IMX_MAX_DESC    1024
63 
64 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
65 {
66     static char tmp[20];
67     sprintf(tmp, "index %d", index);
68     return tmp;
69 }
70 
71 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
72 {
73     switch (index) {
74     case ENET_FRBR:
75         return "FRBR";
76     case ENET_FRSR:
77         return "FRSR";
78     case ENET_MIIGSK_CFGR:
79         return "MIIGSK_CFGR";
80     case ENET_MIIGSK_ENR:
81         return "MIIGSK_ENR";
82     default:
83         return imx_default_reg_name(s, index);
84     }
85 }
86 
87 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
88 {
89     switch (index) {
90     case ENET_RSFL:
91         return "RSFL";
92     case ENET_RSEM:
93         return "RSEM";
94     case ENET_RAEM:
95         return "RAEM";
96     case ENET_RAFL:
97         return "RAFL";
98     case ENET_TSEM:
99         return "TSEM";
100     case ENET_TAEM:
101         return "TAEM";
102     case ENET_TAFL:
103         return "TAFL";
104     case ENET_TIPG:
105         return "TIPG";
106     case ENET_FTRL:
107         return "FTRL";
108     case ENET_TACC:
109         return "TACC";
110     case ENET_RACC:
111         return "RACC";
112     case ENET_ATCR:
113         return "ATCR";
114     case ENET_ATVR:
115         return "ATVR";
116     case ENET_ATOFF:
117         return "ATOFF";
118     case ENET_ATPER:
119         return "ATPER";
120     case ENET_ATCOR:
121         return "ATCOR";
122     case ENET_ATINC:
123         return "ATINC";
124     case ENET_ATSTMP:
125         return "ATSTMP";
126     case ENET_TGSR:
127         return "TGSR";
128     case ENET_TCSR0:
129         return "TCSR0";
130     case ENET_TCCR0:
131         return "TCCR0";
132     case ENET_TCSR1:
133         return "TCSR1";
134     case ENET_TCCR1:
135         return "TCCR1";
136     case ENET_TCSR2:
137         return "TCSR2";
138     case ENET_TCCR2:
139         return "TCCR2";
140     case ENET_TCSR3:
141         return "TCSR3";
142     case ENET_TCCR3:
143         return "TCCR3";
144     default:
145         return imx_default_reg_name(s, index);
146     }
147 }
148 
149 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
150 {
151     switch (index) {
152     case ENET_EIR:
153         return "EIR";
154     case ENET_EIMR:
155         return "EIMR";
156     case ENET_RDAR:
157         return "RDAR";
158     case ENET_TDAR:
159         return "TDAR";
160     case ENET_ECR:
161         return "ECR";
162     case ENET_MMFR:
163         return "MMFR";
164     case ENET_MSCR:
165         return "MSCR";
166     case ENET_MIBC:
167         return "MIBC";
168     case ENET_RCR:
169         return "RCR";
170     case ENET_TCR:
171         return "TCR";
172     case ENET_PALR:
173         return "PALR";
174     case ENET_PAUR:
175         return "PAUR";
176     case ENET_OPD:
177         return "OPD";
178     case ENET_IAUR:
179         return "IAUR";
180     case ENET_IALR:
181         return "IALR";
182     case ENET_GAUR:
183         return "GAUR";
184     case ENET_GALR:
185         return "GALR";
186     case ENET_TFWR:
187         return "TFWR";
188     case ENET_RDSR:
189         return "RDSR";
190     case ENET_TDSR:
191         return "TDSR";
192     case ENET_MRBR:
193         return "MRBR";
194     default:
195         if (s->is_fec) {
196             return imx_fec_reg_name(s, index);
197         } else {
198             return imx_enet_reg_name(s, index);
199         }
200     }
201 }
202 
203 /*
204  * Versions of this device with more than one TX descriptor save the
205  * 2nd and 3rd descriptors in a subsection, to maintain migration
206  * compatibility with previous versions of the device that only
207  * supported a single descriptor.
208  */
209 static bool imx_eth_is_multi_tx_ring(void *opaque)
210 {
211     IMXFECState *s = IMX_FEC(opaque);
212 
213     return s->tx_ring_num > 1;
214 }
215 
216 static const VMStateDescription vmstate_imx_eth_txdescs = {
217     .name = "imx.fec/txdescs",
218     .version_id = 1,
219     .minimum_version_id = 1,
220     .needed = imx_eth_is_multi_tx_ring,
221     .fields = (VMStateField[]) {
222          VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
223          VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
224          VMSTATE_END_OF_LIST()
225     }
226 };
227 
228 static const VMStateDescription vmstate_imx_eth = {
229     .name = TYPE_IMX_FEC,
230     .version_id = 2,
231     .minimum_version_id = 2,
232     .fields = (VMStateField[]) {
233         VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
234         VMSTATE_UINT32(rx_descriptor, IMXFECState),
235         VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
236         VMSTATE_UINT32(phy_status, IMXFECState),
237         VMSTATE_UINT32(phy_control, IMXFECState),
238         VMSTATE_UINT32(phy_advertise, IMXFECState),
239         VMSTATE_UINT32(phy_int, IMXFECState),
240         VMSTATE_UINT32(phy_int_mask, IMXFECState),
241         VMSTATE_END_OF_LIST()
242     },
243     .subsections = (const VMStateDescription * []) {
244         &vmstate_imx_eth_txdescs,
245         NULL
246     },
247 };
248 
249 #define PHY_INT_ENERGYON            (1 << 7)
250 #define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
251 #define PHY_INT_FAULT               (1 << 5)
252 #define PHY_INT_DOWN                (1 << 4)
253 #define PHY_INT_AUTONEG_LP          (1 << 3)
254 #define PHY_INT_PARFAULT            (1 << 2)
255 #define PHY_INT_AUTONEG_PAGE        (1 << 1)
256 
257 static void imx_eth_update(IMXFECState *s);
258 
259 /*
260  * The MII phy could raise a GPIO to the processor which in turn
261  * could be handled as an interrpt by the OS.
262  * For now we don't handle any GPIO/interrupt line, so the OS will
263  * have to poll for the PHY status.
264  */
265 static void phy_update_irq(IMXFECState *s)
266 {
267     imx_eth_update(s);
268 }
269 
270 static void phy_update_link(IMXFECState *s)
271 {
272     /* Autonegotiation status mirrors link status.  */
273     if (qemu_get_queue(s->nic)->link_down) {
274         PHY_PRINTF("link is down\n");
275         s->phy_status &= ~0x0024;
276         s->phy_int |= PHY_INT_DOWN;
277     } else {
278         PHY_PRINTF("link is up\n");
279         s->phy_status |= 0x0024;
280         s->phy_int |= PHY_INT_ENERGYON;
281         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
282     }
283     phy_update_irq(s);
284 }
285 
286 static void imx_eth_set_link(NetClientState *nc)
287 {
288     phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
289 }
290 
291 static void phy_reset(IMXFECState *s)
292 {
293     s->phy_status = 0x7809;
294     s->phy_control = 0x3000;
295     s->phy_advertise = 0x01e1;
296     s->phy_int_mask = 0;
297     s->phy_int = 0;
298     phy_update_link(s);
299 }
300 
301 static uint32_t do_phy_read(IMXFECState *s, int reg)
302 {
303     uint32_t val;
304 
305     if (reg > 31) {
306         /* we only advertise one phy */
307         return 0;
308     }
309 
310     switch (reg) {
311     case 0:     /* Basic Control */
312         val = s->phy_control;
313         break;
314     case 1:     /* Basic Status */
315         val = s->phy_status;
316         break;
317     case 2:     /* ID1 */
318         val = 0x0007;
319         break;
320     case 3:     /* ID2 */
321         val = 0xc0d1;
322         break;
323     case 4:     /* Auto-neg advertisement */
324         val = s->phy_advertise;
325         break;
326     case 5:     /* Auto-neg Link Partner Ability */
327         val = 0x0f71;
328         break;
329     case 6:     /* Auto-neg Expansion */
330         val = 1;
331         break;
332     case 29:    /* Interrupt source.  */
333         val = s->phy_int;
334         s->phy_int = 0;
335         phy_update_irq(s);
336         break;
337     case 30:    /* Interrupt mask */
338         val = s->phy_int_mask;
339         break;
340     case 17:
341     case 18:
342     case 27:
343     case 31:
344         qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
345                       TYPE_IMX_FEC, __func__, reg);
346         val = 0;
347         break;
348     default:
349         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
350                       TYPE_IMX_FEC, __func__, reg);
351         val = 0;
352         break;
353     }
354 
355     PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
356 
357     return val;
358 }
359 
360 static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
361 {
362     PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
363 
364     if (reg > 31) {
365         /* we only advertise one phy */
366         return;
367     }
368 
369     switch (reg) {
370     case 0:     /* Basic Control */
371         if (val & 0x8000) {
372             phy_reset(s);
373         } else {
374             s->phy_control = val & 0x7980;
375             /* Complete autonegotiation immediately.  */
376             if (val & 0x1000) {
377                 s->phy_status |= 0x0020;
378             }
379         }
380         break;
381     case 4:     /* Auto-neg advertisement */
382         s->phy_advertise = (val & 0x2d7f) | 0x80;
383         break;
384     case 30:    /* Interrupt mask */
385         s->phy_int_mask = val & 0xff;
386         phy_update_irq(s);
387         break;
388     case 17:
389     case 18:
390     case 27:
391     case 31:
392         qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
393                       TYPE_IMX_FEC, __func__, reg);
394         break;
395     default:
396         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
397                       TYPE_IMX_FEC, __func__, reg);
398         break;
399     }
400 }
401 
402 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
403 {
404     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
405 }
406 
407 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
408 {
409     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
410 }
411 
412 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
413 {
414     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
415 }
416 
417 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
418 {
419     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
420 }
421 
422 static void imx_eth_update(IMXFECState *s)
423 {
424     /*
425      * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
426      * interrupts swapped. This worked with older versions of Linux (4.14
427      * and older) since Linux associated both interrupt lines with Ethernet
428      * MAC interrupts. Specifically,
429      * - Linux 4.15 and later have separate interrupt handlers for the MAC and
430      *   timer interrupts. Those versions of Linux fail with versions of QEMU
431      *   with swapped interrupt assignments.
432      * - In linux 4.14, both interrupt lines were registered with the Ethernet
433      *   MAC interrupt handler. As a result, all versions of qemu happen to
434      *   work, though that is accidental.
435      * - In Linux 4.9 and older, the timer interrupt was registered directly
436      *   with the Ethernet MAC interrupt handler. The MAC interrupt was
437      *   redirected to a GPIO interrupt to work around erratum ERR006687.
438      *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
439      *   interrupt never fired since IOMUX is currently not supported in qemu.
440      *   Linux instead received MAC interrupts on the timer interrupt.
441      *   As a result, qemu versions with the swapped interrupt assignment work,
442      *   albeit accidentally, but qemu versions with the correct interrupt
443      *   assignment fail.
444      *
445      * To ensure that all versions of Linux work, generate ENET_INT_MAC
446      * interrrupts on both interrupt lines. This should be changed if and when
447      * qemu supports IOMUX.
448      */
449     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
450         (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
451         qemu_set_irq(s->irq[1], 1);
452     } else {
453         qemu_set_irq(s->irq[1], 0);
454     }
455 
456     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
457         qemu_set_irq(s->irq[0], 1);
458     } else {
459         qemu_set_irq(s->irq[0], 0);
460     }
461 }
462 
463 static void imx_fec_do_tx(IMXFECState *s)
464 {
465     int frame_size = 0, descnt = 0;
466     uint8_t *ptr = s->frame;
467     uint32_t addr = s->tx_descriptor[0];
468 
469     while (descnt++ < IMX_MAX_DESC) {
470         IMXFECBufDesc bd;
471         int len;
472 
473         imx_fec_read_bd(&bd, addr);
474         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
475                    addr, bd.flags, bd.length, bd.data);
476         if ((bd.flags & ENET_BD_R) == 0) {
477             /* Run out of descriptors to transmit.  */
478             FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
479             break;
480         }
481         len = bd.length;
482         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
483             len = ENET_MAX_FRAME_SIZE - frame_size;
484             s->regs[ENET_EIR] |= ENET_INT_BABT;
485         }
486         dma_memory_read(&address_space_memory, bd.data, ptr, len);
487         ptr += len;
488         frame_size += len;
489         if (bd.flags & ENET_BD_L) {
490             /* Last buffer in frame.  */
491             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
492             ptr = s->frame;
493             frame_size = 0;
494             s->regs[ENET_EIR] |= ENET_INT_TXF;
495         }
496         s->regs[ENET_EIR] |= ENET_INT_TXB;
497         bd.flags &= ~ENET_BD_R;
498         /* Write back the modified descriptor.  */
499         imx_fec_write_bd(&bd, addr);
500         /* Advance to the next descriptor.  */
501         if ((bd.flags & ENET_BD_W) != 0) {
502             addr = s->regs[ENET_TDSR];
503         } else {
504             addr += sizeof(bd);
505         }
506     }
507 
508     s->tx_descriptor[0] = addr;
509 
510     imx_eth_update(s);
511 }
512 
513 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
514 {
515     int frame_size = 0, descnt = 0;
516 
517     uint8_t *ptr = s->frame;
518     uint32_t addr, int_txb, int_txf, tdsr;
519     size_t ring;
520 
521     switch (index) {
522     case ENET_TDAR:
523         ring    = 0;
524         int_txb = ENET_INT_TXB;
525         int_txf = ENET_INT_TXF;
526         tdsr    = ENET_TDSR;
527         break;
528     case ENET_TDAR1:
529         ring    = 1;
530         int_txb = ENET_INT_TXB1;
531         int_txf = ENET_INT_TXF1;
532         tdsr    = ENET_TDSR1;
533         break;
534     case ENET_TDAR2:
535         ring    = 2;
536         int_txb = ENET_INT_TXB2;
537         int_txf = ENET_INT_TXF2;
538         tdsr    = ENET_TDSR2;
539         break;
540     default:
541         qemu_log_mask(LOG_GUEST_ERROR,
542                       "%s: bogus value for index %x\n",
543                       __func__, index);
544         abort();
545         break;
546     }
547 
548     addr = s->tx_descriptor[ring];
549 
550     while (descnt++ < IMX_MAX_DESC) {
551         IMXENETBufDesc bd;
552         int len;
553 
554         imx_enet_read_bd(&bd, addr);
555         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
556                    "status %04x\n", addr, bd.flags, bd.length, bd.data,
557                    bd.option, bd.status);
558         if ((bd.flags & ENET_BD_R) == 0) {
559             /* Run out of descriptors to transmit.  */
560             break;
561         }
562         len = bd.length;
563         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
564             len = ENET_MAX_FRAME_SIZE - frame_size;
565             s->regs[ENET_EIR] |= ENET_INT_BABT;
566         }
567         dma_memory_read(&address_space_memory, bd.data, ptr, len);
568         ptr += len;
569         frame_size += len;
570         if (bd.flags & ENET_BD_L) {
571             if (bd.option & ENET_BD_PINS) {
572                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
573                 if (IP_HEADER_VERSION(ip_hd) == 4) {
574                     net_checksum_calculate(s->frame, frame_size);
575                 }
576             }
577             if (bd.option & ENET_BD_IINS) {
578                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
579                 /* We compute checksum only for IPv4 frames */
580                 if (IP_HEADER_VERSION(ip_hd) == 4) {
581                     uint16_t csum;
582                     ip_hd->ip_sum = 0;
583                     csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
584                     ip_hd->ip_sum = cpu_to_be16(csum);
585                 }
586             }
587             /* Last buffer in frame.  */
588 
589             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
590             ptr = s->frame;
591 
592             frame_size = 0;
593             if (bd.option & ENET_BD_TX_INT) {
594                 s->regs[ENET_EIR] |= int_txf;
595             }
596             /* Indicate that we've updated the last buffer descriptor. */
597             bd.last_buffer = ENET_BD_BDU;
598         }
599         if (bd.option & ENET_BD_TX_INT) {
600             s->regs[ENET_EIR] |= int_txb;
601         }
602         bd.flags &= ~ENET_BD_R;
603         /* Write back the modified descriptor.  */
604         imx_enet_write_bd(&bd, addr);
605         /* Advance to the next descriptor.  */
606         if ((bd.flags & ENET_BD_W) != 0) {
607             addr = s->regs[tdsr];
608         } else {
609             addr += sizeof(bd);
610         }
611     }
612 
613     s->tx_descriptor[ring] = addr;
614 
615     imx_eth_update(s);
616 }
617 
618 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
619 {
620     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
621         imx_enet_do_tx(s, index);
622     } else {
623         imx_fec_do_tx(s);
624     }
625 }
626 
627 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
628 {
629     IMXFECBufDesc bd;
630 
631     imx_fec_read_bd(&bd, s->rx_descriptor);
632 
633     s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
634 
635     if (!s->regs[ENET_RDAR]) {
636         FEC_PRINTF("RX buffer full\n");
637     } else if (flush) {
638         qemu_flush_queued_packets(qemu_get_queue(s->nic));
639     }
640 }
641 
642 static void imx_eth_reset(DeviceState *d)
643 {
644     IMXFECState *s = IMX_FEC(d);
645 
646     /* Reset the Device */
647     memset(s->regs, 0, sizeof(s->regs));
648     s->regs[ENET_ECR]   = 0xf0000000;
649     s->regs[ENET_MIBC]  = 0xc0000000;
650     s->regs[ENET_RCR]   = 0x05ee0001;
651     s->regs[ENET_OPD]   = 0x00010000;
652 
653     s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
654                           | (s->conf.macaddr.a[1] << 16)
655                           | (s->conf.macaddr.a[2] << 8)
656                           | s->conf.macaddr.a[3];
657     s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
658                           | (s->conf.macaddr.a[5] << 16)
659                           | 0x8808;
660 
661     if (s->is_fec) {
662         s->regs[ENET_FRBR]  = 0x00000600;
663         s->regs[ENET_FRSR]  = 0x00000500;
664         s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
665     } else {
666         s->regs[ENET_RAEM]  = 0x00000004;
667         s->regs[ENET_RAFL]  = 0x00000004;
668         s->regs[ENET_TAEM]  = 0x00000004;
669         s->regs[ENET_TAFL]  = 0x00000008;
670         s->regs[ENET_TIPG]  = 0x0000000c;
671         s->regs[ENET_FTRL]  = 0x000007ff;
672         s->regs[ENET_ATPER] = 0x3b9aca00;
673     }
674 
675     s->rx_descriptor = 0;
676     memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
677 
678     /* We also reset the PHY */
679     phy_reset(s);
680 }
681 
682 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
683 {
684     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
685                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
686     return 0;
687 }
688 
689 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
690 {
691     switch (index) {
692     case ENET_FRBR:
693     case ENET_FRSR:
694     case ENET_MIIGSK_CFGR:
695     case ENET_MIIGSK_ENR:
696         return s->regs[index];
697     default:
698         return imx_default_read(s, index);
699     }
700 }
701 
702 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
703 {
704     switch (index) {
705     case ENET_RSFL:
706     case ENET_RSEM:
707     case ENET_RAEM:
708     case ENET_RAFL:
709     case ENET_TSEM:
710     case ENET_TAEM:
711     case ENET_TAFL:
712     case ENET_TIPG:
713     case ENET_FTRL:
714     case ENET_TACC:
715     case ENET_RACC:
716     case ENET_ATCR:
717     case ENET_ATVR:
718     case ENET_ATOFF:
719     case ENET_ATPER:
720     case ENET_ATCOR:
721     case ENET_ATINC:
722     case ENET_ATSTMP:
723     case ENET_TGSR:
724     case ENET_TCSR0:
725     case ENET_TCCR0:
726     case ENET_TCSR1:
727     case ENET_TCCR1:
728     case ENET_TCSR2:
729     case ENET_TCCR2:
730     case ENET_TCSR3:
731     case ENET_TCCR3:
732         return s->regs[index];
733     default:
734         return imx_default_read(s, index);
735     }
736 }
737 
738 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
739 {
740     uint32_t value = 0;
741     IMXFECState *s = IMX_FEC(opaque);
742     uint32_t index = offset >> 2;
743 
744     switch (index) {
745     case ENET_EIR:
746     case ENET_EIMR:
747     case ENET_RDAR:
748     case ENET_TDAR:
749     case ENET_ECR:
750     case ENET_MMFR:
751     case ENET_MSCR:
752     case ENET_MIBC:
753     case ENET_RCR:
754     case ENET_TCR:
755     case ENET_PALR:
756     case ENET_PAUR:
757     case ENET_OPD:
758     case ENET_IAUR:
759     case ENET_IALR:
760     case ENET_GAUR:
761     case ENET_GALR:
762     case ENET_TFWR:
763     case ENET_RDSR:
764     case ENET_TDSR:
765     case ENET_MRBR:
766         value = s->regs[index];
767         break;
768     default:
769         if (s->is_fec) {
770             value = imx_fec_read(s, index);
771         } else {
772             value = imx_enet_read(s, index);
773         }
774         break;
775     }
776 
777     FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
778                                               value);
779 
780     return value;
781 }
782 
783 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
784 {
785     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
786                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
787     return;
788 }
789 
790 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
791 {
792     switch (index) {
793     case ENET_FRBR:
794         /* FRBR is read only */
795         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
796                       TYPE_IMX_FEC, __func__);
797         break;
798     case ENET_FRSR:
799         s->regs[index] = (value & 0x000003fc) | 0x00000400;
800         break;
801     case ENET_MIIGSK_CFGR:
802         s->regs[index] = value & 0x00000053;
803         break;
804     case ENET_MIIGSK_ENR:
805         s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
806         break;
807     default:
808         imx_default_write(s, index, value);
809         break;
810     }
811 }
812 
813 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
814 {
815     switch (index) {
816     case ENET_RSFL:
817     case ENET_RSEM:
818     case ENET_RAEM:
819     case ENET_RAFL:
820     case ENET_TSEM:
821     case ENET_TAEM:
822     case ENET_TAFL:
823         s->regs[index] = value & 0x000001ff;
824         break;
825     case ENET_TIPG:
826         s->regs[index] = value & 0x0000001f;
827         break;
828     case ENET_FTRL:
829         s->regs[index] = value & 0x00003fff;
830         break;
831     case ENET_TACC:
832         s->regs[index] = value & 0x00000019;
833         break;
834     case ENET_RACC:
835         s->regs[index] = value & 0x000000C7;
836         break;
837     case ENET_ATCR:
838         s->regs[index] = value & 0x00002a9d;
839         break;
840     case ENET_ATVR:
841     case ENET_ATOFF:
842     case ENET_ATPER:
843         s->regs[index] = value;
844         break;
845     case ENET_ATSTMP:
846         /* ATSTMP is read only */
847         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
848                       TYPE_IMX_FEC, __func__);
849         break;
850     case ENET_ATCOR:
851         s->regs[index] = value & 0x7fffffff;
852         break;
853     case ENET_ATINC:
854         s->regs[index] = value & 0x00007f7f;
855         break;
856     case ENET_TGSR:
857         /* implement clear timer flag */
858         value = value & 0x0000000f;
859         break;
860     case ENET_TCSR0:
861     case ENET_TCSR1:
862     case ENET_TCSR2:
863     case ENET_TCSR3:
864         value = value & 0x000000fd;
865         break;
866     case ENET_TCCR0:
867     case ENET_TCCR1:
868     case ENET_TCCR2:
869     case ENET_TCCR3:
870         s->regs[index] = value;
871         break;
872     default:
873         imx_default_write(s, index, value);
874         break;
875     }
876 }
877 
878 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
879                            unsigned size)
880 {
881     IMXFECState *s = IMX_FEC(opaque);
882     const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
883     uint32_t index = offset >> 2;
884 
885     FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
886                 (uint32_t)value);
887 
888     switch (index) {
889     case ENET_EIR:
890         s->regs[index] &= ~value;
891         break;
892     case ENET_EIMR:
893         s->regs[index] = value;
894         break;
895     case ENET_RDAR:
896         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
897             if (!s->regs[index]) {
898                 imx_eth_enable_rx(s, true);
899             }
900         } else {
901             s->regs[index] = 0;
902         }
903         break;
904     case ENET_TDAR1:    /* FALLTHROUGH */
905     case ENET_TDAR2:    /* FALLTHROUGH */
906         if (unlikely(single_tx_ring)) {
907             qemu_log_mask(LOG_GUEST_ERROR,
908                           "[%s]%s: trying to access TDAR2 or TDAR1\n",
909                           TYPE_IMX_FEC, __func__);
910             return;
911         }
912     case ENET_TDAR:     /* FALLTHROUGH */
913         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
914             s->regs[index] = ENET_TDAR_TDAR;
915             imx_eth_do_tx(s, index);
916         }
917         s->regs[index] = 0;
918         break;
919     case ENET_ECR:
920         if (value & ENET_ECR_RESET) {
921             return imx_eth_reset(DEVICE(s));
922         }
923         s->regs[index] = value;
924         if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
925             s->regs[ENET_RDAR] = 0;
926             s->rx_descriptor = s->regs[ENET_RDSR];
927             s->regs[ENET_TDAR]  = 0;
928             s->regs[ENET_TDAR1] = 0;
929             s->regs[ENET_TDAR2] = 0;
930             s->tx_descriptor[0] = s->regs[ENET_TDSR];
931             s->tx_descriptor[1] = s->regs[ENET_TDSR1];
932             s->tx_descriptor[2] = s->regs[ENET_TDSR2];
933         }
934         break;
935     case ENET_MMFR:
936         s->regs[index] = value;
937         if (extract32(value, 29, 1)) {
938             /* This is a read operation */
939             s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
940                                            do_phy_read(s,
941                                                        extract32(value,
942                                                                  18, 10)));
943         } else {
944             /* This a write operation */
945             do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
946         }
947         /* raise the interrupt as the PHY operation is done */
948         s->regs[ENET_EIR] |= ENET_INT_MII;
949         break;
950     case ENET_MSCR:
951         s->regs[index] = value & 0xfe;
952         break;
953     case ENET_MIBC:
954         /* TODO: Implement MIB.  */
955         s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
956         break;
957     case ENET_RCR:
958         s->regs[index] = value & 0x07ff003f;
959         /* TODO: Implement LOOP mode.  */
960         break;
961     case ENET_TCR:
962         /* We transmit immediately, so raise GRA immediately.  */
963         s->regs[index] = value;
964         if (value & 1) {
965             s->regs[ENET_EIR] |= ENET_INT_GRA;
966         }
967         break;
968     case ENET_PALR:
969         s->regs[index] = value;
970         s->conf.macaddr.a[0] = value >> 24;
971         s->conf.macaddr.a[1] = value >> 16;
972         s->conf.macaddr.a[2] = value >> 8;
973         s->conf.macaddr.a[3] = value;
974         break;
975     case ENET_PAUR:
976         s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
977         s->conf.macaddr.a[4] = value >> 24;
978         s->conf.macaddr.a[5] = value >> 16;
979         break;
980     case ENET_OPD:
981         s->regs[index] = (value & 0x0000ffff) | 0x00010000;
982         break;
983     case ENET_IAUR:
984     case ENET_IALR:
985     case ENET_GAUR:
986     case ENET_GALR:
987         /* TODO: implement MAC hash filtering.  */
988         break;
989     case ENET_TFWR:
990         if (s->is_fec) {
991             s->regs[index] = value & 0x3;
992         } else {
993             s->regs[index] = value & 0x13f;
994         }
995         break;
996     case ENET_RDSR:
997         if (s->is_fec) {
998             s->regs[index] = value & ~3;
999         } else {
1000             s->regs[index] = value & ~7;
1001         }
1002         s->rx_descriptor = s->regs[index];
1003         break;
1004     case ENET_TDSR:
1005         if (s->is_fec) {
1006             s->regs[index] = value & ~3;
1007         } else {
1008             s->regs[index] = value & ~7;
1009         }
1010         s->tx_descriptor[0] = s->regs[index];
1011         break;
1012     case ENET_TDSR1:
1013         if (unlikely(single_tx_ring)) {
1014             qemu_log_mask(LOG_GUEST_ERROR,
1015                           "[%s]%s: trying to access TDSR1\n",
1016                           TYPE_IMX_FEC, __func__);
1017             return;
1018         }
1019 
1020         s->regs[index] = value & ~7;
1021         s->tx_descriptor[1] = s->regs[index];
1022         break;
1023     case ENET_TDSR2:
1024         if (unlikely(single_tx_ring)) {
1025             qemu_log_mask(LOG_GUEST_ERROR,
1026                           "[%s]%s: trying to access TDSR2\n",
1027                           TYPE_IMX_FEC, __func__);
1028             return;
1029         }
1030 
1031         s->regs[index] = value & ~7;
1032         s->tx_descriptor[2] = s->regs[index];
1033         break;
1034     case ENET_MRBR:
1035         s->regs[index] = value & 0x00003ff0;
1036         break;
1037     default:
1038         if (s->is_fec) {
1039             imx_fec_write(s, index, value);
1040         } else {
1041             imx_enet_write(s, index, value);
1042         }
1043         return;
1044     }
1045 
1046     imx_eth_update(s);
1047 }
1048 
1049 static int imx_eth_can_receive(NetClientState *nc)
1050 {
1051     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1052 
1053     FEC_PRINTF("\n");
1054 
1055     return !!s->regs[ENET_RDAR];
1056 }
1057 
1058 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1059                                size_t len)
1060 {
1061     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1062     IMXFECBufDesc bd;
1063     uint32_t flags = 0;
1064     uint32_t addr;
1065     uint32_t crc;
1066     uint32_t buf_addr;
1067     uint8_t *crc_ptr;
1068     unsigned int buf_len;
1069     size_t size = len;
1070 
1071     FEC_PRINTF("len %d\n", (int)size);
1072 
1073     if (!s->regs[ENET_RDAR]) {
1074         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1075                       TYPE_IMX_FEC, __func__);
1076         return 0;
1077     }
1078 
1079     /* 4 bytes for the CRC.  */
1080     size += 4;
1081     crc = cpu_to_be32(crc32(~0, buf, size));
1082     crc_ptr = (uint8_t *) &crc;
1083 
1084     /* Huge frames are truncated.  */
1085     if (size > ENET_MAX_FRAME_SIZE) {
1086         size = ENET_MAX_FRAME_SIZE;
1087         flags |= ENET_BD_TR | ENET_BD_LG;
1088     }
1089 
1090     /* Frames larger than the user limit just set error flags.  */
1091     if (size > (s->regs[ENET_RCR] >> 16)) {
1092         flags |= ENET_BD_LG;
1093     }
1094 
1095     addr = s->rx_descriptor;
1096     while (size > 0) {
1097         imx_fec_read_bd(&bd, addr);
1098         if ((bd.flags & ENET_BD_E) == 0) {
1099             /* No descriptors available.  Bail out.  */
1100             /*
1101              * FIXME: This is wrong. We should probably either
1102              * save the remainder for when more RX buffers are
1103              * available, or flag an error.
1104              */
1105             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1106                           TYPE_IMX_FEC, __func__);
1107             break;
1108         }
1109         buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1110         bd.length = buf_len;
1111         size -= buf_len;
1112 
1113         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1114 
1115         /* The last 4 bytes are the CRC.  */
1116         if (size < 4) {
1117             buf_len += size - 4;
1118         }
1119         buf_addr = bd.data;
1120         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1121         buf += buf_len;
1122         if (size < 4) {
1123             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1124                              crc_ptr, 4 - size);
1125             crc_ptr += 4 - size;
1126         }
1127         bd.flags &= ~ENET_BD_E;
1128         if (size == 0) {
1129             /* Last buffer in frame.  */
1130             bd.flags |= flags | ENET_BD_L;
1131             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1132             s->regs[ENET_EIR] |= ENET_INT_RXF;
1133         } else {
1134             s->regs[ENET_EIR] |= ENET_INT_RXB;
1135         }
1136         imx_fec_write_bd(&bd, addr);
1137         /* Advance to the next descriptor.  */
1138         if ((bd.flags & ENET_BD_W) != 0) {
1139             addr = s->regs[ENET_RDSR];
1140         } else {
1141             addr += sizeof(bd);
1142         }
1143     }
1144     s->rx_descriptor = addr;
1145     imx_eth_enable_rx(s, false);
1146     imx_eth_update(s);
1147     return len;
1148 }
1149 
1150 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1151                                 size_t len)
1152 {
1153     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1154     IMXENETBufDesc bd;
1155     uint32_t flags = 0;
1156     uint32_t addr;
1157     uint32_t crc;
1158     uint32_t buf_addr;
1159     uint8_t *crc_ptr;
1160     unsigned int buf_len;
1161     size_t size = len;
1162     bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1163 
1164     FEC_PRINTF("len %d\n", (int)size);
1165 
1166     if (!s->regs[ENET_RDAR]) {
1167         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1168                       TYPE_IMX_FEC, __func__);
1169         return 0;
1170     }
1171 
1172     /* 4 bytes for the CRC.  */
1173     size += 4;
1174     crc = cpu_to_be32(crc32(~0, buf, size));
1175     crc_ptr = (uint8_t *) &crc;
1176 
1177     if (shift16) {
1178         size += 2;
1179     }
1180 
1181     /* Huge frames are truncated. */
1182     if (size > s->regs[ENET_FTRL]) {
1183         size = s->regs[ENET_FTRL];
1184         flags |= ENET_BD_TR | ENET_BD_LG;
1185     }
1186 
1187     /* Frames larger than the user limit just set error flags.  */
1188     if (size > (s->regs[ENET_RCR] >> 16)) {
1189         flags |= ENET_BD_LG;
1190     }
1191 
1192     addr = s->rx_descriptor;
1193     while (size > 0) {
1194         imx_enet_read_bd(&bd, addr);
1195         if ((bd.flags & ENET_BD_E) == 0) {
1196             /* No descriptors available.  Bail out.  */
1197             /*
1198              * FIXME: This is wrong. We should probably either
1199              * save the remainder for when more RX buffers are
1200              * available, or flag an error.
1201              */
1202             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1203                           TYPE_IMX_FEC, __func__);
1204             break;
1205         }
1206         buf_len = MIN(size, s->regs[ENET_MRBR]);
1207         bd.length = buf_len;
1208         size -= buf_len;
1209 
1210         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1211 
1212         /* The last 4 bytes are the CRC.  */
1213         if (size < 4) {
1214             buf_len += size - 4;
1215         }
1216         buf_addr = bd.data;
1217 
1218         if (shift16) {
1219             /*
1220              * If SHIFT16 bit of ENETx_RACC register is set we need to
1221              * align the payload to 4-byte boundary.
1222              */
1223             const uint8_t zeros[2] = { 0 };
1224 
1225             dma_memory_write(&address_space_memory, buf_addr,
1226                              zeros, sizeof(zeros));
1227 
1228             buf_addr += sizeof(zeros);
1229             buf_len  -= sizeof(zeros);
1230 
1231             /* We only do this once per Ethernet frame */
1232             shift16 = false;
1233         }
1234 
1235         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1236         buf += buf_len;
1237         if (size < 4) {
1238             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1239                              crc_ptr, 4 - size);
1240             crc_ptr += 4 - size;
1241         }
1242         bd.flags &= ~ENET_BD_E;
1243         if (size == 0) {
1244             /* Last buffer in frame.  */
1245             bd.flags |= flags | ENET_BD_L;
1246             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1247             /* Indicate that we've updated the last buffer descriptor. */
1248             bd.last_buffer = ENET_BD_BDU;
1249             if (bd.option & ENET_BD_RX_INT) {
1250                 s->regs[ENET_EIR] |= ENET_INT_RXF;
1251             }
1252         } else {
1253             if (bd.option & ENET_BD_RX_INT) {
1254                 s->regs[ENET_EIR] |= ENET_INT_RXB;
1255             }
1256         }
1257         imx_enet_write_bd(&bd, addr);
1258         /* Advance to the next descriptor.  */
1259         if ((bd.flags & ENET_BD_W) != 0) {
1260             addr = s->regs[ENET_RDSR];
1261         } else {
1262             addr += sizeof(bd);
1263         }
1264     }
1265     s->rx_descriptor = addr;
1266     imx_eth_enable_rx(s, false);
1267     imx_eth_update(s);
1268     return len;
1269 }
1270 
1271 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1272                                 size_t len)
1273 {
1274     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1275 
1276     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1277         return imx_enet_receive(nc, buf, len);
1278     } else {
1279         return imx_fec_receive(nc, buf, len);
1280     }
1281 }
1282 
1283 static const MemoryRegionOps imx_eth_ops = {
1284     .read                  = imx_eth_read,
1285     .write                 = imx_eth_write,
1286     .valid.min_access_size = 4,
1287     .valid.max_access_size = 4,
1288     .endianness            = DEVICE_NATIVE_ENDIAN,
1289 };
1290 
1291 static void imx_eth_cleanup(NetClientState *nc)
1292 {
1293     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1294 
1295     s->nic = NULL;
1296 }
1297 
1298 static NetClientInfo imx_eth_net_info = {
1299     .type                = NET_CLIENT_DRIVER_NIC,
1300     .size                = sizeof(NICState),
1301     .can_receive         = imx_eth_can_receive,
1302     .receive             = imx_eth_receive,
1303     .cleanup             = imx_eth_cleanup,
1304     .link_status_changed = imx_eth_set_link,
1305 };
1306 
1307 
1308 static void imx_eth_realize(DeviceState *dev, Error **errp)
1309 {
1310     IMXFECState *s = IMX_FEC(dev);
1311     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1312 
1313     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1314                           TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1315     sysbus_init_mmio(sbd, &s->iomem);
1316     sysbus_init_irq(sbd, &s->irq[0]);
1317     sysbus_init_irq(sbd, &s->irq[1]);
1318 
1319     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1320 
1321     s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1322                           object_get_typename(OBJECT(dev)),
1323                           DEVICE(dev)->id, s);
1324 
1325     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1326 }
1327 
1328 static Property imx_eth_properties[] = {
1329     DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1330     DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1331     DEFINE_PROP_END_OF_LIST(),
1332 };
1333 
1334 static void imx_eth_class_init(ObjectClass *klass, void *data)
1335 {
1336     DeviceClass *dc = DEVICE_CLASS(klass);
1337 
1338     dc->vmsd    = &vmstate_imx_eth;
1339     dc->reset   = imx_eth_reset;
1340     dc->props   = imx_eth_properties;
1341     dc->realize = imx_eth_realize;
1342     dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1343 }
1344 
1345 static void imx_fec_init(Object *obj)
1346 {
1347     IMXFECState *s = IMX_FEC(obj);
1348 
1349     s->is_fec = true;
1350 }
1351 
1352 static void imx_enet_init(Object *obj)
1353 {
1354     IMXFECState *s = IMX_FEC(obj);
1355 
1356     s->is_fec = false;
1357 }
1358 
1359 static const TypeInfo imx_fec_info = {
1360     .name          = TYPE_IMX_FEC,
1361     .parent        = TYPE_SYS_BUS_DEVICE,
1362     .instance_size = sizeof(IMXFECState),
1363     .instance_init = imx_fec_init,
1364     .class_init    = imx_eth_class_init,
1365 };
1366 
1367 static const TypeInfo imx_enet_info = {
1368     .name          = TYPE_IMX_ENET,
1369     .parent        = TYPE_IMX_FEC,
1370     .instance_init = imx_enet_init,
1371 };
1372 
1373 static void imx_eth_register_types(void)
1374 {
1375     type_register_static(&imx_fec_info);
1376     type_register_static(&imx_enet_info);
1377 }
1378 
1379 type_init(imx_eth_register_types)
1380